Reliability Mechanisms for Controllers in Real-Time
Cyber-Physical Systems

THESE N° 8804 (2018)

PRESENTEE LE 26 OCTOBRE 2018
A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE POUR LES COMMUNICATIONS INFORMATIQUES ET LEURS APPLICATIONS 2
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Maaz MASHOOD MOHIUDDIN

acceptée sur proposition du jury:

Prof. V. Kuncak, président du jury
Prof. J.-Y. Le Boudec, directeur de these
Dr Y.-A. Pignolet, rapporteuse
Dr S. Bliudze, rapporteur
Prof. R. Guerraoui, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2018

We can only see a short distance ahead,
but we can see plenty there that needs to be done.
- Alan Turing

To my mother...

Acknowledgements

I would like to begin by thanking my thesis director, Prof. Jean-Yves Le Boudec, for his
immense guidance and support throughout the duration of my PhD. He has been a
constant source of learning, and has left a lasting impression on my professional and
personal life through the way he conducts himself. I am privileged to be his student.

I would also like to express my gratitude to Dr. Yvonne-Anne Pignolet, Dr. Simon
Bliudze, Prof. Rachid Guerraoui and Prof. Viktor Kuncak for agreeing to serve on my
PhD committee. I am thankful for their feedback and the fruitful discussions. A special
thanks to Simon for serving as my unofficial co-advisor, for playing a significant role in
building the abstractions, and for polishing the results.

When I look back at the last five years at EPFL, the contributions of two peers stand
out: Wajeb and Miroslav. Wajeb, my PhD twin, has been with me through the highs
and lows of research, the startup, and life outside the office. We managed to make
some excellent memories and I think we can both be happy with what we achieved.
Miroslav has been my mentor since day one at EPFL. [am indebted to him for guiding
me through my initial blues during the internship, launching me into the PhD through
a great collaboration and orchestrating my post-PhD plans. [am truly blessed to have
these guys in my life.

Being a part of LCA2 was a great experience. The lab is a rich melting pot of cultures,
backgrounds and perspectives, with so much to explore. In the first phase, I had some
great times with Miroslav, Nadia, Tech and Dan, who provided a much-needed outlet
for coping with the work-stress through our lazy outings. Sergio was the go-to-guy for
networking, who made TAing TCP/IP a lot easier. In the second phase, Wajeb, Roman
formed a good addition to the LCA2 family and helped continue the work-life balance.

A key role in keeping LCA2 the well-oiled machine it is, are the secretaries Patricia,
Angela and Holly, and the system administrators Marc-André and Yves. They work
tirelessly so that we can focus exclusively on things we are good at. Without Holly, I
would have a lot more hyphens and instances of there by and where as in my papers. If
it were not for Patricia, I would probably be living under a bridge.

I was fortunate to have several collaborations during the course of my PhD. A
special thanks to Elena, Mia and Ehsan who were instrumental in helping me end my
doctoral studies with a flourish. I would also like to thank Prof. Mario Paolone and
the DESL crew for providing me with a real opportunity to test out my power-point
research on their gear. [was also lucky to supervise several students who helped me

i

Acknowledgements

offload parts of my work and try out some eccentric ideas.

[would like to thank all my friends in Switzerland for making my stay a pleasant
one. The board games, hikes and dinners with Kassir, Wajeb, Priyanka, Taha, Sanket,
Harshal, Czuee and Anwar in Lausanne served as refreshing palate-cleansers after a
tough week at the office. I would like thank Hend for getting me up to speed with the
bare minimum level of French required to survive in Lausanne. The base in Ziirich
served as a perfect retreat to a second home in the final years of my PhD. The boys
from IITH (Adi, Nagi and Aniket) who were in similar situations in the USA, helped
form an effective support group.

Lastly, I would like to thank my family for supporting me throughout my time as
a doctoral student, either through calming phone sessions or through care-packages
from Hyderabad. I am grateful for having a loving sister who has stood by me through
thick and thin. Without the constant perseverance of my parents, I could not have
dreamt of pursuing a PhD at EPFL. I am thankful to them for instilling the never-say-no
attitude in me.

Lausanne, 1t October 2018 M. M.

ii

Abstract

Cyber-physical systems (CPSs) are real-world processes that are controlled by com-
puter algorithms. We consider CPSs where a centralized, software-based controller
maintains the process in a desired state by exchanging measurements and setpoints
with process agents (PAs). As CPSs control processes with low-inertia, e.g., electric grids
and autonomous cars, the controller needs to satisfy stringent real-time constraints.

However, the controllers are susceptible to delay and crash faults, and the commu-
nication network might drop, delay or reorder messages. This degrades the quality
of control of the physical process, failure of which can result in damage to life or
property. Existing reliability solutions are either not well-suited for real-time CPSs or
impose serious restrictions on the controllers. In this thesis, we design, implement
and evaluate reliability mechanisms for real-time CPS controllers that require minimal
modifications to the controller itself.

We begin by abstracting the execution of a CPS using events in the CPS, and the two
inherent relations among those events, namely network and computation relations.
We use these relations to introduce the intentionality relation that uses these events to
capture the state of the physical process. Based on the intentionality relation, we define
three correctness properties namely, state safety, optimal selection and consistency,
that together provide linearizability (one-copy equivalence) for CPS controllers.

We propose a labeling mechanism called intentionality clocks that can be used
by controllers and PAs to express the intentionality relation. Intentionality clocks are
robust to delays and can be used with replicated controllers to establish a total order
between the events. We use intentionality clocks to design a CPS controller and PAs
that guarantee the state safety and optimal selection properties.

Then, we design Quarts, an agreement algorithm that guarantees the consistency
property among replicated controllers. Inconsistent controllers can issue setpoints
that result in incorrect control of the process. So, agreement is typically achieved using
consensus between the replicated controllers. This can add an unbounded-latency
overhead. Quarts leverages the properties specific to CPSs to perform agreement using
pre-computed priorities among sets of received measurements, resulting in a bounded-
latency overhead with high availability. Using simulation, we show that availability of
Quarts, with two replicas, is more than an order of magnitude higher than consensus.

Intentionality clocks and Quarts together provide linearizability that enables active
replication of the central controller. Using this result, we design Axo, a fault-tolerance

iii

Abstract

architecture for delay and crash faults in real-time CPSs. Axo also adds new mecha-
nisms to detect and recover faulty replicas, and provide timeliness that requires delayed
setpoints be masked from the PAs. We study the effect of delay faults and the impact of
fault-tolerance with Axo, by deploying Axo in two real-world CPSs.

Then, we realize that the proposed reliability mechanisms also apply to unconven-
tional CPSs such as software defined networking (SDN), where the controlled process
is the routing fabric of the network. We show that, in SDN, violating consistency
can cause implementation of incorrect routing policies. Thus, we use Quarts and
intentionality clocks, to design and implement QCL, a coordination layer for SDN
controllers that guarantees control-plane consistency. QCL also drastically reduces
the response time of SDN controllers when compared to consensus-based techniques.

In the last part of the thesis, we address the problem of reliable communication
between the software agents, in a wide-area network that can drop, delay or reorder
messages. For this, we propose iPRP, an IP-friendly parallel redundancy protocol for 0
ms repair of packet losses. iPRP requires fail-independent paths for high-reliability. So,
we study the fail-independence of Wi-Fi links using real-life measurements, as a first
step towards using Wi-Fi for real-time communication in CPSs.

Key words: cyber-physical system, real-time, mission-critical, control system, smart
grid, autonomous car, reliability, delay, crash, software-fault, software-base control,
commercial off-the-shelf, intentionality, redundancy, consistency, linearizability, avail-
ability, consensus, agreement, bounded latency-overhead, timeliness, fault-detection,
fault-recovery, fault-masking, software-defined networking, control-plane, industrial
communication, low-latency, fail-independent paths, packet replication, real-time
communication, Wi-Fi, measurements, performance evaluation.

iv

Résumeé

Les systémes cyber-physiques (CPS) sont des processus d’interaction avec le monde
réel controlés par des algorithmes informatiques. Nous considérons des CPS ou1 un
contréleur logiciel centralisé échange des mesures et des valeurs de consigne avec
des agents de processus (AP) afin de maintenir un processus dans un état souhaité.
Comme les CPS contrdlent des processus a faible inertie, tels que les réseaux de
distribution électrique et les voitures autonomes, le controleur doit satisfaire des
contraintes strictes en temps réel.

Les controleurs logiciels sont cependant susceptibles de subir des retards et des
pannes, et le réseau de communication risque d’abandonner, de retarder ou de ré-
ordonner les messages. Ceci entraine une dégradation de la qualité du contrdle du
processus physique, pouvant entrainer des dommages physiques ou mettre des vies
en danger. Les solutions de fiabilité existantes ne sont pas bien adaptées aux CPS
en temps réel ou imposent de sérieuses restrictions aux contréleurs CPS. Dans cette
these, nous concevons, implémentons et évaluons des mécanismes de fiabilité pour
les controleurs CPS en temps réel qui nécessitent le minimum de modifications au
contrdleur lui-méme.

Nous commencons par formaliser I'exécution d'un CPS en termes d’évenements
dans le CPS, et par définir les deux types inhérents de relations entre ces événements :
les relations de réseau et les relations de calcul. Nous utilisons ces relations pour in-
troduire la relation d’'intentionnalité, qui saisit I’état du processus physique grace a
ces évenements. Sur la base de la relation d’intentionnalité, nous définissons trois pro-
priétés d’exactitude : la sécurité d’état, la sélection optimale et la cohérence. Ces trois
propriétés garantissent la linéarisabilité (ou équivalence a une copie) des controleurs
CPS.

Nous proposons un mécanisme d’étiquetage appelé « horloges d’intentionnalité »
qui peut étre utilisé par les controleurs et les AP pour exprimer la relation d’'intention-
nalité. Les horloges d’'intentionnalité sont robustes aux retards et peuvent étre utilisées
avec des controleurs répliqués pour établir un ordre total entre les évenements. Nous
utilisons les horloges d’intentionnalité afin de créer un controleur CPS et des AP qui
garantissent les propriétés de sécurité d’état et de sélection optimale.

Nous proposons ensuite Quarts, un algorithme d’accord garantissant la propriété
de cohérence entre controleurs répliqués. Des controleurs incohérents peuvent émettre
des valeurs de consigne qui entrainent un controle incorrect du processus. Laccord

\%

Résumé

est généralement obtenu par consensus entre les controleurs répliqués, ce qui peut
rajouter un cofit de latence non bornée. Quarts utilise les propriétés propres aux CPS
pour établir un accord en utilisant des priorités précalculées parmi des ensembles
de mesures, garantissant ainsi une latence bornée et une haute disponibilité. Nous
démontrons via des simulations que pour le cas de deux réplicas, Quarts offre une
disponibilité supérieure de 10x a celle garantie par la solution de consensus.

Ensemble, les horloges d’intentionnalité et Quarts garantissent la linéarisabilité
et permettent donc une réplication active du contréleur central. Sur la base de ces
résultats, nous proposons Axo, une architecture a tolérance de pannes pour les erreurs
de retard et de panne dans les CPS en temps réel. Axo offre également de nouveaux
mécanismes pour la détection et la récupération des réplicas erronées, ainsi qu'une
garantie de rapidité moyennant le masquage des valeurs de consigne tardives par
rapport aux AP. Nous déployons Axo dans deux CPS du monde réel pour étudier I'effet
des erreurs de retard et 'impact de la tolérance d’erreurs d’Axo.

Nous revenons ensuite sur les mécanismes proposés dans cette thése et réalisons
qu’ils s’appliquent également aux CPS non conventionnels tels que le réseau défini
par logiciel (SDN), ol le processus controlé est le tissu de routage au sein d'un réseau.
Nous montrons que dans le contexte SDN, 'absence de cohérence peut entrainer
I'implémentation de politiques de routage incorrectes. Nous utilisons donc Quarts
et des horloges d’intentionnalité pour créer et implémenter QCL, une couche de
coordination pour les controleurs SDN qui garantit la cohérence du plan de controle.
Par rapport aux techniques de consensus, QCL offre une réduction drastique du temps
de réponse des contréleurs SDN.

Dans la derniere partie de la thése, nous abordons le probleme de la communica-
tion fiable entre les controleurs et les agents de processus, dans un réseau étendu qui
peut abandonner, retarder ou réordonner les messages. Pour cela, nous proposons
iPRP, un protocole de redondance parallele IP-compatible pour réparer les pertes de
paquets en 0 ms. iPRP exige des routes a défaillance indépendante pour garantir une
haute fiabilité. Nous utilisons des mesures du monde réel pour étudier 'indépendance
de défaillance des liaisons Wi-Fi, en tant que premiere étape de I'utilisation de iPRP
sur le Wi-Fj, pour la communication dans un CPS a temps réel.

Mots clés : systeme cyber-physique, temps réel, mission critique, systeme de
controle, réseau intelligent, voiture autonome, fiabilité, retard, accident, défaillance
logicielle, controle de base de logiciel, commercial, intentionnalité, redondance, cohé-
rence, linéarisation, disponibilité, consensus, accord, temps de latence borné, rapidité,
détection de pannes, récupération de pannes, masquage de pannes, mise en réseau
logicielle, plan de contrdle, communication industrielle, faible latence, chemins a dé-
faillance indépendante, réplication de paquets, communication en temps réel, Wi-Fi,
mesures, évaluation des performances.

vi

API
BFT
CCDF
CDF
COTS
CPS
DDR
DTLS
ECDF
EV
FLP
GA
GPS
HMAC
ICB
D
IEEE
IMB
IND
IP
iPRP
IRB
ISB
LAN
LQR
MAC
MPLS
MPLS-TP
MPTCP

List of Abbreviations

Application Programming Interface

Byzantine Fault-Tolerance

Complementary Cumulative Distribution Function
Cumulative Distribution Function

Commercial Off-the-Shelf

Cyber-Physical System

Double Data Rate

Datagram Transport Layer Security

Empirical Cumulative Distribution Function
Electric Vehicle

Fischer Lynch Paterson

Grid Agent

Global Positioning System

Hash-Based Message Authentication Code
iPRP Control Block

Identifier

Institute of Electrical and Electronics Engineers
iPRP Monitoring Block

iPRP Network Discriminator

Internet Protocol

[P-friendly parallel redundancy protocol

iPRP Receiving Block

iPRP Sending Block

Local-Area Network

Linear—Quadratic Regulator

Media Access Control

Multiprotocol Label Switching

Multiprotocol Label Switching - Transport Profile
Multi-Path Transmission Control Protocol

vii

List of Abbreviations

MTTF
MTTR
NEV
NTP
OSPF
PA

PC
PDC
PDE
PLC
PLR
PMU
PRP
PTP
PV
QCL
QCP
QSP
QUIC

RIP
RPL
RSTP
RTO
RTT
SDN
SN
SNSID
SoC
TCB
TCP
TTA
UDP
VLAN

WAN
WCET

viii

Mean Time to Instability

Mean Time to Repair

Network Function Virtualization
Network Time Protocol

Open Shortest Path First
Process Agent

Personal Computer

Phasor Data Concentrator
Probability Density Function
Programmable Logic Controller
Packet Loss Rate

Phasor Measurement Unit
Parallel Redundancy Protocol
Precision Time Protocol
Photovoltaic

Quick Coordination Layer
Quick Controller Proxy

Quick Switch Proxy

Quick UDP Internet Connections
Random Access Memory
Routing Information Protocol
Routing Protocol for Low-Power and Lossy Networks
Rapid Spanning Tree Protocol
Retransmission Timeout
Round-Trip Time

Software Defined Networking
Sequence number

Sequence Number Space ID
State-of-Charge

Timely Computing Base
Transmission Control Protocol
Time-Triggered Architecture
User Datagram Protocol

Virtual Local-Area Network
Virtual Private Network
Wide-Area Network

Worst-Case Execution Time

Contents

Acknowledgements

Abstracts (English and French)
List of Abbreviations

List of Figures

List of Tables

1 Introduction
1.1 Background
1.2 Global Trends and Reliability Issues in CPSs . . .
1.2.1 Real-Time Control
1.2.2 Complex Control and COTS Components
1.2.3 IP-Based Communication
1.2.4 Mission-Critical Applications
1.3 Challenges
1.4 Contributions
15 Roadmap

2 State of the Art
2.1 Controller Reliability
2.1.1 Passive Replication
2.1.2 Active Replication
2.2 Communication Reliability

3 CPS Model and Intentionality
3.1 Introduction
3.1.1 State of the Controlled Process
3.1.2 Need fora New Relation
3.1.3 Contributions
3.2 RelatedWork
3.3 High-Level Model of the Software Agents in a CPS

iii

E:

© 0 O O = = N -

—
w o

15
15
16
18
20

23
23
25
26
27
27
28

ix

Contents

3.3.1 ControllerModel 29
332 PAModel 30

34 EBventsinaCPS 31
3.5 Basic Relations between CPSEvents 33
3.5.1 NetworkRelation 33
3.5.2 ComputationRelation 33

3.6 Intentional Equivalence and Intentionality 35
3.6.1 Intentional Equivalence Relation 35
3.6.2 IntentionalityRelation 36

3.7 Correctness Properties 37
3.8 Conclusion e 39
4 Ordering Events Based on Intentionality 41
4.1 Clock-Consistency Condition 42
4.2 Clock Consistency Using Existing Solutions 43
4.2.1 UsingPhysical Time 43
4.2.2 UsingLogicalClocks 45

4.3 IntentionalityClocks oo 46
4.4 CPS Design with IntentionalityClocks 49
4.4.1 ControllerDesign 49
442 PADesign e 51

4.5 FormalGuaranteest 52
4.6 Case Study: CPS for Scheduling EV Charging 59
4.6.1 CPSDesignforEVCharging 60
4.6.2 Deadlock Due to Violation of Optimal Selection 61
4.6.3 Design with IntentionalityClocks 62

4.7 Conclusion e 64
5 Quick Agreement among Replicated CPS Controllers 67
5.1 Importance of ConsistencyinaCPS 68
52 RelatedWork L 70
5.3 CPS Properties Required forQuarts 71
5.4 QuartsDesign e 73
5.4.1 ProtocolWalk-Through. 74
54.2 CollectionPhase, 76
54.3 VotingPhase 78

5.5 Formal Guarantees, 81
5.6 Performance Evaluation 85
5.6.1 PerformanceMetrics 85
5.6.2 AgreementProtocols, 86
5.6.3 Simulation Methodology 87
56,4 Results 90

5.7 Quarts+: Incorporating Asynchronous Sensors 94

Contents

5.7.1 Challenge with Asynchronous Sensors 95

5.7.2 CPS Requirements for Quarts+ 96

573 Quarts+Design 97
574 Formal Guarantees 100

5.7.5 Performance Evaluation 103

58 Conclusion 106
6 Axo: Tolerating Delay and Crash Faults in Real-Time CPSs 107
6.1 Timeliness in a CPS — Definitions and Challenges 109
6.2 RelatedWork 111
6.3 AXO . . .o e e e e 112
6.3.1 ASSUmMpLionS e e e 112

6.3.2 Design e 113

6.4 Implementation 123
6.5 Performance Guarantees 124
6.5.1 Timeliness Guarantees 124
6.5.2 BoundsonRecoveryTime 127

6.6 CaseStudy: COMMELEC 135
6.6.1 COMMELECBackground 135

6.6.2 TestSetup 136

6.6.3 Importance of Fault-Tolerance 136

6.6.4 EffectofInconsistency 138

6.7 Case Study II: Inverted Pendulum 139
6.8 Conclusion L 143
7 QCL for Consistent-Controller Replication in SDN 145
7.1 Introduction 146
7.1.1 Problem 146
7.1.2 OurApproachandChallenges 148
7.1.3 Contributions L. 149

