78,662 research outputs found

    A new and efficient intelligent collaboration scheme for fashion design

    Get PDF
    Technology-mediated collaboration process has been extensively studied for over a decade. Most applications with collaboration concepts reported in the literature focus on enhancing efficiency and effectiveness of the decision-making processes in objective and well-structured workflows. However, relatively few previous studies have investigated the applications of collaboration schemes to problems with subjective and unstructured nature. In this paper, we explore a new intelligent collaboration scheme for fashion design which, by nature, relies heavily on human judgment and creativity. Techniques such as multicriteria decision making, fuzzy logic, and artificial neural network (ANN) models are employed. Industrial data sets are used for the analysis. Our experimental results suggest that the proposed scheme exhibits significant improvement over the traditional method in terms of the time–cost effectiveness, and a company interview with design professionals has confirmed its effectiveness and significance

    Multicriteria decision making for enhanced perception-based multimedia communication

    Get PDF
    This paper proposes an approach that integrates technical concerns with user perceptual considerations for intelligent decision making in the construction of tailor-made multimedia communication protocols. Thus, the proposed approach, based on multicriteria decision making (MDM), incorporates not only classical networking considerations, but, indeed, user preferences as well. Furthermore, in keeping with the task-dependent nature consistently identified in multimedia scenarios, the suggested communication protocols also take into account the type of multimedia application that they are transporting. Lastly, this approach also opens the possibility for such protocols to dynamically adapt based on a changing operating environment and user's preferences

    Information Processing: The Language and Analytical Tools for Cognitive Psychology in the Information Age

    Get PDF
    The information age can be dated to the work of Norbert Wiener and Claude Shannon in the 1940s. Their work on cybernetics and information theory, and many subsequent developments, had a profound influence on reshaping the field of psychology from what it was prior to the 1950s. Contemporaneously, advances also occurred in experimental design and inferential statistical testing stemming from the work of Ronald Fisher, Jerzy Neyman, and Egon Pearson. These interdisciplinary advances from outside of psychology provided the conceptual and methodological tools for what is often called the cognitive revolution but is more accurately described as the information-processing revolution. Cybernetics set the stage with the idea that everything ranging from neurophysiological mechanisms to societal activities can be modeled as structured control systems with feedforward and feedback loops. Information theory offered a way to quantify entropy and information, and promoted theorizing in terms of information flow. Statistical theory provided means for making scientific inferences from the results of controlled experiments and for conceptualizing human decision making. With those three pillars, a cognitive psychology adapted to the information age evolved. The growth of technology in the information age has resulted in human lives being increasingly interweaved with the cyber environment, making cognitive psychology an essential part of interdisciplinary research on such interweaving. Continued engagement in interdisciplinary research at the forefront of technology development provides a chance for psychologists not only to refine their theories but also to play a major role in the advent of a new age of science

    Fruits of Gregory Bateson’s epistemological crisis: embodied mind-making and interactive experience in research and professional praxis

    Get PDF
    Background: The espoused rationale for this special issue, situated “at the margins of cybernetics,” was to revisit and extend the common genealogy of cybernetics and communication studies. Two possible topics garnered our attention: 1) the history of intellectual adventurers whose work has appropriated cybernetic concepts; and 2) the remediation of cybernetic metaphors. Analysis: A heuristic for engaging in first- and second-order R&D praxis, the design of which was informed by co-research with pastoralists (1989–1993) and the authors’ engagements with the scholarship of Bateson and Maturana, was employed and adapted as a reflexive in-quiry framework.Conclusion and implications: This inquiry challenges the mainstream desire for change and the belief in getting the communication right in order to achieve change. The authors argue this view is based on an epistemological error that continues to produce the very problems it intends to diminish, and thus we live a fundamental error in epistemology, false ontology, and misplaced practice. The authors offer instead conceptual and praxis possibilities for triggering new co-evolutionary trajectories

    The Cat Is On the Mat. Or Is It a Dog? Dynamic Competition in Perceptual Decision Making

    Get PDF
    Recent neurobiological findings suggest that the brain solves simple perceptual decision-making tasks by means of a dynamic competition in which evidence is accumulated in favor of the alternatives. However, it is unclear if and how the same process applies in more complex, real-world tasks, such as the categorization of ambiguous visual scenes and what elements are considered as evidence in this case. Furthermore, dynamic decision models typically consider evidence accumulation as a passive process disregarding the role of active perception strategies. In this paper, we adopt the principles of dynamic competition and active vision for the realization of a biologically- motivated computational model, which we test in a visual catego- rization task. Moreover, our system uses predictive power of the features as the main dimension for both evidence accumulation and the guidance of active vision. Comparison of human and synthetic data in a common experimental setup suggests that the proposed model captures essential aspects of how the brain solves perceptual ambiguities in time. Our results point to the importance of the proposed principles of dynamic competi- tion, parallel specification, and selection of multiple alternatives through prediction, as well as active guidance of perceptual strategies for perceptual decision-making and the resolution of perceptual ambiguities. These principles could apply to both the simple perceptual decision problems studied in neuroscience and the more complex ones addressed by vision research.Peer reviewe
    corecore