7 research outputs found

    Simulating the alteration in energy consumption at a zebra crossing considering different traffic rates of electric and rule-following autonomous vehicles

    Get PDF
    The progressive integration of autonomous vehicle (AV) technology holds the potential to reshape the prevailing traffic landscape. AVs have different driving characteristics than human-driven vehicles, which manifests itself in the strict adherence to speed limit, in giving priority to pedestrians, and in the pre-set headways they can keep. A traffic simulation environment was built around an unsignalized pedestrian crossing to measure the energy consumption of vehicles in the presence of AVs. The simulation environment was modified to adhere pedestrian-accepted gaps between vehicles in case of crossing. Considered vehicle types are yielding or not yielding human-driven, and AVs. Scenarios were built to model the AV traffic share, the different headways kept by AVs, and the various traffic volumes in each direction. The different driving behaviour and traffic share of AVs led to energy consumption changes, which were modelled through scenario analysis. The maximum energy consumption reduction of human-driven vehicles was 10.67% for yielding vehicles and 12.41% for non-yielding vehicles compared to the 0% AV traffic rate. Although, in case of AVs, the energy consumption increased in all scenarios compared to the basic version with only human-driven vehicles. In higher traffic scenarios, where only AVs were on the road, there was a substantial 35,92-96.55% increase in energy consumption, compared to the 0% AV ratio case. Thereby speed of vehicles, following distance and the number of stops affected the overall system efficiency. The results of this study can contribute to the understanding the impact of AVs which can support their introduction

    Detection and compensation of covert service-degrading intrusions in cyber physical systems through intelligent adaptive control

    Get PDF
    Cyber-Physical Systems (CPS) are playing important roles in the critical infrastructure now. A prominent family of CPSs are networked control systems in which the control and feedback signals are carried over computer networks like the Internet. Communication over insecure networks make system vulnerable to cyber attacks. In this article, we design an intrusion detection and compensation framework based on system/plant identification to fight covert attacks. We collect error statistics of the output estimation during the learning phase of system operation and after that, monitor the system behavior to see if it significantly deviates from the expected outputs. A compensating controller is further designed to intervene and replace the classic controller once the attack is detected. The proposed model is tested on a DC motor as the plant and is put against a deception signal amplification attack over the forward link. Simulation results show that the detection algorithm well detects the intrusion and the compensator is also successful in alleviating the attack effects

    Artificial intelligence in cyber physical systems

    Get PDF
    This article conducts a literature review of current and future challenges in the use of artifcial intelligence (AI) in cyber physical systems. The literature review is focused on identifying a conceptual framework for increasing resilience with AI through automation supporting both, a technical and human level. The methodology applied resembled a literature review and taxonomic analysis of complex internet of things (IoT) interconnected and coupled cyber physical systems. There is an increased attention on propositions on models, infrastructures and frameworks of IoT in both academic and technical papers. These reports and publications frequently represent a juxtaposition of other related systems and technologies (e.g. Industrial Internet of Things, Cyber Physical Systems, Industry 4.0 etc.). We review academic and industry papers published between 2010 and 2020. The results determine a new hierarchical cascading conceptual framework for analysing the evolution of AI decision-making in cyber physical systems. We argue that such evolution is inevitable and autonomous because of the increased integration of connected devices (IoT) in cyber physical systems. To support this argument, taxonomic methodology is adapted and applied for transparency and justifcations of concepts selection decisions through building summary maps that are applied for designing the hierarchical cascading conceptual framework

    Cyber-physical manufacturing systems: An architecture for sensor integration, production line simulation and cloud services