7.2 SystemModel 150
7.3 QCLDesign e 150
7.3.1 QCLMessages & Functions 152

7.3.2 Ordering QCLMessages 153

7.3.3 Exporting Switch StatebyQSP L. 154
7.3.4 AgreementatQCP o 154
7.3.5 Data-plane Consistency 156

7.4 Formal Guarantees 160
7.4.1 Control-Plane Guarantees 160
7.4.2 Enforceable Safety Policies 161

7.4.3 SafetyPolicy Guarantees 162

7.5 Performance Evaluation 163
7.5.1 SimulationSetup 163

Contents

7.5.2 ReplicationSchemes
7.5.3 SafetyPolicyResults
7.5.4 Liveness PolicyResults
7.6 System Implementation
7.7 RelatedWork L
7.8 Conclusion

Reliable Real-Time Communication in Unreliable Networks
8.1 Introduction
82 RelatedWork L
8.3 Technical ChallengesiniPRPDesign
84 iPRPDesign
8.4.1 ProtocolWalk-Through.
8.4.2 IPMulticast
843 CrashofaHost
8.4.4 Addition or Removal of Network Interfaces
8.4.5 Duplicate Discard Algorithm
8.4.6 Security Considerations
8.5 Correctness of the Discard Algorithm
8.6 iPRP DiagnosticToolkit, .
8.7 Measurements with Directional Wi-FiLinks
8.7.1 DescriptionoftheTestBed
8.7.2 Experimental Methodology
8.7.3 MeasurementResults L L.
8.8 Are direction Wi-Fi links fail-independent?
8.8.1 Estimating the DistributionofLosses.
8.8.2 Information-Theoretic Test of Independence
8.8.3 Impactof DependentLosseson Py . . o v o v oo oL
89 Conclusion

Conclusion and Open Questions

Discussion on Theorems in Section 3.6

A.l1 ProofofTheorem3.6.1 ueiie...
A.2 Proofof Theorem3.6.2,
A.3 Proofof Theorem3.6.3

Bibliography

List of Publications

Curriculum Vitae

Xii

175
176
179
180
182
183
187
189
189
190
191
191
194
196
196
197
199
201
202
203
205
205

209

215
215
216
216

219

237

239

List of Figures

1.1
1.2
1.3
1.4
1.5

1.6

3.1

3.2

4.1

4.2

4.3

4.4

4.5

5.1

5.2
5.3

5.4
5.5

ArchitectureofaCPS L L o
Response time of the COMMELEC controller as a function of time . . .
Tracking a dispatch plan with the COMMELEC controller
Effect of network losses on COMMELEC's ability to track a given dispatch
plan . . . e
Energy mismatch between the dispatch plan and that provided by COM-
MELEC during a period of five minutes
Pairwise scatter plots of response times of replicas of the same COM-
MELEC controller running on different virtual machines on the same
physicalmachine

Architecture of a CPS without asynchronous sensors and actuators that
directly communicate with the controller
Illustration of why the happened-before relation is not suitable for or-
dering events in a CPS in the presence of replication

Difference between temporal order and intentionality due to replication
of the controller. The notation (1, 2, 3) represents the vector clock of an
event in the format (PA:1,C1:2,C2:3) v o v i i i
Difference between temporal order and intentionality due to delays . .
Example of computation at a controller as a result of a timeout indicating
the clock at the agents aftereachevent
Difference between Lamport clocks and intentionality clocks — An exam-
ple of erroneous incrementation of Lamport clocks with two PAs
Architecture and information flow of a CPS for EV charging [1]

Architecture of the CPS indicating the messages exchanged with round
numbers
Gilbert-Elliot model for simulating delay and crash faults
Unavailability with varying g and varying p. Unavailability of Quarts (Q)
with more than 3 replicaislessthan4 x 10710
Mean and 99'" percentile of latency in different scenarios
Mean and 99" percentile of messaging cost in different scenarios

24

26

44
44

48

49
60

71
88

Xiii

List of Figures

Xiv

5.6

5.7

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9

6.10

6.11

7.1
7.2
7.3
7.4

7.5
7.6

7.7

8.1
8.2
8.3
8.4
8.5
8.6

8.7
8.8

Architecture of a CPS with PAs and asynchronous sensors that directly

communicate with thecontroller 94
Inconsistency of Quarts with 2 replicas as a function of p for different

valuesofm L 104
Axodesign 114
Time to recover from delay-faults for varyingé 134
Time to recover from crash-faults for varyingd 134
COMMELEC architecture with 3 resourcesand PAs 136

13-bus CIGRE low-voltage benchmark grid controlled using COMM-
ELEC to provide autonomy by minimizing the total export or import of

power at bus BO1. Grey areasareunused 137
Timeliness guarantee of Axo 137
Energy mismatch over time in COMMELEC 139
Snapshot of the inverted pendulum from experiments 140
Step response of the pendulum with a single controller for different

values of controllerdelay, 141
[lustration of the inverted pendulum CPS with two controllers and one

PA (thependulum) 142
Stability of the pendulum with a replicated controller 142
Example of edge disjoint isolation violation 147
ComponentsinQCL 151
Unsafety in SCL and Passive schemes. Unsafety of QCLis0 164
Representative scenario (Basic): ft16 with g = 2, §,, = 0.5 ms and param-

etersetupnormall e e e e e e e 170
CCDF of response and convergence times for the basic scenario 171
CCDF of convergence time for AS 1221 with parameter set normal, g = 2

and d, = 10MsS. e e e e e e e e 171
Median and tail (at 99*" percentile) of 4-port fat-tree with 2 and 3 replicas

INMS e 173
Overview of the iPRP design indicating the flow of a packet 182
Example of a network with two connected subclouds performing iPRP 184
Placement of iPRP in the networking stack 187
Map of the campus with the antennalocations. 197
Hardware used for thetest-bed. 198
Box plot of the PLRs for link AB, link AC and after replication for scenarios

with and without MAC-layer retransmissions, shown in log-scale. . . . 200
Two-state Gilbert model for burstylosses 202
Box plot of parameters of the two-state Gilbert model for links AB and

AC, ply ¢ty Pher Gher showninlogscale oL 203

List of Figures

8.9 QQ-plotof the number of losses on each link showing the non-stationary
of distribution of losses across scenarios 203

List of Tables

5.1
5.2

5.3
5.4
5.5
5.6

6.1

7.1

7.2

8.1
8.2
8.3

Unavailability results for the chosen scenarios 91
Inconsistency results for the chosen scenarios. Inconsistency of A and

AC is zero. * No inconsistency was observed in 10 runs 91
Mean and 99" percentile of latency for select scenarios 92
Mean and 99" percentile of messaging cost for select scenarios 93
Unavailability results for the chosen scenarios. * No event in 10! runs 105
Latency results for the chosen scenarios 105
Instability of an inverted pendulum in selected scenarios with varying 6, 142

Median and tail (at 99*" percentile) response times for different scenarios.
The column Setup shows the difference in each scenario from basic
setupseeninFigure 7.4 L L o o o 167
Median and tail (at 99" percentile) convergence times for different sce-
narios. The column Setup shows the difference in each scenario from

basicsetupseenin Figure 7.4, 167
PLR statistics obtained from measurements 199
99" percentile value of PLRs with and without MAC-layer retransmissions200
Latency statistics with MAC-layer retransmissions 201

| Introduction

This is your last chance.

After this, there is no turning back.

You take the blue pill — the story ends,

you wake up in bed & believe what you want.
You take the red pill - you stay in Wonderland,
and I show you how deep the rabbit hole goes.
— Morpheus, The Matrix

According to the Oxford English dictionary [2], the term cyber is defined as “relating
to or a characteristic of the culture of computers, information technology, and virtual
reality”. The term physical is defined as “relating to physics or the operation of natural
forces generally”. The marriage between these two domains has resulted in CPSs that
are physical processes whose operations are monitored, coordinated and controlled
by a computing and communication core [3].

In contrast to traditional computer systems, such as database systems where com-
puters manage and control data, i.e., bits of information, CPSs control elements of
physical processes such as electric power and voltages in smartgrids [1,4, 5, 6, 7], posi-
tion and velocity in autonomous vehicles [8,9, 10, 11, 12], and positions of objects on a
conveyor belt in manufacturing processes [13, 14, 15]. Consequently, the physical and
software components are deeply intertwined, interacting with each other in a myriad
of ways that change with context [16].

These new interactions have led to new performance requirements, previously
unbeknownst to traditional computer systems. In this thesis, we identify some of the
requirements pertaining to the reliability of the controllers and their communication
network, we propose mechanisms that realize those requirements, and we demonstrate
the efficacy of the mechanisms through results from practical deployments.

Chapter 1. Introduction

1.1 Background

Figure 1.1 shows the architecture of a CPS as seen in the domains of electric grids
[1,4,5,6,7], in manufacturing processes [13] and in autonomous vehicles [8, 9, 12],
among others. It consists of the physical elements and cyber components. The physical
elements are the controlled process and controlled resources. The cyber components
are the controller, PAs, sensors and actuators. We will describe these components in
more detail using the COMMELEC [4] CPS as an example.

Controller

setpoints
measurements setpoints

Process Agent advertisements

v }
’ActuatorH Sensor ‘ ’ Sensors‘
v ¥ !

Controlled Resource Controlled Resource

v i v

Controlled Process

Figure 1.1 — Architecture of a CPS

COMMELEC is a CPS for real-time control of electric grids. The controlled process
is the global state of the electric grid. This state consists of the current in all the lines
and the voltages at all the buses. The goal of COMMELEC is to implement one or more
auxiliary policies and to ensure that the currents are within the ampacity limits of the
lines and that the voltages are maintained within the respective nodal voltage limits.
The auxiliary policies include providing primary frequency-support to an upper-level
grid [17], acting as a virtual power-plant [18], or following a dispatch signal from an
external source. The process is controlled by altering the state of controlled resources.
In COMMELEC, these resources include batteries, PV panels, heat-pumps, charging
stations for EVs, etc. These resources are controlled by modulating the active- and
reactive- power injections.

The sensors and actuators are low-level agents that interface with the physical
process. The sensors read the state of the process and send it to the controller. A
message sent by the sensor to a controller indicating the state of the process is called
an advertisement. Actuators receive setpoints from the controllers or PAs and change
the state of the controlled resource. Alternatively, PAs and controllers are high-level
software agents that perform more complex control than sensors and actuators.

2

1.1. Background

A constraint of the controller is to issue setpoints that keep the controlled process in
a desired state. In COMMELEC, this amounts to maintaining the currents and voltages
in the electric grid within their respective limits. A PA is responsible for satisfying the
control requirements of a single resource, i.e., controlling one part of the controlled
process. For a battery resource in COMMELEC, this amounts to ensuring that the SoC
of the battery never falls below a certain threshold. The PA for the battery resource
sends the SoC of the battery, along with the power injected by the battery, as a part
of its measurement to the controller. PAs interface with the sensors and actuators, as
shown in Figure 1.1. A PA uses its actuator to implement the setpoints received from
the controller. Also, a PA uses the sensor to read the state of the resource and send the
read state as measurements to the controller.

The controller receives measurements from PAs, and advertisements from sen-
sors. It computes and issues setpoints to PAs and actuators. We make a distinction
between measurements from PAs and advertisements from sensors, because they have
different synchrony properties. On the one hand, measurements are synchronously
generated, i.e., follow a particular pattern of generation because the PAs respond to
the controller only when they receive setpoints. On the other hand, advertisements
can be asynchronously generated in no particular relation with setpoints. Notice that
PAs are synchronous, whereas controllers can be asynchronous, as controllers issue
setpoints whenever required by the process, for instance due to timeouts.

In COMMELEC, the sensors are PMUs [19, 20] that stream voltage and current
phasors to the controller every 20 ms. PMUs are periodic sensors, hence follow some
synchrony. Examples of asynchronous sensors are found in manufacturing plants,
where temperature and pressure sensors send advertisements only when the reading
crosses their threshold. Examples of actuators in COMMELEC are converters on
batteries or PV panels, and circuit breakers.

We limit ourselves to CPSs that use a centralized controller, as shown in Figure 1.1.
CPSs with multiple decentralized controllers that perform distributed control, such
as [21,22,23,24], are not considered. Distributed control schemes are more scalable and
robust to the failure of one of the controllers than their centralized counterparts are.
However, the analysis and design of distributed control schemes is more complicated
than that of the centralized control schemes [25]. Specifically, a major concern of the
distributed schemes mentioned in [26] is that the control performance might be sub-
optimal when compared to centralized scheme, because the distributed controllers
do not have as much information regarding the state of the process as the centralized
controller does. Alternatively, as the controller in the centralized scheme is a single
point of failure and the communication with the PAs is key to achieving the desired
control, such CPSs require the additional reliability mechanisms proposed in this
thesis.

Chapter 1. Introduction

We notice that some computer systems, such as SDN [27,28] and NFV [29, 30], also
follow the architecture in Figure 1.1 — except these systems do not control a physical
process but control the packet-forwarding rules in a network. For instance, in [31],
the PAs are switches that send their routing tables and port information in the form of
measurements to the controller that responds with routing updates to be installed on
the switches as a part of setpoints. Thus, the reliability mechanisms proposed in this
thesis are also extended to apply in the context of SDN.

1.2 Global Trends and Reliability Issues in CPSs

Here, we present the motivation for our research. We discuss the current trends in
how CPSs are designed and what kind of applications they are used for. We argue that
the new applications have stricter real-time and reliability requirements, whereas the
trends in CPS design make it difficult to achieve these requirements by introducing
unreliable components. Therefore, we need additional mechanisms to achieve the
desired reliability in real-time.

1.2.1 Real-Time Control

Emerging CPSs are real-time systems [32, 33]. The frequency of control by a CPS
that qualifies for real-time depends on the dynamics of the physical process. If the
frequency of control is faster than or comparable to the rate at which the process
demonstrates an observable change, then the CPS is said to be a real-time system.
For instance, the state in electric grids is observable every 20 ms. In non-real-time
CPSs, proposed in early 2010s [5, 34], the control is done every few seconds or minutes,
whereas recent CPSs [1, 4, 7] perform sub-second control, making them real-time
systems.

The real-time paradigm shift is brought about by applications such as unintentional
islanding [35], virtual power-plants [18] and teleprotection [36]; in contrast to less
latency-critical applications such as demand response [34] and voltage control [5].
Similar trends are also being observed in autonomous cars with the move towards level
5 autonomy (under all roadway and environmental conditions that can be managed
by a human driver) requiring sub-second control [37].

This trend poses stringent timing requirements on the control action by the CPS.
For example, teleprotection applications require that the setpoints be implemented
within 4 ms after a voltage violation in the grid [36].

1.2. Global Trends and Reliability Issues in CPSs

1.2.2 Complex Control and COTS Components

The CPS controllers are now solving complex problems in the real-time path. Some
examples of these problems are load-flow computations [38, 39], gradient descent
[7], linear projections [4], non-linear optimization, pattern recognition [8, 12] and
machine learning, all of which require significant computing power, memory and
high-level mathematical abstractions. In contrast, previous control methods [40,41]
were less computation and memory intensive. This trend is driven by the ability of
the new algorithms to simultaneously address several aspects of real-world problems.
Moreover, the steep rise in computing capabilities has made such algorithms feasible
in real-time [42].

In order to implement the aforementioned complex control, CPS controllers exploit
the computing power and high-level abstractions of COTS hardware and software
components [43]. These controllers are implemented using industrial PCs such as
CompactRIO (from National Instruments) [44], DAP server (from Alstom) [45], MGC600
(from ABB) [46], Automation PC (from B&R Automation) [47], as opposed to low-level
PLCs [48]. These controllers run off-the-shelf Linux operating system with a real-
time patch [49], and the controller software is developed in high-level programming
languages [50] such as C, C++ and Python.

As the controllers use COTS hardware and software components they might some-
times miss the deadline for performing the control action. This is evident from Figure
1.2 that shows the response time of the COMMELEC [4] controller controlling a single
PA and running on an laptop computer with 2.3 GHz Intel Core i7 processor and 4 GB
DDR3 RAM. The data represents an execution trace of 160 days, which amounts to
140 million samples. The median computation time is 0.47 ms and the 99" percentile
value is 1.09 ms. Whereas the 99.99" percentile of the response time (1.89 ms) is only 4
times the median, the 99.999'" percentile is 305 ms, hence higher than the median. The
probability that the response time in a control cycle is larger than 40 ms (the deadline
in COMMELEC) is 10~°, which amounts to 0.36 deadline violations/hr, i.e., about 8
deadline violations a day. Such deadline violations are termed as delay faults. The in-
stances of these delay faults are usually bursty, thus making the controller unavailable
for several consecutive rounds.

Modern CPSs can tolerate such deadline violations because they are soft real-time
systems: Infrequent deadline misses are tolerable and the usefulness of a setpoint
degrades after the deadline has passed; as opposed to hard real-time systems, i.e.,
missing a deadline causes a system failure [51]. However, in soft real-time systems, as
the duration since the deadline increases beyond a threshold, the setpoint becomes
unsafe to implement. For example, in COMMELEC, a setpoint computed for a resource
with a certain knowledge of the line currents in the grid becomes unsafe to implement
once the line currents have sufficiently changed. Thus, tolerating delay faults involves

Chapter 1. Introduction

250

200 1

150 1

100 - 1

Computation Time [in ms]

(&)
o
T
I

LAJI,L |‘)Ju,.“ e

60 80 100 120 140 160
Running Time [in days]

L‘lh L ||Jl
20 40

Figure 1.2 — Response time of the COMMELEC controller as a function of time

not only ensuring that setpoints are issued within a deadline but also ensuring that
unsafe setpoints are not implemented.

1.2.3 IP-Based Communication

CPSs are being used to control physical processes that are spread over larger distances,
and the communication between different agents takes place over several LANs; thus
making it one larger IP-based WAN [52]. For instance, in [53], the real-time monitoring
infrastructure is spread over a campus-wide IP network. Furthermore, these networks
use COTS hardware (such as off-the-shelf switches and routers) that cannot provide the
same real-time packet-delivery guarantees as traditional communication frameworks
in control systems (CAN bus [54], FlexRay [55], AFDX [56], time-triggered Ethernet
[57]). IP-based networks are probabilistic synchronous [58], i.e., when the network
conditions are “good” the messages are delivered within a bounded-delay, but when the
network conditions are “bad”, the messages might be dropped, delayed or reordered.
Communication networks built from COTS hardware have a PLR of 10~2 losses/hr and
component failures at a rate of 10~ failures/hr [59, 60].

To illustrate the effect of packet loss on the control by a CPS, we present results
from a case study performed with the COMMELEC CPS using T-RECS [61], a virtual-
commissioning system for the real-time control of electric grids. In this study, the
COMMELEC controller is required to track an external dispatch signal that specifies the
grid prosumption in intervals of five minutes. To this end, it must follow the dispatch
plan as closely as possible while satisfying the constraints of the grid and a single bat-

6

1.2. Global Trends and Reliability Issues in CPSs

— Dispatch plan ~—e Battery
+~— Measured at slack — PV

Active Power (kW)
(I
NONUINONUIN
VO UTO UTO U1O LI

=

o

50 100 150 200 250 300
Elapsed time (sec)

Figure 1.3 — Tracking a dispatch plan with the COMMELEC controller

tery resource, in the presence of an intermittent PV resource. The performance metric
is energy mismatch that is defined as the cumulative absolute difference between the
dispatch plan and the power prosumed by the grid. The maximum tolerable energy
mismatch is taken as 50 kWh in a day, which amounts to 0.17 kWh in five minutes.

Fig. 1.3 shows the dispatch plan and the actual power measured at the slack bus
for a duration of five minutes. To track this dispatch plan, the GA accommodates the
variations in PV production by changing the power injected by the battery. Positive
power represents production. Notice that the dispatch plan is discrete and has abrupt
changes, whereas the path followed by COMMELEC is smooth to accommodate the
inertia of the grid and the resources.

— Dispatch plan e—e 1% packet losses
+~— No packet loss v 10% packet losses
~ 7.5
=
~ 5.0
o
; 2-5
@]
a 0.0
()
2-2.5
(9} 2!
<_s5.0 s
0 50

100 150 200 250 300
Elapsed time (sec)

Figure 1.4 — Effect of network losses on COMMELEC’s ability to track a given dispatch
plan

Fig. 1.4 shows the effect of packet losses in the communication between the GA and
PAs on the tracking performance. Although the requested power is tracked with high
accuracy in the absence of packet losses and there is a slight deviation (when compared
to scenario with no packet loss) when there is a 1% packet loss. This deviation is more
profound with a higher loss rate of 10%. Figure 1.5 shows the energy mismatch as a

7

Chapter 1. Introduction

function of the PLR. We see that the energy mismatch grows steadily with a higher PLR.
At 7% packet loss, the energy mismatch exceeds the maximum energy mismatch of
0.17 kWh, during an interval of five minutes. Although this violation has no effect on
the safety of the grid, it could have economic repercussions for the operating authority.

o
W

| — Maximum Tolerable Energy Mismatch in 5 min|

co
=N
\‘.O

o
=
o

Energy Mismatch (kWh)

0.00—6=—01 05 1 2 5 7 0 12 15

Network loss rate (%)

Figure 1.5 — Energy mismatch between the dispatch plan and that provided by COMM-
ELEC during a period of five minutes

In the absence of cabling infrastructure, some CPSs also use Wi-Fi and LTE based
communications [62, 63, 64] that have a higher PLR than wired networks, thereby
adversely affecting the quality of the control. Therefore, the need to provide reliable
communication with fast repair of packet-losses (so that the quality of control by the
CPS is unaffected) is becoming more pressing.

1.2.4 Mission-Critical Applications

The loss of control by a CPS, due to the inability of the controller to perform the desired
control action within the required deadline, can cause damages to life, property and
business. The Northeastern Blackout of 2003 resulted in a 2-day power-outage in
USA and Canada that caused 6 billion dollars in economic loss and 11 deaths [65].
One of the many causes of this blackout was a large delay in the energy management
system [65, 66]. In factory automation, the average cost of downtime (the time during
which the normal operation of a plant is halted) is estimated to be 12, 500$/hr [67, 68].
Similar threats are faced by autonomous cars [69, 70, 71].

We find, based on these trends, that CPS applications are becoming mission-critical
and have stricter real-time requirements. Alternatively, they are opting for flexibility
of COTS components, which makes them susceptible to crashes and delays of the
controllers, and to packet-losses and delays in networks. These two conflicting trends
result in the need for mechanisms that enable highly reliable, real-time CPS from COTS
components. For mission-critical applications, high reliability is measured in terms
of the number of nines of availability [72], for instance 5 nines of availability implies
that the CPS is available 99.999% of the time. This implies that the downtime does not
exceed 5.26 minutes a year, i.e., 864 ms a day.

8

1.3. Challenges

1.3 Challenges

Achieving high reliability entails (1) ensuring enough redundancy of the controller
and avoiding a single point of failure in the communication network so that control of
the process continues despite faults, (2) detecting and repairing controller faults and
packet losses as quickly as possible, and (3) ensuring that the faults in the software
agents and the communication network do not effect the correctness of the control.
Furthermore, the item 3 above involves ensuring the following properties. First, PAs
might receive setpoints that have violated the deadline, hence they are unsafe and
must be prevented from being implemented. Second, controllers must be prevented
from using measurements that represent an older state of the process (as the state of
the process changes with both time and implementation setpoints). Lastly, avoiding
split-brain [73] among the replicated controllers to prevent the implementation of
inconsistent setpoints at different resources.

Realizing (1) requires that the redundant components follow design diversity [74,
75], i.e., are developed independently to ensure fail-independence. This is often done
in controller design for airplanes [76, 77], where three different teams program three
different controllers in different operating systems and programming languages. This
approach is both expensive and practically infeasible for COTS-based CPSs, because
most of the off-the-shelf operating systems share the same code-bases and many
software libraries are shared between different high-level languages [78].

1000
1000

8

3

Response Time of VM1 [ms]

Response Time of VM [ms]
Response Time of VM3 [ms]

3 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Response Time of VM; [ms] Response Time of VM [ms] Response Time of VM3 [ms]

Figure 1.6 — Pairwise scatter plots of response times of replicas of the same COMMELEC
controller running on different virtual machines on the same physical machine

Design diversity is a prerequisite for tolerating Byzantine faults [79], such as the
controller replicas issuing incorrect setpoints or security attacks [80] such as a com-
promised controller maliciously steering the process into an undesirable state. In
this thesis, we do not address such faults and focus solely on crash and delay faults.
Fortunately, the large variations in the timing performance of modern software and the
several layers of the hardware-software stack enables us to circumvent this challenge,
and thus provide delay and crash fault-tolerance. Figure 1.6 shows the scatter plot of
response times of the three identical replicas of the COMMELEC controller that runs
on three different virtual machines hosted on the same physical machine. We find that
there is little correlation between the large delays of the controllers; this indicates that

9

Chapter 1. Introduction

identical replicas can be used to mask delay faults.

A key challenge in avoiding a single point of failure in the communication network
in (1) is working with IP networks. The traditional approach to this problem is to have
cloned disjoint networks [81]. However, IP networks are often connected for ease of
management and diagnostics. It is desirable to make little or no modifications to the
existing communication infrastructure. Hence, the communication reliability mech-
anisms must provide high-reliability, despite heterogeneous non-fail-independent
networks. Furthermore, the software agents in a CPS often use IP multicast for com-
munication. The challenge then is to provide reliability with multicast, and to be
transparent to the network.

Realizing (2) is particularly challenging because of the transient nature of delay
faults that makes them difficult to detect. Although aggressive fault-detection im-
proves availability by faster detection, it might introduce false positives that reduce
availability, as a correct controller replica might be stopped to be recovered. Alterna-
tively, conservative fault-detection ensures that only truly faulty replicas as detected,
but it induces large detection delays which reduce availability.

Mechanisms for realizing (3) have been the focus of several decades of research in
distributed systems [82,83,84,85,86,87]. The purpose of these mechanisms is to ensure
agreement across replicated controllers in order to avoid the split-brain syndrome.
Agreement is often achieved through consensus among the controllers. According
to the FLP impossibility result [88], consensus in an asynchronous system can take
an unbounded amount of time to terminate. CPSs are asynchronous and require
strong consistency (or simply consistency) among the controller replicas provided
by consensus, as opposed to eventual consistency [89] provided by other approaches
[90,91]. However, as CPSs have real-time constraints, they cannot tolerate unbounded
latency due to consensus mechanisms. Hence, new mechanisms need to be developed
in order to provide the desired consistency with a low latency-overhead.

Lastly, the physical process and the controlled resources are integral components
of a CPS and introduce new requirements that do not exist in classic computer systems.
This introduces other challenges, such as formalizing the correctness criteria of the
physical process, and abstracting the state of the physical process for use by the
reliability mechanisms.

1.4 Contributions

Our contributions in this thesis can be summarized as follows.

1. We describe high-level abstract models of the software agents in a CPS, namely

10

1.4. Contributions

controller and PAs. These models apply to a wide-range of CPSs in the domain
of electric grids [1,4, 5, 6], manufacturing processes [13], autonomous vehicles
[8,9,12] and SDN [27]. They can be used to characterize both new and existing
CPSs in various domains. These models enable us to better understand the
reliability requirements and design the reliability mechanisms.

. We abstract the execution trace of a CPS by using the events in the CPS and
two basic relations between those events, namely, the network relation and the
computation relation. We use these relations to define a new relation called the
intentionality relation; it better expresses the ordering of events among them-
selves and with respect to the state of the controlled process. Thus, it is useful to
formalize and to prove the correctness properties of a CPS. We use the abstract
model from item 1 and the intentionality relation to formalize four correctness
properties of a CPS. These are state-safety, optimal selection, consistency and
timeliness.

. We present intentionality clocks, a labeling mechanism that uses logical clocks
adapted from Lamport clocks [85] for ordering events with respect to the intentionality
relation. We present the new design of a controller and a PA that uses intentionality
clocks for guaranteeing the state-safety and optimal selection correctness prop-
erties. We formally prove the guarantees provided by the new design.

. Through a case study with an existing CPS for the optimal charging of EVs [1], we
show how violating the state-safety or optimal-selection correctness properties
can affect the CPS. In this case, the CPS enters a deadlock due to violation of
optimal selection. We show that such situations can be avoided by following our
design that requires minor modifications to the existing design.

. To ensure consistency in the presence of replicated controllers, we propose
Quarts, a low-latency agreement algorithm that uses the existence of labeled
measurements from intentionality clocks in item 3 to perform agreement on the
measurements used for computation by the controller, as opposed to performing
agreement on setpoints done in conventional agreement mechanisms. Quarts
is designed for CPS with only controllers and PAs. We also present, Quarts+,
an extension to Quarts that maintains similar performance with addition of
asynchronous sensors.

. We prove that Quarts and Quarts+ guarantee the consistency correctness prop-
erty and that they add a bounded latency-overhead. Moreover, through extensive
simulations, we demonstrate that Quarts and Quarts+ improve the availability
of the CPS by over an order of magnitude, when compared to other consistency-
guaranteeing agreement mechanisms.

. We use the controller consistency provided by Quarts from item 5 to design Axo,
a delay- and crash-fault tolerance architecture that uses active replication of the

11

Chapter 1. Introduction

10.

11.

12.

13.

14.

12

controllers. We formally prove that Axo guarantees the last remaining correctness
property, i.e., timeliness, and maximize availability.

. We derive bounds on the time Axo takes to detect and recover delay-faulty and

crash-faulty controller replicas. We validate the derived bounds by implementing
Axo on software-based controllers and measuring the time Axo takes to detect
and recover the replicas in a virtualized environment.

. We implement the reliability mechanisms, intentionality clocks (item 3), Quarts,

Quarts+ (item 5) and Axo (item 7), in the COMMELEC controller [4]. Through this
exercise, we demonstrate that the proposed reliability mechanisms can be easily
implemented on CPS controllers with minimal modifications to the existing
software.

We deploy the new, reliable COMMELEC controller in a full-scale replica of the
CIGRE low-voltage benchmark microgrid on the EPFL campus [92], and also in
the T-RECS virtual-commissioning system for real-time control of electric grids.
We compare the performance of COMMELEC, with and without the reliability
enhancements.

Examining the model of the CPS from item 1, we identify that SDN fits this
model and that the proposed reliability mechanisms can be extended to design a
highly available SDN control-plane. To this end, we present QCL, a transparent
coordination layer between single-image SDN controllers such as POX [93] and
RYU [94] and SDN switches, which guarantees control-plane consistency with
low latency-overhead. We prove the consistency guarantees of QCL. We show that
it can be used to correctly enforce any routing policy or controller application
that is supported by the underlying single-image controller.

We evaluate the performance of QCL through simulation and show that QCL
drastically reduces the tail response-times and convergence-times in an SDN net-
work when compared to other consistency-guaranteeing replication mechanisms.
Reducing tail latency is one of the key requirements of modern datacenter net-
works [95]. We implement QCL along with the POX single-image controller and
study its performance in 4-port fat-tree datacenter network [96] in a virtualized
environment [97].

To provide reliable communication between the software agents in an IP-based
network, we propose iPRP, an IP-friendly parallel redundancy protocol. The key
contribution in the iPRP design is achieving replication of packets such that it is
transparent to both the control application and the network.

We study the fail independence of directional Wi-Fi links, through a measurement
campaign from a deployment of redundant Wi-Fi links on the roof-tops of the
EPFL campus. We show that, although the links are not strictly fail-independent,

1.5. Roadmap

the aggregate PLR with two links is very close to what it would have been if they
were fail-independent. Hence, we conclude that iPRP can be used to enhance
the reliability of Wi-Fi links, in CPSs where wired communication is not possible.

1.5 Roadmap

In Chapter 2, we review the literature on existing reliability mechanisms developed
for distributed systems. Then, in Chapter 3, we introduce the high-level abstractions
for a controller and a PA; and we define the intentionality relation and three of the
correctness properties of a CPS that we will be addressing in the rest of this thesis.
These properties are state safety, optimal selection and consistency.

In Chapter 4, we present intentionality clocks that can be used to order events in a
CPS according to the intentionality relation. We present new designs of CPS controller
and PAs that implement intentionality clocks, and we prove that this design guarantees
state safety and optimal selection. We conclude this chapter with a case study of a CPS
for charging EVs.

In Chapter 5, we present Quarts, a bounded latency-overhead agreement mecha-
nism that guarantees the consistency correctness property in a CPS with one or more
delay- or crash-faulty controller replicas and any number of PAs. Then, to continue
providing the same guarantees in the presence of asynchronous sensors, we propose
an extension, Quarts+. We prove the consistency and bounded latency-overhead
properties of Quarts and Quarts+, and we compare their performance with existing
reliability mechanisms for guaranteeing consistency.

In Chapter 6, we define the last correctness property addressed in this thesis,
namely timeliness. Then, we fit all the reliability mechanisms together to obtain Axo,
a delay and crash fault-tolerance mechanism for CPS controllers. Axo uses active
replication of the controllers and relies on Quarts for controller consistency. It exploits
the fact that timing profiles of different controllers are not significantly correlated.
Thus, when one of the controller replicas is delay faulty, another replica can continue
to provide the desired control. Besides improving availability, Axo guarantees the time-
liness property that requires that non-timely setpoints (unsafe) are never implemented.
Additionally, it detects and recovers delay-faulty and crash-faulty controller replicas.
We conclude this chapter with results from deployment of the reliability mechanisms
with the COMMELEC controller and an LQR [98] controller for an inverted pendulum.

In Chapter 7, we apply the proposed reliability mechanisms to provide control-
plane consistency with low latency-overhead in SDN. We present the design of this new
system, QCL, and we prove that it achieves the strong consistency guarantees. Through
an implementation of QCL, we show that QCL is transparent to the SDN controllers

13

Chapter 1. Introduction

and switches. We evaluate its performance in simulation and present results from
deployment in a virtualized datacenter network.

In Chapter 8, we present iPRP, an IP-friendly parallel redundancy protocol for
repairing packet-losses in real-time CPSs. We also evaluate the feasibility of using iPRP
to provide high-reliability with unreliable, directional Wi-Fi links, through a 45-day
long measurement campaign on the EPFL campus.

In Chapter 9, we conclude the thesis by summarizing our findings. We also present
our vision for the future of COTS-based real-time CPSs and the research challenges
that need to be addressed in realizing that vision.

14

4 State of the Art

Lives of great men all remind us

We can make our lives sublime,
And, departing, leave behind us
Footprints on the sands of time;

— H. W. Longfellow, A Psalm of Life

In this chapter, we review the current mechanisms for providing controller relia-
bility and communication reliability. We discuss their inadequacies in addressing the
requirements of real-time CPSs, specifically in addressing delay faults in controllers
and fast packet repair in IP networks, thereby underpinning the need for new reliability
mechanisms.

2.1 Controller Reliability

Reliability in the presence of software and hardware faults of the CPS controller is
provided by redundancy, i.e., replication of the controller. The replication techniques
can be broadly classified into two categories: (1) primary-backup replication [99],
also called passive replication, and (2) state-machine replication [100], also called
active replication. These techniques are discussed in the context of generic distributed
systems in detail in [101]. Here, we will discuss these techniques in the context of CPSs.

The basic correctness criterion for replication techniques is linearizability, [102]
also called one-copy equivalence. This gives the illusion, to the PAs, of a single con-
troller by ensuring that all the controller replicas process the measurements in the
same order and issue the same setpoints, thereby making the replication transparent
for the PAs.

The first property of linearizability is order: If two controller replicas both perform

15

Chapter 2. State of the Art

two computations using one of the measurements m; and my in each computation,
then they use m; and m» in the same order. Linearizability in classic distributed sys-
tems, such as database systems, also includes the atomicity property: if one controller
replica performs computation, then all correct controller replicas perform the same
computation. CPSs do not need atomicity, rather a weaker property, consistency. It
states that if two controller replicas issue setpoints for the same PA in the same control
round, then the issued setpoints are the same. Consistency is easier to provide than
atomicity. This enables low-latency reliability mechanisms that satisfy the real-time
constraints of CPSs.

Next, we will describe passive and active replication techniques in detail.

2.1.1 Passive Replication

Passive-replication techniques [86,99, 103, 104] are also called primary-backup tech-
niques because they use one primary controller to receive measurements from the PAs
and issue setpoints to the PAs, and one or more backup (or standby) controllers that
monitor the primary replica for faults.

When the primary controller receives measurements, it computes setpoints and
sends the computed setpoints to the backups to synchronize the state of the primary
replica and of the backups. Before issuing setpoints, the primary controller waits for
acknowledgments of state synchronization from the backups. In the absence of faults,
this scheme has a latency overhead of one RTT and trivially ensures linearizability,
because a single replica (the primary) is handling all the measurements.

The backups use a failure detector [58,105] to check if the primary replica is correct.
The failure detector is implemented by heartbeat mechanisms [106, 107]. When the
primary replica is detected as faulty, a new primary is elected through a leader election
mechanism [108, 109]. Leader election requires that all the backups agree on the
new chosen leader. This is a consensus problem and can take unbounded time in an
asynchronous network, as discussed below.

Consensus is a fundamental problem in distributed computing that is the basic
building block of several abstractions such as leader election, failure detection [105],
group membership [110]. Solving a consensus problem requires agreement on a data
value among a number of (faulty or non-faulty) agents. Protocols that solve consensus,
must satisfy the following properties [111]:

e Termination: Every correct agent decides some value

e Integrity: If all the correct agents proposed the same value v, then any correct process
that decides a value, decide v

e Validity: If a process decides a value v, then v must have been proposed by some
correct process

16

2.1. Controller Reliability

e Agreement: All correct processes must agree on the same value

According to the FLP impossibility result [88], the termination and agreement prop-
erty cannot be guaranteed together in an asynchronous setting. CPSs communicate
with an asynchronous network that might drop, delay or reorder messages, and the
software agents might take unbounded time to respond due to software faults. Thus, all
problems that require solving consensus, cannot guarantee termination in a bounded
time. As CPSs have real-time requirements, the mechanisms that rely on consensus
are often not suitable. In the case of leader election for choosing a new primary in
passive replication, the CPS remains unavailable during the time it takes for consensus
to terminate, thereby reducing availability.

Additionally, designing a perfect failure detector (an instance of the consensus
problem) is also proven to be impossible in an asynchronous setting [105]. Therefore,
the CPS can have multiple primary replicas in case of a partition. Also, most failure
detectors work best for crash-only faults. However, delay faults follow the crash-
recovery model (are transient), wherein a replica that could not issue setpoints due to a
delay fault can issue the same setpoints after the fault has passed. In this case, a primary
replica that was detected as faulty by the failure detector can issue setpoints after it
stops being delayed. As a primary replica does not expect to have other primaries
at the same time, it does not perform agreement to ensure the order or consistency
properties. Hence, having multiple primaries might violate linearizability. We explore
this in detail in Chapters 4 and 5.

Moreover, implementation of a setpoint issued by a delayed controller can be
unsafe for the CPS. This is because the state of the process used for computing the
setpoint might be significantly different from the state of the process at the time of
implementing the setpoint, possibly resulting in a incorrect behavior. We further
explore this problem in Chapter 6.

In passive replication, the backup replicas cannot issue setpoints to the PAs. Fur-
thermore, as the process of detecting a fault and performing a failover (by leader
election) is time-consuming, the CPS is unavailable is during the time the primary is
faulty. We conclude that passive-replication techniques are not best suited for tolerat-
ing delay faults. The availability can be improved by faster failure-detection. However,
a faster detection can lead to more false positives, whereby a non-faulty primary is
wrongly detected as faulty. This increases the chances of multiple primaries at the
same time, thereby violating linearizability.

In practice, passive replication can use hot or cold standbys. Hot standbys are faster
in resuming control after a failure of the primary but need longer state-synchronization
after each computation. Both these techniques suffer from possible violations of
consistency and poor availability in the presence of delay faults.

17

Chapter 2. State of the Art

Moreover, availability of hot standbys can be also increased by checkpointing
techniques [112], where the state of the primary is constantly logged and the newly
elected primary is instantiated form the last logged state. This state includes the
internal controller state such as received measurements and the state external to
the control logic such as that of the operating system (memory address space, file
descriptors, signal handlers, etc.). However, these techniques add latency in the real-
time path and do not address the issue with multiple primaries.