    Get PDF
    none9noThe pillars of Industry 4.0 require the integration of a modern smart factory, data storage in the Cloud, access to the Cloud for data analytics, and information sharing at the software level for simulation and hardware-in-the-loop (HIL) capabilities. The resulting cyber-physical system (CPS) is often termed the cyber-physical manufacturing system, and it has become crucial to cope with this increased system complexity and to attain the desired performances. However, since a great number of old production systems are based on monolithic architectures with limited external communication ports and reduced local computational capabilities, it is difficult to ensure such production lines are compliant with the Industry 4.0 pillars. A wireless sensor network is one solution for the smart connection of a production line to a CPS elaborating data through cloud computing. The scope of this research work lies in developing a modular software architecture based on the open service gateway initiative framework, which is able to seamlessly integrate both hardware and software wireless sensors, send data into the Cloud for further data analysis and enable both HIL and cloud computing capabilities. The CPS architecture was initially tested using HIL tools before it was deployed within a real manufacturing line for data collection and analysis over a period of two months.openPrist Mariorosario; Monteriu' Andrea; Pallotta Emanuele; Cicconi Paolo; Freddi Alessandro; Giuggioloni Federico; Caizer Eduard; Verdini Carlo; Longhi SauroPrist, Mariorosario; Monteriu', Andrea; Pallotta, Emanuele; Cicconi, Paolo; Freddi, Alessandro; Giuggioloni, Federico; Caizer, Eduard; Verdini, Carlo; Longhi, Saur

    Reliability Mechanisms for Controllers in Real-Time Cyber-Physical Systems

    Get PDF
    Cyber-physical systems (CPSs) are real-world processes that are controlled by computer algorithms. We consider CPSs where a centralized, software-based controller maintains the process in a desired state by exchanging measurements and setpoints with process agents (PAs). As CPSs control processes with low-inertia, e.g., electric grids and autonomous cars, the controller needs to satisfy stringent real-time constraints. However, the controllers are susceptible to delay and crash faults, and the communication network might drop, delay or reorder messages. This degrades the quality of control of the physical process, failure of which can result in damage to life or property. Existing reliability solutions are either not well-suited for real-time CPSs or impose serious restrictions on the controllers. In this thesis, we design, implement and evaluate reliability mechanisms for real-time CPS controllers that require minimal modifications to the controller itself. We begin by abstracting the execution of a CPS using events in the CPS, and the two inherent relations among those events, namely network and computation relations. We use these relations to introduce the intentionality relation that uses these events to capture the state of the physical process. Based on the intentionality relation, we define three correctness properties namely, state safety, optimal selection and consistency, that together provide linearizability (one-copy equivalence) for CPS controllers. We propose intentionality clocks and Quarts, and prove that they provide linearizability. To provide consistency, Quarts ensures agreement among controller replicas, which is typically achieved using consensus. Consensus can add an unbounded-latency overhead. Quarts leverages the properties specific to CPSs to perform agreement using pre-computed priorities among sets of received measurements, resulting in a bounded-latency overhead with high availability. Using simulation, we show that availability of Quarts, with two replicas, is more than an order of magnitude higher than consensus. We also propose Axo, a fault-tolerance protocol that uses active replication to detect and recover faulty replicas, and provide timeliness that requires delayed setpoints be masked from the PAs. We study the effect of delay faults and the impact of fault-tolerance with Axo, by deploying Axo in two real-world CPSs. Then, we realize that the proposed reliability mechanisms also apply to unconventional CPSs such as software defined networking (SDN), where the controlled process is the routing fabric of the network. We show that, in SDN, violating consistency can cause implementation of incorrect routing policies. Thus, we use Quarts and intentionality clocks, to design and implement QCL, a coordination layer for SDN controllers that guarantees control-plane consistency. QCL also drastically reduces the response time of SDN controllers when compared to consensus-based techniques. In the last part of the thesis, we address the problem of reliable communication between the software agents, in a wide-area network that can drop, delay or reorder messages. For this, we propose iPRP, an IP-friendly parallel redundancy protocol for 0 ms repair of packet losses. iPRP requires fail-independent paths for high-reliability. So, we study the fail-independence of Wi-Fi links using real-life measurements, as a first step towards using Wi-Fi for real-time communication in CPSs
    corecore