Lastly, we note that passive-replication techniques need only one primary to per-
form computation and issues setpoints. Thus, they need f + 1 replicas to tolerate f
faulty replicas.

2.1.2 Active Replication

In active-replication techniques [76, 100, 113, 114, 115] all replicas receive measure-
ments from the PAs and compute and issue setpoints to the PAs. As the state is repli-
cated across at each replicas, these techniques are also called state-machine replication
techniques. Thus, when a replica is delay or crash faulty, others replicas continue to
control the CPS, thereby remaining available.

In contrast to passive replication, active-replication techniques require that the
CPS controller be deterministic. This property is satisfied by most CPS controllers
(1,4,7,13,41,93,94, 116], thus allowing for active replication techniques to be applied
to CPSs.

In order to satisfy the linearizability correctness criteria, active-replication tech-
niques need to ensure order and consistency. One approach to provide order is to
ensure that all non-faulty replicas receive measurements from the PAs in the same
order. This is achieved by total-order multicast [117] that relies on a failure detector
and that in turn uses consensus. Alternatively, the replicas might also choose one
replica to issues setpoints to the PAs, using a leader-election mechanism that also
relies on consensus.

Order can also be achieved through a labeling scheme obtained using timestamps
from time-synchronized physical clocks, or logical clocks such as scalar clocks [85]
or vector clocks [118]. Timestamps or clocks are used to label messages/events, and
thus order them, according to a relation. The conventional relation used in distributed
systems is the “happened-before” relation introduced in [85]. However, this relation
is unable to relate the events to the evolution of the state of the physical process as
shown in Chapter 4. Thus, the resulting ordering of events is not applicable to the
CPSs. We address this problem by introducing a new relation, called the intentionality
relation, and propose a labeling scheme named intentionality clocks in Chapters 3 and
4.

18

2.1. Controller Reliability

To provide consistency among replicated controllers, active-replication schemes
perform consensus to reach agreement. They either choose the setpoints that will
be issued to the PAs or choose the replica that will send the setpoints to the PAs. As
mentioned in Section 2.1.1, consensus in an asynchronous system has a poor latency
performance and in the worst case can add unbounded latency as proven in [88]. We
found that for a large class of CPSs, the termination property of consensus can be
relaxed. In other words, a CPS controller can compute and issue correct setpoints in
around, even if it failed to compute in the previous round. Thus, for such CPSs, the
FLP impossibility result can be avoided, and agreement can be provided without using
conventional consensus. This is property is used in Chapter 5 to design a low-latency
agreement mechanism to ensure consistency.

Some systems such as transactional database systems require a weaker form of
consistency called eventual consistency [89]. Eventual consistency ensures that after
a sufficiently long quiescent period during which no events occur, all controllers
will eventually have the correct view of the system, thereby ensuring consistency.
However, there might exists periods of time during which consistency might be violated.
Mechanisms that ensure eventual consistency typically have a low latency-overhead.
This property is used by SCL [31], to design a low-latency fault-tolerance protocol
for SDNs. However, as we describe in Chapter 7, SDNs (CPSs in general) require the
strong-consistency model, and cannot benefit from eventually consistent schemes.

Note that, active-replication techniques require 2 f +1 controller replicas, to tolerate
f faulty replicas, which is f replicas more than passive replication. However, as only
active replication can tolerate delay faults, we will use it in Chapter 6 and rely on a
the new, low-latency agreement mechanism that has a lower replication-cost that
conventional consensus.

In active replication, when the controller replicas are assumed to be non-malicious,
like in the case of delay and crash faults, the PAs accept the first received measurement
and implement it. However, active replication can also tolerate malicious or Byzantine
faults [119] using special techniques under the class of BFT protocols [79,120,121, 122].
BFT protocols add a minimum of 2 RTT delay and suffer from the same unbounded-
latency problem as non-BFT active-replication techniques. As delay faults follow the
crash-recover model and not fail-stop model of crash-only faults, BFT protocols could
be a possible solution to tolerate delay faults. Such a scheme could mark a delay-faulty
setpoint as unsafe and treat it as a setpoint issued by a malicious agent. However, their
poor latency performance makes using BFT protocols inefficient.

Availability in active replication can be increased by proactive recovery techniques
[123, 124] that recover (or reboot) a replica before it is detected as faulty in order to
maintain enough non-faulty replicas at all times. These techniques monitor, over a
long period of time, the performance of the software and use software aging techniques

19

Chapter 2. State of the Art

[125,126] to decide if the replica must be rebooted. Although such techniques have
been successfully applied to study aging in the operating systems [127] and web
servers [124, 128, 129], the impact of software aging on latency performance of CPS
controller is not well-understood. The authors in [130] show that delay faults in a
CPS do not follow any particular pattern, making it hard to decide when to perform
proactive recovery. In any case, proactive recovery and software aging techniques
do not remove the need for agreement between the controller replicas, which is the
central problem with active replication.

Instead of tolerating faults by redundancy, a different school of thought aims to
prevent faults by designing controllers that never exceed a certain WCET. Such tech-
niques [131, 132] require using specialized hardware and software components. For
example, the authors in [132] propose the TCB architecture, that employs a hard real-
time module to implement the time-critical operations on the CPS controller. In this
way, core components of the CPS controllers are designed to never experience delay
faults. A similar approach is taken by TTA [131], where all the operations of the con-
troller are appropriately scheduled based on their WCETSs such that the no deadlines
are violated. While these approaches prevent delay faults in theory, they are inapplica-
ble to COTS-based CPSs that heavily rely on general-purpose, off-the-shelf hardware
and software components.

2.2 Communication Reliability

The most common technique for providing reliable communication is to use the TCP
transport layer that ensures reliable in-order delivery of messages by detecting packet
losses and repairing them by retransmissions. The in-order delivery mechanism of TCP
prevents packets from being forwarded to the application layer at the receiver until all
previously sent packets have been delivered. The stalling of new packets is detrimental
in CPSs where newer packets supersede older ones as they represent the more recent
state of the controlled process. This issue, called head-of-line blocking [133], renders
TCP unsuitable for such real-time traffic. Consequently, solutions based on TCP, such
as MPTCP [134], also suffer from the same issue.

Recently, a UDP-based reliable transport protocol, QUIC [135, 136] was proposed.
QUIC uses multiple streams and provides in-order delivery of packets within a stream,
thereby alleviating the head-of-line-blocking problem. In both QUIC and TCP, the
time after which a packet is retransmitted is determined by the RTO that is used to
estimate the RTT of the network. The RTO is doubled after each packet loss [137].
Thus, in cases of bursty losses or component failures, the time to repair a packet loss
increases indefinitely [138]. Moreover, both TCP and QUIC, i.e., temporal redundancy
techniques, on their own, cannot provide reliability against component failures that
require sending packets along a different functional path. Other variations of temporal

20

2.2. Communication Reliability

redundancy include coding techniques [139] that also suffer from the same issues as
TCP and QUIC, in addition to added encoding and decoding delay. Lastly, TCP and
QUIC are connection-oriented transport protocols and do not support connection-
less IP-multicast communication, a key requirements in many CPSs where multiple
receivers can asynchronously tune-in to a multicast group.

To address component failures, spatial redundancy is exploited wherein, when a
failure is detected, the retransmitted packets are routed through a different path. The
simplest way to achieve this is through routing protocols such as OSPF [140], RIP [141]
and RSTP [142]. These protocols detect a link or router failure through signaling mech-
anisms and take few seconds to converge on the new route, thus restoring connectivity.
The time to restore connectivity and repair packet losses can be further improved by
pre-computing the backup routes. This is done by in RPL [143] and MPLS-TP [144],
which perform a switchover to the pre-computed path when a failure is detected. The
most promising of these solutions, MPLS-TP can provide fail-over times as low as
50 ms that is still high for several real-time CPSs applications, for example high-speed
teleprotection, load shedding, and PMU data delivery in smartgrids [52].

To repair packet-loss in 0 ms, PRP [145, 146] was conceived in the context of real-
time communication in substation automation. The end-hosts that use PRP either
have two interfaces connected to two fail-independent networks or provide the two
required interfaces by using a specialized multi-interface middle box called red box
[146]. PRP requires that the two fail-independent networks be clones of each other,
each network be a single LAN with no routers, and the two interfaces of an end-host
have the same MAC address. Each MAC frame at the sender is transmitted over the two
networks, along with a sequence number. The receiver forwards the first received copy
to the application. At the receiver, a MAC frame with a previously registered source
MAC address and a sequence number pair is discarded, thereby ensuring that only one
copy of a message is received by the application.

Although PRP provides the desired fail-over time, it is not natively applicable in
CPSs that communicate in an [P-based network, i.e., a WAN, for the following reasons.
First, PRP inserts the sequence numbers and other control information as a trailer to
the MAC layer. Each router in IP network strips the MAC header and creates a new
one for the next hop. Thus, the PRP control information is lost and a duplicate discard
cannot be performed. Second, as PRP is a MAC-layer solution, it does not natively
support IP multicast. These two issues can be remedied by creating an overlay network
using VLANSs [147] or virtual private network (VPN) [148]. These however, add extra
latency in the real-time path. Another drawback of PRP is that its duplicate-discard
algorithm ensures that at most one copy of a packet is forwarded to the application only
when messages are delivered without reordering [81], as found in a LAN environment.
However, in WANs, middle-boxes such as scrubbers and load-balancers might cause
packets of the same flow to be delivered out-of-order [149]. The PRP discard algorithm

21

Chapter 2. State of the Art

[81] can deliver duplicate copies to the application, in scenarios with packet reordering.

The authors of [150] propose modifications to PRP so that it can be applied in WANs.
However, these modifications were neither fully designed or implemented, and do not
address the the comparability with the TCP/IP stack. Moreover, these modifications
require that the intermediate routers be modified to accommodate the replication
header, making it difficult to deploy in existing networks. We address these problems
through iPRP in Chapter 8, that is IP friendly and designed to be transparent to the
network.

22

8] CPS Model and Intentionality

I may not have gone where I intended to go,
but I think I have ended up where I needed. to be.
— Douglas Adams, The Long Dark Tea-Time of the Soul

In Chapter 1, we introduced the architecture of a CPS with one central controller,
one or more PAs, and one or more asynchronous sensors. In this chapter, we present
a formal model of the software agents, namely the controller and the PAs. We use
this model to create an abstraction of a CPS, based on the events that occur in the
CPS. Using this event-based abstraction, we characterize the interactions between the
software agents and qualify how they affect the underlying controlled process. We
define the desired correctness properties in a CPS. We only consider CPSs with one or
more PAs, and no asynchronous sensors that directly talk to the controller. These are
explicitly handled in Chapter 5.

3.1 Introduction

Figure 3.1 shows the architecture of a CPS with a central controller, two PAs, and no
asynchronous sensors or actuators that speak directly with the controller. Recall from
Chapter 1 that the sensors and actuators interact with the physical process, by reading
and altering its state, respectively. Together, the software agents, namely controller
and PAs, achieve the desired control of the physical process.

PAs are software agents responsible for controlling a sub-process, i.e., one part
of the controlled process. PAs interface with the sensors and actuators, as shown
in Figure 3.1. They implement the setpoints received from the controller through
their actuators, read the state of the resources through sensors, and send them as
measurements to the controller. PAs are assumed to be synchronous, in the sense that
they do not issue measurements out of turn, but only do so in response to a setpoint

23

Chapter 3. CPS Model and Intentionality

Controller
setpoints - asurements R —— setpoints

Process Agent Process Agent
' i v i

Actuator|| Sensor Actuator|| Sensor
v ¥ v t
Controlled Controlled
Sub-Process Sub-Process

v i v i

Controlled Process

Figure 3.1 — Architecture of a CPS without asynchronous sensors and actuators that
directly communicate with the controller

implementation. This makes the modeling and analysis of a CPS more tractable. In
Chapter 7, we show that our techniques are amenable application for the control of
CPSs with asynchronous PAs with minor modifications.

A central controller performs the high-level control of the physical process by
receiving measurements from PAs and by sending setpoints to PAs. The purpose of the
controller is to keep the controlled process in a desired state. To this end, it receives
measurements from the PAs, performs computation, and issues setpoints to the PAs.
The central controller is a single point of failure and is replicated for high availability.
We assume the controller to be susceptible to crash and delay faults. We do not account
for Byzantine faults, where a controller can behave arbitrarily in the event of a fault
and might produce malicious setpoints in order to jeopardize the safety of the CPS.
The delay and crash fault-model is formally defined in Chapter 5.

The controller is asynchronous, i.e., one controller replica can choose to issue
setpoints at a time when another replica does not. This can occur due to timeouts.
For example, the COMMELEC controller in [4] issues setpoints if 500 ms have elapsed
since the last time it did so, whereas normally, a control cycle occurs every 60 — 100 ms.

The software agents exchange measurements and setpoints using a network that
can drop delay, and/or reorder messages. We assume the absence of malicious alter-
ations or corruptions in the messages.

For the ease of explanation, we assume that the number of PAs and the number
of controller replicas in the CPS is known and a constant. The addition and removal
of software agents is assumed to be performed on the non-real-time path. In CPSs,
where the churn of the software agents is high, the number of agents can be obtained

24

3.1. Introduction

in an out-of-band fashion by using non-group membership algorithms such as [110,
151]. In the interval between addition or removal of an agent and the new group
membership reliably installed on all agents, the reliability mechanism developed in
this dissertation will still continue to guarantee their correctness properties, albeit with
reduced liveness.

3.1.1 State of the Controlled Process

The state of the sub-process controlled by a PA is altered by implementation of a
setpoint. The new state is captured in the resulting measurement. The controller
uses measurements from different PAs to recreate the new state of the entire process
that it then uses to compute setpoints. The setpoints computed with this state are
only valid as long as the recreated state reflects the actual state of the process. Any
subsequent setpoint implementations change the process state, making the former
setpoints unsafe for implementation. Therefore, to achieve the desired control, the
state of the process at the time of setpoint implementation must be the same as that
used by the controller for computing the corresponding setpoints. Hence, before
implementing a setpoint, the PA must be able to ascertain whether the setpoint reflects
the state it last advertised. In other words, it must be able to infer if a received setpoint
was caused by the measurement it last advertised.

Similarly, a controller must be able to ascertain whether a measurement received
from a PA represents the most recent state of that sub-process or the state corre-
sponding to earlier setpoint implementations. This causal relationship can be better
understood using the notion of control rounds. Software agents must be able to at-
tribute a round number to received messages, to compare it with the round number
they are currently executing, and to treat the message appropriately.

Note that, we use the term “state of the process” as a proxy for the state of the PAs.
Although the state of the physical process is continuous and evolving, the state of the
PAs is discrete and only changes upon a setpoint implementation. In real-time control,
the CPS issues setpoints at a rate faster than the dynamics of the underlying process.
Hence, the evolution of the state of the process between two setpoint implementations
is minimal, thereby justifying our usage of the term. In cases where the latency between
consecutive setpoint implementations is larger than the desired rate of control, due
to a delayed controller for instance, the state of the process between two-setpoint
implementations is significantly different. Such scenarios are avoided by satisfying the
timeliness properties of the CPS, as discussed in detail in Chapter 6.

25

Chapter 3. CPS Model and Intentionality

@

0 0

\E
E
/ 5]

SP;

/

Computation

M,y %‘ Delay

sp; |l

\

\

Figure 3.2 - [llustration of why the happened-before relation is not suitable for ordering
events in a CPS in the presence of replication

3.1.2 Need for a New Relation

When the controller is replicated, assigning a consistent round number to events tradi-
tionally requires consensus between the replicas. For example, to order events across
replicated processes in classic distributed systems, the processes in [86] undertake
consensus with several rounds of message exchanges. Due to network losses and
delays, and due to software faults, consensus might require unbounded time [88],
making it unsuitable for real-time systems such as CPSs.

In the literature, this problem is circumvented by using message labels (that repre-
sent the causal order between the messages) to infer the round number. The causal
order between the messages is derived using the happened-before relation [85]. In
the presence of replication of the controller, or of random network or computation
delays, messages that intend to cause a certain effect do not necessarily succeed, due
to competing messages. This is illustrated through the example in Fig. 3.2.

In Fig. 3.2, the controller is replicated, and its two replicas C and C’ receive the
measurement M, sent by the PA. This measurement is used by each replica in the
computation of a setpoint, resulting in SP; and SP| in C and (', respectively. In such
a scenario, SP; and SP; belong to the same “generation” or the same “control round”,
and are said to be equivalent. S P, is received by the PA, and its implementation results
in M,. However, due to a delay at C’, M, is received before SP; is issued. Although M,
can be said to have happened before SP;, M; is nonetheless caused by an equivalent
of SP/, namely SP;.

In the previous example, we say that S P intends to have caused M, but it did not
succeed because a competing equivalent event (S P;) was received earlier. In order to
formally capture this phenomenon, we introduce the intentionality relation. This rela-
tion enables us to implement a solution to the ordering problem. The implementation

26

3.2. Related Work

is described in Chapter 4.

3.1.3 Contributions
Our main contributions in this chapter can be summarized as follows.

First, we describe a high-level abstract models of the software agents in a CPS.
These models apply to a wide range of CPSs in the domain of electric grids [1,4, 5, 6],
manufacturing processes [13], autonomous vehicles [8,9] and SDN [27]. As a result,
they can be used to characterize both new and existing CPSs in various domains.

Second, we describe an abstraction of CPSs with one, possibly replicated, central
controller, and one or more PAs. This abstraction models the execution trace of a
CPS by using two basic relations: (1) the network relation (=, read network) used to

. . C
represent message exchange and (2) the computation relation (=, read compute) used
to represent the computation by software agents.

Third, we formally define the intentionality relation (—, read intends) by using
the network relation and the computation relation. We also describe an intuition
for competing events and formally define this notion under the name, intentional
equivalence. The intentionality relation accurately captures the state of the controlled
physical process and is useful in proving properties of a CPS.

Lastly, we use the intentionality to formalize the correctness properties of a CPS,
which are provided by the solutions in the rest of the dissertation, namely, state safety,
optimal selection and consistency.

3.2 Related Work

To the best of our knowledge, we are the first to present a formal model of a CPS that
captures the evolution of the state of the controlled physical process, along with an
abstraction of the software agents in the CPS. Previous models of CPSs can be broadly
divided into three categories: (1) domain-specific models that describe in detail, the
various domain-specific operations carried out by the software agents [1,4,5,8,13],
(2) models from control theory that capture the physics of the controlled process in
great detail [40, 152,153, 154], and (3) schedulability-based models that capture the
deadlines of tasks in a CPS [155, 156].

The domain-specific models [1, 4,5, 7, 8, 13] give detailed descriptions of the op-
erations required to achieve the desired control. For example, [7] describes a very
high-level exchange of messages between the agents and a very detailed discussion
of the optimization problem to be solved in order to steer an electric grid into the

27

Chapter 3. CPS Model and Intentionality

desired state. Such models do not lend themselves well for description of the network
asynchrony, or the delay- and crash-faulty nature of the software agents. Therefore,
they are not suited for reasoning about the reliability of the CPSs considered in this
work.

CPSs have previously been modeled and studied in the control theory under the
names of networked-controlled systems [157] or real-time control systems [40]. These
models concern with details of the physics of the process and focus on studying the
efficacy of a control policy in maintaining stability of the process [152, 153, 154].

Lastly, the models in [155, 156] view the CPS as a series of tasks that need to be
scheduled within a certain deadline. Such models use a synchronous model of compu-
tation for the software agents and are not applicable for studying delay and crash faults.
Moreover, these models do not describe the various software functions implemented
by the software agents.

In our proposed models, we use the events that occur in a CPS, such as sending or
reception of a message, or a timeout at a software agent. Such event-based abstractions
are a standard practice in classic distributed systems, such as [158], where the authors
use events to qualify database systems. However, it is the formalization of the relations
between these events that truly characterizes a system. In our case, these relations
are the network relation and the computation relation that model the most basic
operations performed by the software agents in the CPS.

We introduce the intentionality relation in order to capture the state of the con-
troller process and track how it evolves with the implementation of setpoints. We ex-
plain the need for such a relation by demonstrating the difference between happened-
before [85] and intentionality through the example in Section 3.1.2.

3.3 High-Level Model of the Software Agents in a CPS

In this section, we describe the model of the software agents in a CPS, namely con-
trollers and PAs. These models are an abstraction of the various software functions
implemented by the agents. The models were developed by studying a wide range
of real-world CPSs, such as CPS for the real-time control of electric grids [1, 4, 5, 6],
those used in manufacturing processes [13] and in autonomous vehicles [8,9]. In these
CPSs, the controller process is a physical process such as the voltages and power in
an electric grid, the production line in the manufacturing process, and the speed and
trajectory of a self-driving car. Alternatively, the CPS model also applies to SDN [27],
where the controller process is “virtual”, i.e., the routing of flows in a communication
network.

Although the models of the controller and PA described here only capture the

28

3.3. High-Level Model of the Software Agents in a CPS

internal working of the agent, they cause events in a CPS such as the sending or
reception of a measurement or a setpoint. These events are related to each other
through the state of the controlled process. We use the models developed here to
abstract out these relations, in Sections 3.5 and 3.6.

3.3.1 Controller Model

Algorithm 3.1: Abstract model of a controller

1 M~ /1 Set of measurements received

2 7+ []; /1 Vector of measurements used in a computation
3 X<« []; /1 Vector of setpoints issued

4 Thow; /1 Current absolute time

5

6 On reception of a measurement m

7 ‘ M < aggregate_received_measurements(M, m) ;
8 end;

9
10 repeat
11 decision, Z < ready_to_compute(M, T},o);
12 if decision then
13 X ¢ compute(Z);
14 issue(X);
15 end
16 forever;

Algorithm 3.1 shows the abstract model of a single, non-replicated controller. It
implements two routines, one to receive measurements from the PAs, and another one
to compute and issue setpoints to the PAs. The two routines might interleave.

In the first routine, it implements the function aggregate_received_measurements
in Algorithm 3.1 line 7. This function updates M, the set of measurements received
by the controller from all PAs. M represents the state of the physical process as
observed by the controller. The function aggregate_received_measurements could be
implemented in several ways. For instance, a controller might decide to keep only the
latest message received from each PA, in which case, the M comprises one entry from
each PA. This is observed in the the COMMELEC CPS [4]. Alternatively, a controller
might choose to keep any subset of received messages.

In the second routine, the controller implements three functions: ready_to_compute
in Algorithm 3.1 line 11, compute in Algorithm 3.1 line 13, and issue in Algorithm 3.1
line 14.

The function ready_to_compute decides if the controller can compute and issue
setpoints by using the current state of the physical process that it observes through M

29

Chapter 3. CPS Model and Intentionality

and based on the current time T7,,,,. For example, each time it receives a measurement,
an SDN controller [27] decides to compute. Alternatively, the controller in [4] performs
a computation either when it receives a new measurement from all PAs or when it a
certain time has elapsed since the last time it issued setpoints. As a result, a controller
can decide to perform a computation without having received any new measurement.

When ready_to_compute returns true, it also returns the vector of measurements
to be used in ensuing computation (Z). Z can contain any number of measurements
from each PA. However, if a controller decides to compute without any measurement
from a PA, then in order to guarantee correctness, it must account for this missing
information. The controllers that do so, for example, [159, 160], are robust to message
losses. The controllers that fail to account for missing measurements must wait for all
the information before deciding to compute, in order to guarantee correctness.

The function compute uses the vector Z to compute the vector of setpoints for the
PAs (X). Once again, there are different ways in which a controller might implement
the compute function. On the one hand, X can contain one setpoint for each PA as
seen in [4]. In [4], the controller regularly sends a setpoint to each PA as a part of a
keep-alive mechanism even if there is no change in the operating point of a PA. On the
other hand, X can contain many setpoints for a subset of the PAs as seen in [27], where
the controller sends setpoints to only the switches that require new updates after a
network event.

The function issue sends the setpoints in X to the respective PAs by implementing
a network call. All the functions implemented by the controller are assumed to be
deterministic, i.e., they return the same output if given the same input.

From Algorithm 3.1, we notice that the controller can be stateful, as dictated
by the semantic of the aggregate_received_measurements function that maintains
M. Furthermore, the controller is asynchronous as dictated by the semantic of the
ready_to_compute function that might choose to return frue any time.

Note that splitting the main routine of the controller into the two functions ready_to_compute
and compute instead of just one compute function makes our model more expressive.
This split enables us to reason about timeliness properties of the CPS, as discussed
further in Chapter 6.

3.3.2 PA Model

Algorithm 3.2 describes an abstract model of a single PA, unaware of controller repli-
cation. As the PA is responsible for a single sub-process, as opposed to the controller
that is responsible for the entire physical process, the PA is simpler with a single rou-
tine. For each received setpoint, the PA implements the setpoint using the function

30

3.4. Events in a CPS

Algorithm 3.2: Abstract model of a PA
1 on reception of a setpoint s

2 implement_setpoint(s);

3 Z < create_measurement ;
4 issue(z);

5 end;

implement_setpoint, through its actuator. In this way, it alters the state of the sub-
process and, consequently, affects the state of the entire physical process through the
actuator.

Then, the PA reads the new state of the sub-process through the create_measurement
function that returns the measurement z. Finally, z is sent to the controller using the
function issue.

From Algorithm 3.2, we notice that a PA is stateless. Furthermore, we notice that a
PA is synchronous and responds when triggered by a setpoint.

Examples of PAs are the resource agents in the COMMELEC CPS [4] that are re-
sponsible for control of individual electrical resources such as batteries, PV panels,
and heat-pumps. These PAs receive active and reactive power setpoints form the
central controller and implement them through actuators such as battery converter
or PVinverter. For the create_measurement function, these PAs read the state of their
resource such as the SoC of a battery or the current power-injection of the PAs.

Alternatively, in SDN [27], the PAs are switches of the network that advertise their
current link-status and routing-table entries. The setpoints in this CPS are the also
routing rules to be implemented by the switches.

3.4 Eventsin aCPS

We abstract the execution of a CPS as a trace of events occurring on different software
agents. We define three types of events that can occur on a software agent: sending
event, reception event, and timeout event. When software agent A executes the function
issue (Algorithm 3.1 line 14 or Algorithm 3.2 line 4), we say that A experiences a send-
ing event. As the network might drop messages or delay messages, the message sent
by A might either be received timely or the intended receiver B times out before the
reception. Upon successful reception of the message by B, we say that B experiences
areception event. Alternatively, if B times out beyond a deadline, then B experiences
a timeout event.

A timeout event could also be caused by firing of a timer by the internal logic of a
software agent. Consider the case where agent A sends a message to B and is expecting

31

Chapter 3. CPS Model and Intentionality

a reply within some deadline. If B does not receive this message, then, no response
is generated for A. Thus, A will eventually timeout after the deadline and is said to
experience a time-out event. Hence, a time-out can occur on an agent even if no
message is sent by any agent.

An event is uniquely represented by a 4-tuple (sa, pa, m,) where (1) sa is the unique
identifier of the agent on which the event occurs, (2) pa is the identifier of either the
PA on which the event occurred, or the PA for which the event is intended, (3) m is the
message encapsulated in the event, and (4) [is an event label given by the software
agent on which the event occurs. For sending or reception events, the encapsulated
message is the measurement or setpoint exchanged, and timeout events encapsulate
1, representing the absence of a message.

Let C, P be the sets of identifiers of all controller replicas and PAs, respectively.
Then, the set of identifiers of all software agents is S = C U P. Let M be the set of all
messages with | € M, and £ be a partially ordered set of labels. We denote the set of
all events that occur in an execution trace by £ C S x P x M x L. No two distinct
events have the same 4-tuple (sa, pa, m,[). Furthermore, we require that the abstract
labeling scheme used to obtain £ ensures that labels of events occurring on the same
software agent, for the same PA, are different. In practice, such a labeling of events is
achieved through physical timestamps, a permanent sequence numbering scheme,
Lamport clocks [85], Vector clocks [118], etc. Also, for CPSs that do not implement any
labeling mechanism on events, the model still applies by successively numbering all
events of each software agent with increasing integers.

Sending events are generated as a result of a computation by a software agent
(Algorithm 3.1 line 13 or Algorithm 3.2 lines 2-3). Thus, they are termed as output
events. Reception and timeout events are considered input events. This dichotomy
of input-output events is similar to that of sending-receiving events used in classic
distributed systems literature. We use a different name because we also have timeout
events in our model.

The set of input events £/ (which includes reception and timeout events) and the
set of output events £° (which includes sending events) are such that £ = £ U £° and
N &° = (). Note that, due to network retransmissions, a single output event can
result in different input events at the same PA, as each of these input events will have
different labels /.

To bootstrap the CPS, we assume that a controller starts with p sending events, one
for each PA. These events are called initial sending events. The set of all initial sending
events is represented by Z.

32

3.5. Basic Relations between CPS Events

3.5 Basic Relations between CPS Events

In this section, we define two relations, namely the network relation and the computa-
tion relation, that exist between the events in a CPS. For a relation - and an event a,
we denote by 7(a) and 7' (a) the image and pre-image of a by =, respectively.

3.5.1 Network Relation

Software agents exchange messages by using a communication network. Thus, a
network relation (=) exists between events at different agents. This relation maps an
output event (sending event) at one agent to an input event (reception/timeout event)
at another agent. Formally, we abstract the properties of a network relation as follows.

Definition 3.1 (Network Relation). = is a network relation iff > £° x &' and

e foranya € £°, there existsb € £ s.t.

1. a 5 b,b.pa = a.pa, andn='(b) = {a}
2. Ifa.sa € C, thenb.sa = a.pa
3. Ifa.sa € P,thenb.sa € C

e foranyb c &, thereexistsa € £° s.t. n~1(b) = {a}

Intuitively, a = b (read “a network b”) if « is a sending event and b is its correspond-
ing reception event or the corresponding timeout event that occurs on the intended
destination. Notice that for a sending event that occurs on a controller, the corre-
sponding input event occurs on a PA, and for a sending event that occurs on a PA, the
corresponding input event occurs on a controller.

At a controller, the output of the function issue is a sending event that is an input
to =. The corresponding output of = is a reception event at a PA that occurs on
Algorithm 3.2 line 1.

At a PA, the output of the function issue is a sending event that is an input to
2. The corresponding output of = is either a reception event at the controller or a
timeout event at the controller at lines 6 or lines 11 in Algorithm 3.1. Although the
former is evident from the pseudo-code, the latter case is when a controller times out
and decides to compute without the latest measurement from this PA.

3.5.2 Computation Relation

A computation performed by a software agent can be represented as a mapping from
a set of input events to a set of output events. As noted in Section 3.3.1, the compute

33

Chapter 3. CPS Model and Intentionality

function can take as input any subset of the set of received measurement M, but if it
does decide to compute without a measurement from a PA, then, in order to ensure
correctness, the controller must appropriately account for that PA. This is characterized
by timeout events from those PAs.

Alternatively, if a controller uses several measurements from a PA or issues several
setpoints for one PA after a computation, then it can be viewed as one aggregate
measurement or setpoint. As aresult, we can simplify the computation of the controller
as a follows. The compute function at a controller uses p measurements, one from each
PA, and computes p setpoints, one for each PA.

From Algorithm 3.2, we know that upon reception of a setpoint, a PA imple-
ments it through the actuator by using the function implement_setpoint in line 2.
Then it reads the state of the sub-process through a sensor by using the function
create_measurement in line 3. The combination of two functions is viewed as a com-
putation at a PA that takes a singleton set of input events and produces a singleton set
of output events.

We abstract the properties of a computation relation (—) as follows.

Definition 3.2 (Computation Relation). - is a computation relation iff > £ x £°
and

1. foranya € &

(a) Ifa.sa € P, then3b € £° : a.sa = b.sa,
a.pa = b.pa,c(a) = {b}, and c='(b) = {a}

(b) Ifa.sa € C, then
e VieP,Ibec(a):bpa=i
o Vbec(a),bsa=a.sa
o Vb,V €cla),ct(b) =c (V)
eVbec(a),VieP, 3d €c(b):d.pa=i

2. foranya € £°\ I, there existsb € £ s.t. b.pa = a.pa andb € ¢ *(a).

Inrule (1), we see that at the PA, the computation relation takes one input event and
produces one output event, as evident from the functions implement_setpoint and
create_measurement. However, at the controller, for every input event that is an input
to the computation relation, there exist p — 1 other input events, all from different PAs
that are also an input. Furthermore, the result is also p output events. This is because
the function compute takes vector Z as input that has a size p and returns vector X that
also has a size p.

34

3.6. Intentional Equivalence and Intentionality

3.6 Intentional Equivalence and Intentionality

In this section, we formalize the notion of intentionality, a relation between events in
a CPS that captures the order between measurements and setpoints. To this end, we
first define an equivalence relation between events, called intentional equivalence.

3.6.1 Intentional Equivalence Relation

In the presence of controller replication and message retransmission, certain events
that occur in the same “control round” in a CPS are functionally the same, i.e., they
steer the physical process to a similar state. The intentional equivalence relation (=)
captures this.

We list the properties that are used to define this relation. The intentional equiva-
lence relation is defined as the smallest relation satisfying the following properties.

1. If a and b are the initial sending events at controller replicas, and a.pa = b.pa then
a=b

2. Ifa B banda > ¢, thenb = ¢
3. Ifa=d,a S banda > ¢ =— b=c
4. fa S b aS cand b.pa = c.pa, thenb = ¢

5. fa=a,a->ba>candbpa =cps = b=c

The intuition behind rule (1) is that initial sending events are computed without
any knowledge of the state of the system. They are polling events and do not steer the
system in any direction. Hence, those sent to the same PA are equivalent.

For rule (2), the underlying intuition is that reception events and their correspond-
ing timeout events convey similar information to the controller, as do multiple re-
ception events corresponding to the same sending events (i.e., retransmission). A
reception event informs the controller of the state of the process, whereas the cor-
responding timeout event forces the controller to estimate the missing state before
computation. Recall from Section 3.3.1 that, when a controller of a CPS computes using
timeout events, it accounts for the missing information, in order to ensure correctness.
Thus, reception events and corresponding timeout events are equivalent.

From Definition 3.2, there exists a single output event resulting from a computation
relation for each PA. Rule (4) states that if an event causes, after computation, two
events for the same PA, then the resulting events are equivalent. In fact, the resulting

35

Chapter 3. CPS Model and Intentionality

events are the same event, and are therefore equivalent by the reflexive property of the
intentional equivalence relation (Theorem 3.6.1). Finally, rules (3) and (5) mean that
equivalent events, when subject to the same relation, result in equivalent events.

To better understand the intuition behind equivalent events that result in similar
changes to the state of a CPS, consider a controller that receives partial information
from its PAs. A well-designed controller would compute only if it can reconstruct
the missing information from the partially received information, thus resulting in
safe setpoints. For example, a controller with two PAs, one with a 1 Hz update rate
and another with a 10 Hz update rate, would require a measurement from the latter
every 100 ms, whereas from the former only once every 1 s as it knows that the state
of the slow PA has not changed during that second. Thus, a timeout event on the
measurement from that PA is equivalent to a reception event.

Events resulting from retransmissions encapsulate the same message verbatim,
and are hence deemed equivalent.

The following theorem states that the intentional equivalence is, indeed, an equiva-
lence relation.

Theorem 3.6.1. “Intentional equivalence” is reflexive, symmetric and transitive.

The proofs of Theorems 3.6.1, 3.6.2, and 3.6.3 are not central to our discussion and
proving them in the general case requires a tedious enumeration of several cases, in a
manner similar to the one followed in the proofs of the main results of our solution to
provide intentionality in a CPS (Theorems 4.5.1 and 4.5.2). However, from the result of
Theorem 4.5.1, these theorems can be easily shown to hold for CPSs that implement

the Intentionality clocks described in Chapter 4. These proofs are presented in the
Appendix A.

3.6.2 Intentionality Relation

We define the intentionality relation (—), where a — bis read as “a intends b”, by using
the relations defined in the previous sections. It is the smallest relation satisfying the
following properties:

1. fa > b, thena — b
2. Ifa & band a = a, thena — b
3. Ifa < b, thena — b

4. Ifa S banda = a, thena — b

36

3.7. Correctness Properties

5. Ifa - band b — ¢, thena — ¢

Based on these properties, the following theorems hold.
Theorem 3.6.2. For any two eventsa,b:a —b = b/ a.

Theorem 3.6.3. For any two events a, b, such that a.pa = b.pa: (a /4 bAb 4 a) <~
a=b.

Let &, = {e € £le.pa = p}. Recall that £, /= represents the factorization of the set &,
by the relation =. Then, as a consequence of Theorem 3.6.3, the intentionality relation
induces a total order on &,/ =, for any p € P. In other words, the intentionality relation
induces a total order on any set of events concerning the same PA and belonging to
different equivalence classes.

3.7 Correctness Properties

As noted in Section 3.1.1, the state of the physical process changes after every setpoint
implementation. Thus, when a controller uses two input events e : (sa1, paj,m,l1)
and ¢’ : (sa1, paj,ma,ls) such thate — ¢/, the message m; reflects a more recent state
of the sub-process controlled by PA; than the message m;. If the controller uses the
“old” event e in the computation of setpoints, then the resulting setpoints might not
be compatible with the most recent state of the process, thereby causing incorrect
control of the CPS. Hence, a controller must only use those measurements from a PA
in computation that reflect the current state of the CPS, i.e., a state that was the result
of the last setpoint implementation by a PA. Similarly, a PA must only implement those
setpoints that were computed by accounting for its most recent state. This notion is
formally captured by the correctness property of state safety.

Definition 3.3 (State Safety). A CPS satisfies the state safety property iff, whenever a
software agent uses an event a as input for computation, then the last sending eventb
that occurred on this software agent, where b.pa = a.pa, is such thatb — a.

Notice that discarding all messages can trivially satisfy the state-safety property.
However, this will render the physical process uncontrolled by a complete loss of
control. Therefore, the selection of events must be optimal, i.e., only those events that
violate the safety property must be discarded. This property is formally defined as
follows.

Definition 3.4 (Optimal Selection). A CPS satisfies the optimal selection property iff an
event a on a software agent is discarded only if there exists another eventb, withb /4 a
that: (1) occurred on this software agent or (2) this software agent was informed that b
occurred on its replica.

37

Chapter 3. CPS Model and Intentionality

The first part of the optimal selection property, on its own, states that an event
a must be accepted by a software agent if the last sending event b on this software
agent intended to cause a. Recall that if b — «, then all events that occurred on this
software agent before b also intend to cause a. Thus, a presents new information, i.e.,
information about the state of the process after the implementation of the last-sent
setpoint. In the presence of replication, however, an event that was intended by the last
sending event, does not necessarily present new information, as seen in the following
example.

A controller replica that last computed setpoints in round [might receive two
measurements from the same PA: one from round [+ 1 and another from round [+ 2,
before it is ready to compute. This can occur due to another controller replica driving
the CPS into round [+ 2. In this scenario, the first controller might ignore the message
from round [+ 1 as the message from round [+ 2 supersedes it. The controller will,
therefore, compute using reception events from round [/ + 2 and declare timeout events
for PAs from which it has not received measurements from that round. This condition
is captured by the second part of the optimal selection property.

The intentionality relation relies on the intentional equivalence relation. In the pres-
ence of replication, however, different replicas might send different sets of setpoints
in a given “control round”. This can happen as a result of the replicas using different
combinations of reception and timeout events in their computation. Although these
input sets are deemed equivalent in our model, the encapsulated setpoints might
not be the same. In practice, to ensure that the messages encapsulated in equivalent
output events are the same, the controller replicas in a CPS must satisfy consistency as
defined below.

Definition 3.5 (Consistency). A CPS satisfies the consistency property iff, for two events
a,a € &% ifa = a, thena.m = a.m.

Consistency can be provided by controller replicas performing an agreement, either
matching their output, as done in consensus protocols [86, 161], or their input, as done
in Quarts [162], described in Chapter 5.

The three properties mentioned here, namely state safety, optimal selection and
consistency, are not the only correctness properties desired in a CPS. For instance, as
CPSs are often real-time systems, they also need to satisfy some timeliness properties
which are addressed in Chapter 6. There are also other correctness properties that are
important, but beyond the scope of this dissertation. One such key example is safety
in the presence of malicious controller replicas, i.e., PAs never implement a malicious
setpoint.

Note that the three properties considered here are all safety properties and none
are liveness properties, as described in the distributed systems literature [83]. Thus,

38

3.8. Conclusion

the FLP impossibility result [88] does not prevent simultaneously guaranteeing all
three of them. Moreover, all these properties can be satisfied by making the controllers
perform consensus. However, as consensus cannot be performed in bounded time
in an asynchronous system [88], these methods are not applicable to real-time CPSs.
Hence, the challenge is to satisfy these correctness properties with low or bounded-
latency overhead. We present mechanisms that guarantee state-safety and optimal
selection with zero latency-overhead in Chapter 4, and a bounded latency-overhead
mechanism for providing consistency in Chapter 5. The newly proposed mechanisms
are presented as modifications to the design of the software agents (Algorithms 3.1,
3.2), so that they can be implemented with minor modifications to existing software
agents.

If a software agent uses an event a for computation, then the last sending event b that
occurred on this software agent, where b.pa = a.pa, is such thatb — a.

An event ¢ must only be discarded if there exists another event b, such thatb 4 «
that: (1) occurred on this software agent, or (2) this software agent was informed that b
occurred on its replica.

For two events a,a € £°,ifa = a, then a.m = a.m.

3.8 Conclusion

We presented a formal model of a CPS, based on the events that occur in the CPS and
the relations among these events. We formalized the basic relations namely, network
relation and computation relation. We used these relations to define the intentionality
relation. Similar to the happened-before relation, the intentionality relation imposes
an ordering between events. However, if « — b, then it does not necessarily mean that
a happened-before b. Instead, b could have resulted from an event a that happened
before a and b. The newly defined intentionality relation captures the evolution of
the state of the controlled physical process in a CPS. It is hence useful in defining and
proving the properties required for correct operation of a CPS. We defined three such
properties namely, state safety, optimal selection and consistency.

39

Ordering Events Based on
Intentionality

Ever since the dawn of civilization,

people have not been content to see

events as unconnected and inexplicable.
They have craved an understanding

of the underlying order in the world.

— Stephen Hawking, A Brief History Of Time

In Chapter 3, we described the intentionality relation and the associated correctness
properties that are desired in a CPS. In order to satisfy these properties, software agents
in the CPS need to order, according to the intentionality relation, the events that occur
in the CPS. In this chapter, we describe intentionality clocks, a labeling mechanism
based on logical clocks, and adapted from Lamport clocks [85]. These clocks accurately
describe the intentionality relation and can be used by software agents to achieve
the required ordering. For this, we first define the clock-consistency condition and
the strong clock-consistency condition that will be used to prove the one-to-one
correspondence between intentionality clocks and the intentionality relation. Using
examples, we show the inability of physical time, and other existing solutions, in
achieving the strong clock-consistency condition.

We present the design of the CPS software agents (controllers and PAs) that uses the
intentionality clocks to achieve two of the desired correctness properties, namely state
safety (Definition 3.3) and optimal selection (Definition 3.4) defined in Chapter 3. The
state safety property ensures that the computation of setpoints by a controller occurs
using the most recent state of the CPS; and the setpoints implemented by PAs are
those computed using the most recent state of the CPS. The optimal-selection policy
ensures that the software agents of the CPS do not erroneously discard measurements
or setpoints containing useful information.

Several industrial solutions circumvent the ordering problem by using frameworks,

41

Chapter 4. Ordering Events Based on Intentionality

such as TTA [131] and TCB [163]; they provide synchrony guarantees. However, using
such frameworks requires specialized hardware, in addition to a complete redesigning
of the application to fit the framework. In contrast, we propose a solution that requires
neither. This lends to an ease of deployment in existing CPSs.

Lastly, we analyze a CPS for the optimal charging of EVs [1] that uses a form of
labeling mechanism that violates the optimal-selection property. We show how this
can cause a deadlock in the CPS and propose modifications to the design.

4.1 Clock-Consistency Condition

In order for a labeling mechanism to accurately capture a relation, it must both describe
and infer the relation. For two events a and b, we say that a clock mechanism C'
describes a relation = if the event labels are such that C(a) < C(b) = a = b, where
C(a) and C(b) are the labels of events a and b, respectively. Moreover, we say that
the clock mechanism infers a relation = ifa = b = C(a) < C(b). If the labeling
mechanism both describes and infers the relation =, it is said to satisfy strong clock-
consistency under the relation =. Alternatively, if a labeling mechanism only infers
the relation, then it is said to satisfy the clock-consistency condition under relation
= [85].

For example, under the “happened-before” relation that provides causal order,
Lamport clocks [85] satisfy the clock-consistency condition, as they can only infer the

relation, i.e., a Ly — LC(a) < LC(b), where b, is the happened-before relation
and LC'(a) is the label of event a obtained using Lamport clocks. As Lamport clocks
cannot describe the happened-before relation, Vector clocks [118] were introduced.
Vector clocks both describe and infer the happened-before relation, thus satisfy the
strong-clock consistency condition.

Under the happened-before relation, if two events have the same label, they are
not comparable or concurrent. However, under the intentionality relation, if two
events have the same label, they are intentionally equivalent. Thus, the definition
of strong clock consistency needs to be modified to account for equivalent events
as follows. For two events a and b, we say that a clock mechanism C describes the
intentionality relation if the event labels are such that C(a) < C(b)) = a — band
C(a) = C(b) AN a.pa = b.pa = a = b. We say that the clock mechanism infers the
intentionality relationifa - b = C(a) < C(b)anda =b = C(a) = C(b). The
strong clock-consistency condition is satisfied if a clock mechanism both describes
and infers the intentionality relation.

Traditional distributed systems provide causal order according to the happened-
before relation. This is achieved through one of several mechanisms such as times-

42

4.2. Clock Consistency Using Existing Solutions

tamps, Lamport clocks [85], or vector clocks [118]. In Section 4.2, we describe the
inability of timestamps and vector clocks to satisfy the strong clock-consistency condi-
tion under the intentionality relation.

4.2 Clock Consistency Using Existing Solutions

4.2.1 Using Physical Time

Here, we answer the question, “Is physical time sufficient to guarantee the strong
clock-consistency condition under the intentionality relation?”

As CPSs are real-time systems, they generally keep track of physical time. To
maintain synchronized global time on all software agents, their physical clocks are
synchronized either using GPS-based clock-synchronization or network-based clock-
synchronization (e.g., PTP [164], NTP [165]). These time-synchronization solutions
provide a synchronization accuracy ¢ that ranges from sub-microsecond to one mil-
lisecond.

CPSs often use the availability of synchronized physical clocks to reason about
the temporal ordering of events. However, as we see in the following examples, the
temporal ordering of events does not coincide with intentionality. We use the notation
T'S(a) to denote the timestamp of event a obtained using physical time at a software
agent. If two events a and b occur on the same software agent such that b is temporally
after a, then T'S(a) < T'S(b).

Consider a CPS with two controller replicas and a single PA, as shown in Figure
4.1. We will consider a perfect time-synchronization (6s = 0). Since a — b and
a = a, we have a — b, by rule 4 of the intentionality relation (Section 3.6.2). However,
TS(a) < TS(b) < TS(a). Thus, we have a — band T'S(b) < T'S(a). Therefore, we
conclude that, on their own, physical clocks cannot infer intentionality.

Another example emphasizing the difference between temporal order and intentionality,
shown in Figure 4.2, concerns a CPS with one non-replicated controller and two non-
replicated PAs. Due to network delay, the reception event b, occurs on PA; much
later than the reception event b; at PA;. As a result, the reception event d; from PA;
occurs much earlier than the corresponding reception event d, from P A,. Instead, the
controller moves on with a timeout event ds for P As. Consequently, the events e, f1,
g1 and h; take place. Then, we have ay — ds — e; — hy. But, dy = dy = dy — hy.
However, on the controller, the time of occurrence of h; occurred is less than that
of dy, i.e., TS(h1) < T'S(dy). Once again, the temporal order does not coincide with
intentionality.

Hence, we conclude that on their own, physical clocks are not sufficient to provide

43

Chapter 4. Ordering Events Based on Intentionality

4

PA

(1,1,0),,

(1,2,0)7

(3,3,0)¢

(1,0, 0)

i

C

(4, 2, z)a/

(1,0, 1)

Computation

Delay
(1,0, 2)

Figure 4.1 — Difference between temporal order and intentionality due to replication
of the controller. The notation (1, 2, 3) represents the vector clock of an event in the
format (PA:1, C;:2, Co:3)

P A

C1

Ji
g1

a

€

Ll

a1

P Ag

C2

f2

Figure 4.2 — Difference between temporal order and intentionality due to delays

44

4.2. Clock Consistency Using Existing Solutions

strong-clock consistency under the intentionality relation and require an additional
mechanism to do so. In fact, the problem is not that it fails to either infer or describe
the relation, but that temporal order does not coincide with intentionality. As a result,
if physical clocks are used by the software agents to order events, the CPS might violate
the safety properties such as state safety and optimal selection. In Section 4.3, we
present a mechanism that describes the intentionality relation by using logical clocks
instead of physical clocks. This mechanism has an added benefit that it does not
require synchronized physical time.

4.2.2 Using Logical Clocks

To demonstrate the inability of Lamport clocks or vector clocks in providing strong
clock-consistency condition, we will use the example in Figure 4.1 and attribute the
message labels using these clock mechanisms, instead of physical time.

In order to obtain labels that use Lamport clocks, we use the algorithm presented
in [85]; it is given by three simple rules:

1. A software agent increments its counter before each event in that software agent

2. When a software agent sends a message, it includes its counter value with the
message

3. Upon receiving a message, the counter of the recipient is updated, if necessary,
to the greater of its current counter and the timestamp in the received message.
The counter is then incremented by 1, before the message is considered received.

As a result, we obtain the following allocation of labels: z.l = 1, y.l = 3.l = 2,
zl=21=3,al=4,bl=05and c.l = 6. Moreover, a.l = max(z,b) +1 = 6. Thus, we
have LC(b) < LC(a). However, @ = a and a — b. Thus, by rule 4 of the intentionality
relation, @ — b. Therefore, strong-clock consistency condition is violated.

Vector clocks, in contrast to scalar Lamport clocks, use a vector of logical clocks,
with one clock per software agent. The vector clocks are maintained according to the
following rules:

1. Each time a process experiences an internal event, it increments, by 1, its own
logical clock in the vector.

2. Each time a process sends a message, it increments, by 1, its own logical clock in
the vector and then sends a copy of its own vector.

3. Each time a process receives a message, it increments, by 1, its own logical
clock in the vector by one and updates each element in its vector by taking the

45

Chapter 4. Ordering Events Based on Intentionality

maximum of the value in its own vector clock and the value in the vector in the
received message (for every element).

Applying these rules to the example in Figure 4.1, we obtain the vector clocks
of the events as shown in Figure 4.1. The comparison on vector clocks is defined
as VC(z) < VC(y) < Vz[VC(z), <VC(y).] N3 [VC(x), < VC(y),], where
VC(x), is the value of the logical clock of event x in position z. For example, in a
distributed system with three agents A, B, C' with vector clockv; = (A4:2,B:3,C : 4),
veo=(A:3,B:3,C:4),v3=(A:3,B:0,C :4), we have:

o v1(A) <wv2(A), v1(B) = v2(B) and v; (C) = v2(C). Therefore, v; < va.

e v1(A) <w3(A),v1(B) £ v3(B)and vy (C) = v3(C). Therefore, v; £ vs and vy # vs.
v; and vz are incomparable.

Thus, for the events in Figure 4.1, we obtain VC(a) < VC(b) < VC(a). But, we
have from intentionality that @ — b. Hence, the strong clock-consistency condition is
violated.

The central problem is that Lamport clocks and Vector clocks were designed to
infer or describe the happened-before relation that is different from the intentionality
relation because of intentional equivalence. Moreover, vector clocks for two events
a and b on two different software agents are sometimes not comparable because one
entry in a might be larger than the corresponding entry in b, and another entry might
be smaller. Such events are labeled concurrent events under the happened-before
relation. However, such events under the intentionality relation might be equivalent or
might be causally related. Therefore, to avoid the issue of incomparable vector clocks,
we use scalar clocks in our design of intentionality clocks.

Other clock mechanisms derived from vector clocks such as plausible clocks [166],
dynamic vector clocks [167] and interval tree clocks [168] address the scalability issues
in vector clocks. When it comes to intentionality, they suffer from the same limitations
as vector clocks.

4.3 Intentionality Clocks

Intentionality clocks is a mechanism for maintaining, updating and synchronizing
logical clocks across all software agents in a CPS with one or more replicas of a central
controller and, with one or more PAs. It is adapted from the Lamport clocks abstraction
that was designed for general distributed systems, to accommodate the specificities of
events in CPSs.

46

4.3. Intentionality Clocks

Similar to Lamport clocks, each agent maintains and updates a local logical clock
(C). The agent also maintains a set of the labels of all the events it has recorded
from other agents so far £. The labels of events are assigned using both C' and £,
such that they guarantee the strong clock-consistency condition. These labels are
communicated, by the software agent, along with the message encapsulated in the
sending event. The labels of the reception and timeout events corresponding to that
sending event are updated according to the following rules:

1. The event label of a sending event at an agent is the value of its logical clock, right
before the sending event.

2. If ais a sending event and b a reception or a timeout event, such that a I b, then
b.l=a.l+1.

3. The logical clock of an agent is never decremented.

4. The logical clock of an agent is only incremented by 1 after a computation and as
follows before a computation.

(@) If C < max(L), then C' < max(L)
(b) If C >=max(L), thenC + C +3

Rule 1 of intentionality clocks states that a software agent attaches the value of its
current clock C to the sending event, so that other agents understand the state of the
controller process as seen by this software agent at the logical time instant C. Rule 2
follows from the definition of the network relation. Rule 3 is a result of the fact that the
state of the controlled process evolves only in one direction. In other words, time does
not go backwards.

Rule 4 dictates that, in order for the clock to represent a “control round”, the clock
must be incremented only when a computation happens. Before a computation using
timeout events, an agent must account for all the missing information. In order to
properly label the timeout events as belonging to the new control round, the agent
must increment its clock to the highest label it has seen so far. This is a proxy to the
most recent state of the process recording by this software agent. This includes two
cases: (1) either it has recorded the most recent information from other agents, i.e.,
C < max(L) or (2) this agent has the most recent state of the controlled process. In
case (1), the clock takes the value of the received labels.

Case (2) is an example of a software agent that decides to compute as a result
of a timeout, for example, a COMMELEC controller [4] performing a computation
because of a timeout since the last time it performed computation. Figure 4.3 shows
the example of one such computation. In this case, the controller must account for

47

Chapter 4. Ordering Events Based on Intentionality

C PA

C a
*b0+1

CC+2

C —l_ 3 dc;‘/ -
Timeout
Computation

&
C+4 *f0+5

Figure 4.3 — Example of computation at a controller as a result of a timeout indicating
the clock at the agents after each event

any possible setpoint implementations that could have occurred since its last setpoint
issued (a). To this end, it uses the timeout a timeout event (d) for the measurement
sending event (c) that would have resulted form the implementation of its last setpoint.
From Figure 4.3, we see that a bS5 ¢ B d. If the clock at event a is C, then it will be
C+1,C+2and C + 3 atevents b, ¢, d, respectively. The clock is incremented by 1 after
the computation, to result in the setpoint sending event e.

Compared to Lamport clocks [85], there are two main distinctions in the design of
intentionality clocks. First, in our solution, the logical clock at an agent is incremented
only when the agent performs a computation. This enables the controller to infer
the intentionality relation by using its local logical clock, and to have a notion of the
control round. In contrast, the Lamport clock at an agent is updated after every event
that occurs at that software agent. Thus, the agents lose the information required to
infer the intentionality relation and to have a notion of the control round. For example,
in Figure 4.4, a CPS with two PAs that uses Lamport clocks increments its clock each
time it receives a message from a PA. As a result, it will infer the relation between events
by and by as by — be. A similar problem arises in a CPS with replicated controllers,
where a PA erroneously increments its clock twice every time it receives setpoints from
two different controller replicas.

Second, in intentionality clocks, the label of a reception event is one more than
the label of the corresponding sending event. In contrast, in Lamport clocks, for a
reception event b that occurs when the value of the logical clock of the agent is C'is
b.l = max(a.l,C) + 1, where a is the corresponding sending event. Due to the presence
of delayed controller replicas or message retransmissions by the network, reception

48

4.4. CPS Design with Intentionality Clocks

Lamport Clocks Intentionality Clocks

pa)

|
:
|
c | <]
ai 1 : ay 1
\Z‘bl as | Nbl az
/1 | /1
ba | ba
|
|
|
|
|
|

dy[5 dify

6 |d2 4d2

Figure 4.4 - Difference between Lamport clocks and intentionality clocks — An example
of erroneous incrementation of Lamport clocks with two PAs

events from previous control rounds might have a label higher than reception events
from current control round. Consequently, it cannot guarantee the strong clock-
consistency condition.

Next, we present the design of software agents that use intentionality clocks. We
will prove in Section 4.5 that such a design satisfies strong-clock consistency and
guarantees state safety and optimal selection.

4.4 CPS Design with Intentionality Clocks

4.4.1 Controller Design

Algorithms 4.1 and 4.2 describe the design of a controller with intentionality clocks;
this design satisfies the state safety and optimal-selection properties. The model of
the controller is the same as the one given by Algorithm 3.1. The parts in red are
our modifications for satisfying the aforementioned properties (together with the
implementation of Algorithm 4.3).

Each controller maintains a logical clock (C), in addition to the set of received
measurements (M) and a set of labels of received measurements £. Upon receiving
a measurement from a PA, the controller declares a reception event with a label, one
more than the label of the received message (Algorithm 4.1, line 9). The controller adds
the measurement to M and adds the label of the reception event to L.

The controller also occasionally checks if it has accumulated, through the mea-
surements, enough information about the state of the physical process required to
compute setpoints. To this end, it uses the ready_to_compute function. As noted in
Section 3.3.1, the controller can choose to start a computation of setpoints by consid-
ering any form of information provided by measurements from M. Moreover, we can
augment the ready_to_compute function with the labels in £, as they expose additional
information, by giving insight into the intentionality relation between the events.

49

Chapter 4. Ordering Events Based on Intentionality

Algorithm 4.1: Abstract model of a controller with intentionality clocks

1 M0 // Set of measurements received

2 Z<+[]; /1 Vector of measurements used in a computation
3 X« H ; /1 Vector of setpoints issued

4 Thow; // Current absolute time

5 C' + 0; // Intentionality clock on this controller

6 L+ {}; /1 Set of labels of received measurements

7

8 on reception of a message m with label [from a PA

9 Declare reception event a : (my_id,i,m,l + 1);

10 M < aggregate_received_measurements(M, m);
11 L+ alUL;

12 end;

13

14 repeat

15 decision, Z < ready_to_compute(M, T)ow);

16 if decision then

17 Z,C, L <+ choose_measurements(Z, C, £);

18 X ¢ compute(Z) ; /1 Using measurements with label C' — 1
19 issue(X, C); /1 Sending events
20 end

21 forever;

When the controller decides to compute setpoints, it must first update its clock
and choose the correct measurements to compute with, using Algorithm 4.2, in order
to satisfy the state safety and optimal-discard correctness properties. This function
implements rule 4 of the intentionality clocks. First, the controller computes the
highest label of the events it has seen: C’. This represents the most recent events the
controller has encountered. Then, for all PAs from which the highest label of received
events is less than C’, the controller declares a timeout event (line 4), thereby explicitly
acknowledging that it lacks the most recent information from this PA. The controller
can then account for this missing information in the subsequent computations. The
logical clock C'is set as C’ + 1 to mark the computation operation and the resulting
setpoints are issued by way of sending events with the label being the current logical
clock.

Note that the model of the compute function in Algorithm 4.1 permits a controller to
send multiple setpoints for the same PA. However, the computation relation (Definition
3.2) permits only one setpoint sending event per PA. This difference between an event
and the setpoint messages is reconciled by encapsulating all the setpoints for one
PA, resulting form a computation, into the one event. A similar mechanism can be
applied to reconcile the difference that the compute function permits using multiple
measurements from the same PA, whereas the computation relation requires only one
reception or timeout event from each PA.

50

4.4. CPS Design with Intentionality Clocks

Algorithm 4.2: Function: choose_measurements(Z, C, £)

1 C" + max(C + 3, max(L));

2 for each PAi do

if the maximum label in L from PA i is not equal to C' then
Declare timeout event a : (my_id, i, L,C");
Z[i] + L;
L+ alUL;

end

8 end

9 C«+C'+1;

10 Return Z, C, £;

N OO A e w

The controller is designed to be soft state [169]. When a controller boots or reboots
after a crash, its logical clock is set to zero, and the lists M and £ are reinitialized. Thus,
it would use all subsequent reception or timeout events for computation, because
their labels would be > 0. This behavior is in accordance with the state safety property,
as a freshly rebooted controller de-facto has no last setpoint sending events. However,
as described in Section 4.4.2, these sending events would be disregarded by the PAs as
they do not reflect their most recent state. Note that, upon booting or rebooting, the
controller sends setpoints corresponding to the initial sending events, indicated by Sy,
with the label 0.

From lines 1 and 9 in Algorithm 4.2, we see that the logical clock of a newly booted
controller is re-synchronized with that of the other software agents before computation,
by taking the maximum of the labels of the received measurements. This is discussed
further, in Section 4.4.2.

4.4.2 PADesign

Algorithm 4.3 describes the design of a PA with intentionality clocks; the design com-
plements Algorithms 4.1 and 4.2 in satisfying the state safety and optimal-selection
properties. Each PA maintains a clock C that is initialized with 0 upon booting.

Upon the reception of a setpoint from a controller, the PA declares a reception
event with a label one more than that received in the message. Then, the PA compares
the label of the event with its local logical clock. If the reception event has a higher
label, then the PA implements the setpoint, else it is discarded because it violates the
state safety property. In other words, a reception event with a label less than the logical
clock of the PA means that the corresponding sending event was not computed with
the most recent state of this PA. In this way, setpoints from delay-faulty controllers or
freshly booted controllers are not implemented, thereby upholding the state safety

property.

51

Chapter 4. Ordering Events Based on Intentionality

Algorithm 4.3: Abstract model of a PA with intentionality clocks

1 on boot

2 C + 0

3 z+1;

4 end;

5 onreboot

6 C +stored C;

7 z 41

8 end;

9 on reception of a setpoint s with a label / from a controller
10 Declare reception event a : (my_id, my_id, m,l + 1);
11 ifC <al;

12 then

13 C + al;

14 implement_setpoint(s);

15 C+C+1,

16 Store C;

17 2z 4 create_measurement();
18 end

19 issue(z, C);

20 end;

After implementing the setpoint through an actuator, the PA increments its logical
clock to mark the computation of a new measurement. The PA computes a new
measurement through a sensor and sends the measurement to the controller by a
sending event labeled with the current logical clock.

Each PA stores its logical clock before computing measurements. When a PA
recovers after a crash, it initializes its logical clock to the last stored value!. In this way,
the PA keeps track of the last state it advertised to the controller.

Controllers and PAs update their local logical clocks to reflect the labels they observe
(Algorithm 4.2 line 1, Algorithm 4.3 line 10). Notice that, upon receiving a setpoint
with a label lower than its logical clock, a PA also sends both the latest computed
measurement and the current value of the local clock. This serves to re-synchronize
the software agents that miss some control rounds due to message losses, crashes and
recoveries, or delays.

4.5 Formal Guarantees

We formally prove that our mechanism of intentionality clocks and Algorithms 4.1, 4.2,
and 4.3 guarantee state safety and optimal selection. The first step lies in proving that

!'Constantly increasing counters might cause a counter overflow. However, a 64-bit counter incre-
mented once every millisecond takes much longer than the lifetime of any CPS to wrap around.

52

4.5. Formal Guarantees

the intentionality clocks under our mechanism infer and describe the intentionality
relation.

Theorem 4.5.1 (Strong Clock-Consistency). In a CPS that implements Algorithms 4.1,
4.2, 4.3: for any two events a and b,

Cla)<C((b) <= a—b
C(a)=C(b) anda.pa =bpa < a=b

Proof. The proof follows from Lemmas 4.5.1, 4.5.2, 4.5.3 and 4.5.4 below. O

Lemma4.5.1. a =b = C(a) = C (b) and a.pa = b.pa.

Proof. 1f a = b, then from the properties of the intentional equivalence relation, a.pa =
b.pa, and one of the following five cases must hold:

1. a and b are initial sending events.

2. 3cce B gande S b

~ ~ n ~
3. de,ccc=¢,c—>a,c—b

4. 3cic S aande S b

5. dc,cic=¢c>a,c>b
We prove the statement of the lemma by induction.

Base case: ¢, ¢ are initial sending events.
From item 1: ¢ = ¢.

From Algorithm 4.1, line 2: C'(¢) = C (¢) = 0.
Then,c=¢ = C(c) = C(¢).

Inductive hypothesis: C (c) = C(¢). (For cases 2 and 4, ¢ = ¢ and this hypothesis
holds trivially).

Inductive step: We show that the statement of the lemma also holds for « and b.

In cases 2 and 3, by Lemma 4.5.6:

Cla)=C(c)+1=C()+1=C(b).

In cases 4 and 5, by Lemma 4.5.5:

Cla)=C(c)+1=C()+1=C(b). O

Lemma 4.5.2. C (a) = C (b) anda.pa =b.pa = a =b.

53

Chapter 4. Ordering Events Based on Intentionality

Proof. We prove this by inductionon ! = C (a) = C (b).

Base case: For [= 0, a and b are initial sending events.
By rule 1 of intentionality: a.pa = b.pa = a =b.

Inductive hypothesis: Ve, f: C(e) =C(f) =k —1landepa = fpa — e=f.
Inductive step: We show that,Va, b: C (a) = C (b) = kand a.pa = b.pa = a =b.

Case 1: a and b are input events.

By Definition 3.1: Je, f: e = a and f — b.

Then, from Definition 3.1: e.pa = a.pa and f.pa = b.pa
Thus, e.pa = f.pa.

By Lemma4.5.6: C(e) =C(a) — 1=k — 1.

By Lemma4.5.6: C(f) =C(b)— 1=k — 1.

Thus, by the inductive hypothesis: e = f.

Thus, by rule 3 of intentional equivalence: a = b.

Case 2: a and b are output events.

By Definition 3.2: 3 g, h: ¢ — a, h — b, and g.pa = h.pa.
Then, from Lemma 4.5.5: C' (g) = C(a) — 1 =k — 1.
Also, from Lemma 4.5.5: C (h) =C (b)) — 1 =k — 1.
Thus, by inductive hypothesis: g = h.

Thus, by rule 5 of intentional equivalence: a = b.

Case 3: a is an input event and b is an output event.

We prove that this is an impossible case.

By Definition 3.1: there exists an input event ¢, such that e.pa = a.pa and e 3 a.

By Definition 3.2: there exists an output event f, such that f.pa = b.pa and f Sb.
Then, by Lemma 4.5.6: C (e¢) =C(a) —1 =k — 1.

Also, from Lemma 4.5.5: C (f) =C (b) -1 =k — 1.

Then, C (e) = C (f) and e.pa = f.pa.

From the induction hypothesis: e = f.

By the properties of the intentional equivalence relation, e and f are either both input
events or both output events.

Contradiction. O

Lemma4.5.3. a - b = C(a) < C(b).
Proof. By the definition of the intentionality relation (Section 3.6.2), a — b has 5
possible cases.

54

4.5. Formal Guarantees

Case 1: a = b.

Then, by Lemma 4.5.6: C' (b) = C (a) + 1.
Thus, C (a) < C (b).

Case2:a =aanda — b.

From Lemma4.5.1:a=a = C(a) = C(a).
By Lemma 4.5.6: C (b) = C'(a) + 1.

Thus, C (a) < C (b).

Case3:a = b

From Lemma 4.5.5: C' (b) = C (a) + 1.

Thus, C (a) < C (b).

Case4:a =aanda — b.

From Lemma4.5.1, C (a) = C (a).

From Lemma 4.5.5: C' (b) = C (a) + 1.

Thus, C (a) < C (b).

Case5:a — cand ¢ — b.

From cases 1-4: C (a) < C'(c¢)and C (¢) < C (b).
Therefore, C (a) < C (b).

Lemma4.5.4. C (a) < C(b) = a —b.

Proof. C(a) < C(b) = C(b)=C(a)+k, k> 0.

We prove the lemma by induction on k.
Basecase: Fork =1,C (b) =C (a) + 1

Case 1: bis an input event.

By Definition 3.1: 3¢ : ¢ = b.

By Lemma 4.5.6: C (b) = C'(c¢) + 1.

Thus, C (¢) = C (a).

From Lemma 4.5.2: ¢ = a.

Hence, from rule 2 of intentionality: a — b.

Case 2: b is an output event.

By Definition 3.2: 3¢ : ¢ = b.

From Lemma 4.5.5: C' (b) = C (¢) + 1.
Thus, C (¢) = C (a).

From Lemma 4.5.2: ¢ = a.

Hence, from rule 4 of intentionality: a — b.

Inductive hypothesis: Let, for some & > 1
Ve, f:C(f)=C(e)+k = e—f.

55

Chapter 4. Ordering Events Based on Intentionality

Inductive step: We show that

Va,b:C((b)=C(a)+k+1,a—0.

Je:C(b)=C(c)+1,C(c)=C(a)+ k.

From the inductive hypothesis: a — c.

Also, from the base case: ¢ — b.

Therefore, from rule 5 of intentionality: a — b. O

Lemma4.5.5. a 5 b — C(b)=C(a) +1

Proof. In Algorithm 4.2, a is either from a reception event from a PA with label C’ or a
timeout event with a label C’ (line 6). In line 8, we have C' = C’ + 1 and the sending
event b has alabel C. Thus, C (b) = C (a) + 1.

In Algorithm 4.3, the sending event b has a label C that is updated in lines 10 and 12. In
line 10, we have C' = C' (@) and inline 12, we have C' = C'+1. Thus, C (b) = C (a)+1. O

Lemma4.5.6. a b — C(b)=C(a)+1

Proof. Atthe PA

A sending event a at a controller replica occurs in line 17 of Algorithm 4.1.
The corresponding reception event b at a PA occurs at line 8 of Algorithm 4.3.
From Algorithm 4.3, line 8: C' (b) = C (a) + 1.

At the Controller

Algorithm 4.1 line 9: a reception event b has alabel b.l = [+ 1, where [is the label of
the corresponding sending event a at a PA (Algorithm 4.3, line 16).

Thus, C (b) = C (a) + 1.

Algorithm 4.2 line 4: We declare timeout events with label C’, for each PA i, such that
the maximum label in £ of the events corresponding to i is different from C’.

We trace the events that caused one such timeout event b.

Since a — b, it follows that a is the sending event at a PA, such that a.pa = b.pa that was
lost or delayed, thus causing the timeout event b.

Let g be the last sending event at a controller, such that there exists a chain of events
g3 £S5 d3 ¢, where cis areception event at the controller on which b occurred, and
c.l = C'. (Definitions 3.1 and 3.2).

Thus, from result of this lemma at the PA: d.l = C' — 1.

From Lemma 4.5.5: f.l=C" — 2.

From the earlier statement at the controller: g.l = C’ — 3.

The controller declares timeout events to acknowledge that it lacks information from
some PAs, that it has from other PAs. This information is the state of the sub-processes
after the implementation of the setpoints encapsulated in the last sending events that

56

4.5. Formal Guarantees

resulted from the same computation relation at some controller replica.

Thus, from Definitions 3.1 and 3.2: there exists another chain of events, ¢ — h ~ a,
such that h.pa = a.pa.

From result of this lemma at the PA: h.l = C" — 2.

From Lemma 4.5.5: a.l = C' — 1. O

Theorem 4.5.2 (State Safety & Optimal Selection). A CPS that implements Algorithms
4.1, 4.2 and 4.3 guarantees state safety and optimal selection.

Proof. The proof has two parts: state safety and optimal selection.
State Safety

At the controller: Algorithm 4.2 line 10, the controller computes setpoints using mea-
surements with label C’.

(' is greater than the label of the last setpoint issued at line 17 in Algorithm 4.1 with
label C, as C" = max(C + 3, max(L£)) (Algorithm 4.2, line 1).

From Theorem 4.5.1: C' (b) < C (a) = b — a.

Thus, when an event a with label C’ is used by the controller for computation, and
another event b was the last event issued by the controller with label C, then C" >
C = b—a.

At the PA: The computation at PA, i.e., implementation of a setpoint followed by
subsequent computation of a measurement, is triggered only if Algorithm 4.3 line 9 is
true.

Therefore, if an event a with label «./ is used in a computation by a PA when its CPS
causal clockis C, then C < a.l.

However, C'is the label of the sending event b, corresponding to the last measurement
issued.

Therefore, by Theorem 4.5.1: C' (b) < C (a) = b — a.

Optimal Selection

At the controller: Consider a reception event a with label a.l at a controller, when its
clockis C.

Casel:a.l <C.

Let b is a sending event corresponding to the last setpoint sent to the same PA.
From Theorem 4.5.1: C' (a) < C = b 4 a.

From Algorithm 4.2 line 1, we have a.l < C' + 3 < C'.

In line 10, the controller computes with events of label C”.

Thus, the event « is not used in computation, i.e., discarded.

57

Chapter 4. Ordering Events Based on Intentionality

Case 2: a.l > C and a.l # max(L).

Consider an event e such that C' (e) = max(L).

From Theorem 4.5.1: C (a) < C (e) = a —e.

From Lemma 4.5.7: C (a) < C'(e) = C'(e) > C(a) + 4.
Let d be the sending event on a PA, such that d Le.

Then, C (d) = C (e) — 1.

Let c be the reception event on the PA, such that ¢ S
Then C (¢) = C (e) — 2.

Let b be the sending event on a controller, such that b — c.
Then C (b) = C (e) — 3.

Thus, C (b) > C (a).

By Theorem 4.5.1: C' (b) > C (a) = b 4 a.

Hence, ¢ must be discarded.

From Algorithm 4.2 line 1, we have a.l < max(£) < C".

In line 10, the controller computes with events of label C’.
Thus, the event « is not used in computation, i.e., discarded.

Case 3: a.l > C' and a.l = max(L)

From Lemma 4.5.7: a.l > C' + 3.

From Algorithm 4.2 line 1: a.l = C".

In line 10, the controller computes with events of label C’.
Thus, the event « is used in computation, i.e., not discarded.

At the PA: An event a is discarded by the PA only if a.l < C (Algorithm 4.3, line 9), where
C is the label of the event b corresponding to the last measurement sent.
Thus, from Theorem 4.5.1, if a is discarded, b /4 a. O

Lemma 4.5.7. For any two events a and b occurring at the same software agent, if a and
b are both input events or both output events, then [C (b) — C (a)] % 4 = 0.

Proof. We start by proving the statement for output events at the controller, by using
induction.

Base case: Let a be an initial sending event. Then, C (a) = 0.

Let b be an event occurring on a PA, such that a b

Let ¢ be a sending event on the same PA, such that b S

Let d be an event on the controller, such that ¢ = d.

Let e be the sending event on the controller, such that d Se.

Then, C' (¢) =4 and [C (e) — C (a)] % 4 = 0, where e and a are both output events. Thus,
the statement is true for the first two sending events on all controllers.

Inductive hypothesis: Consider an instance of the execution trace at time ¢, at which

58

4.6. Case Study: CPS for Scheduling EV Charging

there is no event in the CPS b, such that C' (b) > [. At this instant, let A be the set of all
sending events on all controller. Clearly, Va € A, C (a) < . We assume the hypothesis
be true for all a € A.

Inductive step:

Consider ag € A, be such that Va € A, C (ag) > C (a).

By the induction hypothesis: C (ag) = 4k, where k € N.

We show that the hypothesis is also true for the first sending event b that occurs at a
controller after ¢ty such that ag — b.

Ve (c.sa =PAj Aag = ¢) = O (c) = 4k + 1.

Vd, (dsa=PAiAcSd) = C(d) =4k + 2.

Ve, (e.sa € CA epa=PA ANd = e) = C(e) =4k + 3.

Vf (fsa=esah e f) = C(f)=4k+4.

Thus, [C (f) — C (ag)] % 4 = 0.

f is a sending event on a controller and C (f) > C (ay).

Thus, f ¢ A.

Also, f is the first sending event that occurred after ¢y.

Thus, the hypothesis holds for all sending events at controllers.

Sending events at controllers have label of the form 4k.

By Lemma 4.5.6: input events at PAs have label of the form 4% + 1.

From Algorithm 4.3: output events at the PAs have label of the form 4% + 2.

By Lemma 4.5.6: input events at the controller have label of the form 4% + 3. O

4.6 Case Study: CPS for Scheduling EV Charging

We present, via a case study, a practical application of the intentionality relation and
the intentionality-clocks mechanism. We take the example of a CPS for scheduling
the charging of a fleet of EVs, which provides a schedule that accounts for both the
vehicles’ demand and the vehicle-to-grid regulation services [1].

One of the purposes of this CPS is to charge each vehicle based on the vehicle’s de-
mand, and the other purpose is to provide frequency support for the grid. Modulating
the charging schedule of the EVs, by charging at a higher or lower rate, or even dis-
charging into the grid for some time in cases of downward excursion of frequency, can
provide frequency support. In practice, the EVs must respond to regulation requests
every two to four seconds [170].

The paper [1] presents a solution to the problem assuming an ideal communication,
and without considering the failure of the software agents. However, such a mission-
critical control requires high levels of reliability in a real deployment. It is, therefore,
desirable to replicate the controller.

59

Chapter 4. Ordering Events Based on Intentionality

Aggregator of EVs
(Controller)

Control Signal
(Setpoint) Charging Schedules

(Measurements)

EV Agent 1 EV Agent n
(PA1) (PA,)

I 1

EVs (Controlled Sub-processes)
Figure 4.5 — Architecture and information flow of a CPS for EV charging [1]

In Section 4.6.2, we use the intentionality relation to analyze their CPS design for
possible issues that could arise when the controller is replicated. We find that a naive
extension to their design violates the optimal-selection property. Consequently, due
to software and network faults, the CPS can encounter a deadlock situation, whereby
frequency support will no longer be achieved. This might result in the instability of the
underlying electrical grid.

4.6.1 CPS Design for EV Charging

In this section, we analyze the system model of [1] and show how our system model,
presented in Section 3.3, applies.

Figure 4.5 presents an architectural view of the system consisting of EVs and the
aggregator, as shown in [1]. It comprises EVs that represent the controlled sub-process
from our model, the EV agents labeled 1 through » that correspond to the PAs from
our model and the central aggregator that is the controller of the CPS. The controller
receives a charging/discharging (henceforth referred to as charging) schedule from
each PA. This schedule represents the measurements in our model. The controller
computes control signals (setpoints) for each of the EVs, using the received charging
schedules.

The algorithms of the controller and the PAs used for achieving the desired vehicle-
to-grid regulatory service are described in [1] in Algorithms 2A and 2B. We abstract this
process and summarize it, as shown in Algorithm 4.4. The controller periodically starts
an iterative process that consists of several control rounds, subject to convergence
of the algorithm. Each iterative process is independent from the previous one, as if
the controller had a fresh start. The triggering of a new iterative process (line 2) is
a timeout event in our model, which further causes n sending events, one for each

60

4.6. Case Study: CPS for Scheduling EV Charging

PA (line 4). These events represent the initial sending events as they are computed
without using measurements.

From Algorithm 4.4, we see that the CPS in [1] uses a labeling scheme with label
m. In Section 4.6.2, we show that this labeling scheme violates optimal selection
(Definition 3.4), consequently the system can enter a deadlock situation. In line 6, we
see that, before beginning computation in line 7, the controller waits for schedules
from each PA. Thus, the ready_to_compute function of this CPS is the presence of
one reception event corresponding to the current round with label m, from each PA.
Timeout events do not occur within an iteration.

In lines 7-13, we see that the computation relation takes as input one schedule from
each PA and produces one control signal for each PA. In other words, the computation
relation takes as input one reception event from each PA and outputs one sending
event for each PA. This is same as our computation relation (Definition 3.2).

The iterative process (lines 5-13) continues until the control has converged. It
terminates with the sending of control and stop signals in the setpoints of the last
computation.

Each EV agent (PA) also keeps track of the on-going control round by using label
m. It only accepts charging schedules (setpoints) that belong to the current round
(line 20). Upon receiving a setpoint from the current round, the PA checks if it is
accompanied with a stop signal (line 22). The presence of a stop signal is an indication
of the termination of the iterative process and results in implementation of the setpoint.
Alternatively, when the stop signal is absent, the PA sends its new charging schedule as
a measurement to the controller and increments m by one.

4.6.2 Deadlock Due to Violation of Optimal Selection

Here, we describe a scenario in which the CPS in [1] can enter a deadlock situation
when the controller is replicated, due to the controller replicas having different round
labels.

Consider a scenario with two replicas of the controller C; and Cs, with label m, and
ma, respectively. Consider a PA, PA,, with label m(. Consider a situation when both
controllers sent out setpoints to PAy with label 5. Then, m; = my = 5. PAg receives this
setpoint, implements it, sends a measurement with label my = 5 and increments its
label to 6. Thus, after this round, we have m; = mo = 5 and mg = 6. Now, if Cy does
not receive the measurement from PAy and C; received measurements from all PAs, C;
will begin computation and C; will be stalled. After this computation, we have m; = 6
and my = 5. Moreover, PA; implements the setpoint and increments its label m to 7.

61

Chapter 4. Ordering Events Based on Intentionality

Algorithm 4.4: Abstraction of the iterative process of scheduling EV charging [1]

1 At the Aggregator (Controller)
2 repeat periodically
3 m < 0;

4 Send a request for schedules with label m to each PA;

5 repeat

6 if schedules labeled m from each PA are received then

7 Perform computation of control signals;

8 m<+ m+1;

9 if control has not converged then
10 ‘ Send new control signals with label m to each PA;
11 end
12 end

13 until control has converged,

14 Send control signals and stop signals with label m to each PA;
15 forever;

16

17 At the EV Agent (PA)

18 m < 0;

19 on reception of a control signal with label k from aggregator

20 if k == m then

21 Compute new charging schedule;

22 if stop signal received then

23 m <« 0;

24 Implement charging schedule until next control signal;
25 else

26 Send schedule to aggregator with label m;

27 m<+<—m-+1;

28 end

29 end

30 end;

Next, let C; crash due to a software failure and reboot. Then, it requests for sched-
ules with m; = 0. However, as P Ay is expecting messages from round 7, it ignores
these requests. PAq also discards any messages from Cs, as they will have a label 5.
Moreover, Cy discards the received measurements with label 6 because its label is
mo = 5. This is a violation of the optimal-selection property by C>. Hence, the CPS
enters a deadlock state because there is no mechanism to resynchronize the label.

4.6.3 Design with Intentionality Clocks

To remedy the problem of deadlock, we altered the labeling mechanism in Algorithm
4.4 with intentionality clocks. The new design is given by Algorithm 4.5. At the con-
troller, we resynchronize the label using Rule 4(a) of intentionality clocks, i.e., by

62

4.6. Case Study: CPS for Scheduling EV Charging

declaring timeout events in order to move to a new round of computation. This mech-
anism is given by lines 6-8 of Algorithm 4.5. Furthermore, at the PA, we solve of the
issue of not recording reception events with lower round labels by adding lines 33-35.
Upon a reception event with a lower label, the PA must not implement the setpoint in
order to satisfy state safety. Instead, the PA advertises its most recent state by sending
the schedule with its current label m.

As proven earlier, our design (Section 4.4) satisfies the optimal selection property
even in the presence of controller replication and of software and network faults (as
shown in Theorem 4.5.2). Therefore, the problem encountered by the design in [1]
can be avoided by applying intentionality clocks and tuning the design of the software
agents according to Algorithm 4.5.

63

Chapter 4. Ordering Events Based on Intentionality

Algorithm 4.5: Design of scheduling EV charging in [1] with intentionality clocks

1 At the Aggregator (Controller)
2 repeat periodically

3 m < 0;

4 Send a request for schedules with label m to each PA;

5 repeat

6 if a schedule with label k > m is received from a PA then
7
8
9

‘ m <+ k; // Declare timeout events for all m < k
end
if schedules labeled m from each PA are received then
10 Perform computation of control signals;
11 m <+ m+ 1;
12 if control has not converged then
13 \ Send new control signals with label m to each PA;
14 end
15 end

16 until control has converged,

17 Send control signals and stop signals with label m to each PA;
18 forever;

19

20 At the EV Agent (PA)

21 m < 0;

22 on reception of a control signal with label £ from aggregator

23 if k == m then

24 Compute new charging schedule;

25 if stop signal received then

26 m < 0;

27 Implement charging schedule until next control signal;

28 else

29 Send schedule to aggregator with label m;

30 m < m+ 1,

31 end

32 else

33 if £ < m then

34 Send schedule to aggregator with label m;
/1 Declare reception event

35 end

36 end

37 end;

4.7 Conclusion

We address the problem of enabling software agents in a CPS, namely controller and
PAs, to provide a notion of rounds of computation in the presence of network losses or
delays, or of the replication of the controller. We show that, in such settings, the causal

64

4.7. Conclusion

(or happened-before) relation, traditionally used in distributed systems literature,
does not enable the capturing of the control rounds. Instead, we find that the newly
proposed intentionality relation is a good choice for enforcing such rounds.

We present a clock mechanism, intentionality clocks; it was used in the design of a
controller and a PA that guarantees the strong clock-consistency condition under the
intentionality relation. We consider two correctness properties, namely state safety
and optimal selection: they describe how the agents must treat events in order to
respect intentionality. We prove that the design guarantees these properties. Lastly,
through a case study of a real-world CPS for charging EVs, we demonstrate the practical
relevance of the introduced concepts.

As the design of the software agents with intentionality clocks now enables using
round-numbers to order events in an otherwise orderless CPS, designing reliability
mechanisms for a CPS with intentionality clocks is easier. As these clocks impose a
round number on a CPS with asynchronous software agents, the asynchrony is hidden
from the agents who can simply compare the labels to check whether a received
message belongs to a newer control round or an older control round. Moreover, the
execution trace of a CPS with intentionality clocks can be represented as a DAG with
the nodes being the events and the edges being the network and computation relations
between those events. Such a DAG lends itself well to automated checking of properties
ona CPS.

Therefore, we can focus on ensuring the rest of the correctness properties such as
consistency and timeliness within one round. In Chapter 6, we present results from
the implementation of intentionality clocks, along with other reliability mechanisms,
in a CPS for real-time control of electric grids [4]. We study the impact of violations of
the correctness properties on the physical process, through experiments in a virtual
commissioning environment [61].

One possible avenue for the extension of the theory of intentionality relation and
the design of intentionality clocks is to include CPSs with hierarchy of controllers,
or those with asynchronous sensors that send out-of-band measurements to the
controllers.

65

Quick Agreement among Repli-
cated CPS Controllers

To talk, or not to talk,
that is the question.

In this chapter, we present mechanisms for ensuring that the CPS guarantees the
consistency property (Definition 3.5 in Section 3.7). In order to ensure consistency, the
controller replicas need to perform agreement, before issuing setpoints to the PAs. Tra-
ditionally, in active-replication schemes, agreement is achieved using consensus [161].
However, consensus is known to have a poor latency-performance as the agreement
requires several rounds of message exchanges between the replicas and can take an
unbounded amount of time to terminate [88]. This makes consensus unsuitable for
real-time CPSs, as they require consistency with a low-latency overhead.

To address the latency issues with consensus, we present Quarts; this name stands
for quick agreement in real-time systems. In Quarts, the controller replicas perform
agreement on input, i.e., measurements, as opposed to agreement on output, i.e.,
setpoints as done in some consensus mechanisms [161]. Then, certain properties of
CPSs enable the controller replicas to locally choose which measurements to use in
a computation without having to exchange messages (“talk”) with other replicas. In
Quarts, a replica can choose to not talk with other replicas and reach agreement in
such a way that consistency is always guaranteed. In rounds when the replicas do
not exchange messages for agreement (which are a majority of the rounds in CPSs
with two replicas), the latency overhead is zero. In other cases, the latency overhead
is bounded. In this way, by efficiently deciding when to and when not to talk with
other replicas for agreement, Quarts provides a bounded latency-overhead and a lower
average latency-overhead when compared to consensus.

Quarts is applicable to CPSs with only the controller and PAs, and not with asyn-
chronous sensors. This is because Quarts relies on labeled measurements, where the
labels are consistent across all PAs, like in the case of labels obtained from intentionality

67

Chapter 5. Quick Agreement among Replicated CPS Controllers

clocks (Chapter 4). Asynchronous sensors do not share the same labeling scheme,
hence need to be handled differently. To this end, we propose an extension to Quarts,
namely Quarts+. It ensures consistency and bounded latency-overhead similarly to
Quarts at a slightly reduced availability. Both Quarts and Quarts+ have a consider-
ably higher availability than existing passive- and active-replication techniques for
consistency.

The rest of this chapter is structured as follows. We begin by explaining the need
for consistency, in Section 5.1. We also elaborate on the intuition behind the definition
of the consistency property (Definition 3.5) based on output events in the CPS, and
we relate it to the setpoints output by the controller replicas. In Section 5.3, we list the
properties of CPSs required by Quarts. We present the design of Quarts in Section 5.4,
followed by the proofs of the consistency and bounded latency-overhead properties of
Quarts in Section 5.5.

In Section 5.6, we use discrete-event simulation to compare the consistency, avail-
ability, latency and messaging-cost of passive and active replication schemes with
that of Quarts. We find that unlike Quarts that provides 100% consistency, passive-
replication schemes have non-zero inconsistency, which renders them unsafe as a
replication mechanism for CPS controllers. We also find that Quarts can provide avail-
ability up to 10x higher than consistency guaranteeing active-replication schemes such
as consensus. Furthermore, both the average and tail-latency of Quarts are bounded
and lower than consensus. Lastly, we find that Quarts has a messaging cost similar to
consensus but higher than passive-replication schemes. The higher messaging-cost is
the price of consistency.

In Section 5.7, to provide agreement in CPSs with asynchronous sensors, we present
the extension, Quarts+. In Section 5.2, we review the related work on consistency
achieving mechanisms. We summarize our findings and conclude this chapter in
Section 5.8.

5.1 Importance of Consistency in a CPS

Let a and a be two intentionally equivalent setpoints sending events occurring on
different controllers. From Theorem 4.5.1 that proves the strong-clock consistency
in a CPS that uses the controller and the PA design presented in Chapter 4, we have
a.l = a.l. In other words, a and a belong to the same computation round.

Although, the setpoints encapsulated by a« and a belong to the same computation
round, they can result from computations that use different sets of input events (diff-
erent combinations of receptions and timeout events). This is possible because of
redundancy in the sensor network, or due to the controllers’ ability to compute with

68

5.1. Importance of Consistency in a CPS

partial information [160]. Furthermore, when the computations use different input
events, the resulting output events can encapsulate different messages. Recall from
Section 3.7 that this violates the consistency property that states that if two output
events are intentionally equivalent, then they encapsulate the same message.

As the physical process can have several feasible operating points, it is natural
for two different controller replicas to output different setpoints in the computation
round, both of which are feasible. Hence, on its own, the violation of consistency
property does not necessarily affect the control of the process. However, as these
setpoints are sent over a network that can drop, delay, or reorder messages, their
implementation might be interleaved. Hence, the control of the process resulting from
the final implementation of setpoints can deviate from the correct control behavior of
the CPS. In other words, issuing setpoints that violate the consistency property might
result in an incorrect control of the CPS, as clarified by the following example.

Consider an operation of the COMMELEC CPS [4]: it controls a microgrid by mod-
ulating the power injections of a battery and a PV. The line connecting the microgrid to
the main grid cannot support more than 100 £1¥. One controller replica might instruct
the PV to inject 50 1V and the battery to absorb 50 k1. Another controller replica,
due to receiving a different subset of input measurements, might instruct the PV to
inject 200 kW and the battery to absorb 200 £1¥. Although setpoints from either one of
the controller replicas respect the ampacity limits, the interleaving of setpoints from
the two replicas does not. In other words, a sequence of message losses might result in
the PV receiving only the instruction to inject 200 kW, and the battery receiving the
instruction to absorb 50 £W. This causes the grid to export 150 kW, thus violating the
limits of the main line.

Although two events a and a have the same labels, they might not be encapsulating
the same messages, thereby violating consistency for events a and a. Furthermore, the
corresponding output events at PAs, ¢ such that a — b < cand ésuch thata — b — ¢,
might also not encapsulate the same messages, thereby violating consistency for events
c and ¢. This effect can be noticed for all subsequent setpoints and advertisements,
i.e., violating consistency for two output events can violate consistency for subsequent
output events. In order to guarantee consistency, and to be able to enforce intentional
equivalence in practice, there needs to be a mechanism that ensures that when two
controller replicas perform computations to issue setpoints with the same label, the
setpoints for the same PA have the same value. We call this property computation
consistency, and we show in Lemma 5.5.5 that it is sufficient to ensure consistency for
all output events.

69

Chapter 5. Quick Agreement among Replicated CPS Controllers

5.2 Related Work

Achieving consistency among the replicas within bounded latency is impossible, as
shown in the CAP theorem [171]. The CAP theorem states that during a partition (in
an asynchronous network), consistency and availability (bounded latency) cannot
be achieved together. Hence, the problem of ensuring consistency among replicas
involves trading off availability for consistency or vice versa under different fault
models. Broadly, two types of solutions tackle this problem from different perspectives:
passive replication [99] and consensus-based active replication [114,115,161,172].

Passive replication [99] is commonly used in CPSs as it avoids agreement by having
one primary replica compute and issue setpoints. If the primary is detected as faulty,
the standbys elect a new primary by consensus. As failure detection is imperfect in an
asynchronous setting [58], the standbys might incorrectly detect the primary as faulty
and elect a new primary, and the original primary would not be notified, resulting in
two primaries, thus leading to potential inconsistencies. Most passive-replication re-
search considers the crash-only fault model, under which passive replication improves
availability at a negligible cost of inconsistency. For real-time CPSs, however, delay
faults are more relevant. The intermittent nature of delay faults causes more false
positives by failure detectors, hence more inconsistencies. Imperfect fault-detection
can also lead to false negatives, in which case the primary is faulty and undetected,
resulting in poor availability. Moreover, the election of a new primary replica relies on
consensus between the backup replicas, and consensus has poor latency performance,
thereby unsuitable for real-time systems.

Active-replication solutions work by having all replicas receive inputs and compute
setpoints. These replicas then hold a consensus to agree on one of two equivalent
decisions: either which replica issues the setpoints, or what set of setpoints all replicas
should issue. As mentioned in Section 2.1.1, consensus consists of four properties:
agreement, termination, validity, and integrity [115]. Validity and integrity address
issues that arise due to Byzantine faults and are not under consideration in this work.
Agreement and termination are impossible to guarantee together, within a bounded
delay and in an asynchronous setting [88]. As real-time CPSs require low latency, this
results in low availability.

Quarts focuses on a class of CPSs for which termination is not always necessary, as
they can correctly compute setpoints even if some previous computation was missed
(refer to properties in Section 5.3). This enables agreement via voting that, irrespective
of the success, ends after a bounded time. Moreover, performing agreement on the
input, rather than over the setpoints or the issuing replicas, affords a phase of collection
prior to agreement. This increases the chances of a successful vote, thereby improving
availability.

70

5.3. CPS Properties Required for Quarts

We use a composite voter [173] that, in cases of no majority, selects the output of
one of the replicas, based on a predetermined order. Unlike in [173], where the order is
replica-based, i.e., in the case of a tie, one of the replica has a priority higher that the
others, we use an ordering based on the number of measurements, i.e., in the case of
a tie, the replica with most measurements has a higher priority. This scheme is more
suited to CPSs as it results in the option with most measurements being chosen. Also,
we use plurality voting or relative-majority voting [174], instead of absolute-majority
voting. In plurality voting, the option with most votes is chosen irrespective of its
fraction of absolute votes, thereby providing a higher chance of agreement.

5.3 CPS Properties Required for Quarts

Figure 5.1 shows the architecture of a CPS with one or more replicated controllers, m
PAs, and no asynchronous sensors, and it indicates the messages exchanged with a
round labeled with label ». We assume that the controllers and PAs follow the design
with the logical clocks presented in Chapter 4. Thus, all messages are associated with
a label derived from a logical clock of the sending software agent. The m PAs read
measurements from their sensors and send them to the controllers, each measure-
ment is marked with a label (r). To ensure agreement, Quarts requires only that the
messages are consistently labeled and does not specifically require labels derived from
intentionality clocks. Labeling can be also be obtained by time-synchronization or
through other logical clocks [85, 118]. However, for simplicity, we consider that the
labels are derived from intentionality clocks.

m PAs

(from "+ Network i» Contg)ll(,r X’,? Network
Sensors) . [H] o

actuators)

Figure 5.1 — Architecture of the CPS indicating the messages exchanged with round
numbers

The model of the controller that receives and processes these measurements to
produce setpoints is given by Algorithm 5.1. This algorithm is similar to Algorithm 4.2
in Chapter 4 with some key modifications. First, we express the variables in terms of
measurements and setpoints, as opposed to using events, because they lend them-
selves well to explaining the mechanisms in Quarts. Second, we make the controller
state (H) explicit because it affects the computed setpoints, consequently affecting
consistency. Third, we do not mention the set of all received measurements M and
the fact that computations can be triggered by current time 7,,,,,, as these parame-
ters have no bearing on the design of Quarts and its guarantees. Last, the function
choose_measurements (Algorithm 4.2) that is pivotal in providing the state safety and

71

Chapter 5. Quick Agreement among Replicated CPS Controllers

optimal selection property is assumed to be implemented within the compute function
(Algorithm 5.1 line 13).

Algorithm 5.1: Model of the CPS controller with labels and without events

17 +0; /1 highest label of measurements received
2717 +0; /1 highest label of measurements computed with
3Z<+1]; /1 vector of measurements with label
1 H«0; /1 controller state
5
6 repeat /1 Thread 1: Receive and aggregate measurements
7 ‘ Z,r < aggregate_received_measurements(r);
s forever;
9
10 repeat /1 Thread 2: Compute and issue setpoints
11 decision < ready_to_compute(Z, H, r);
12 if decision then
13 X ¢ compute(Z, H,r —r7);
14 H < update_state(Z, H,r — r7);
15 issue(X,7);
16 T4
17 end
18 forever;

Note that, the computation of setpoints X corresponding to label » depends on
measurements of label r (Z), state (H), and correction factor (»r —). The correction
factor indicates when the last setpoint was computed and is used to handle intermit-
tent measurements, as discussed in Property 5.2. Also, each computation results in
a new state. To highlight the updates of the controller state in each computation, we
introduce a new function update_state (Algorithm 5.1 line 14) that uses the vector of
measurements (Z), the previous state (H) and the correction factor (r — r 7).

The measurements and setpoints are sent over a non-ideal network that might
delay or drop messages. In case of no loss, the propagation delay is bounded by §,,.
The message processing time of non-faulty replicas is negligible with respect to. 6,,.
This network model is called probabilistic synchronous [58].

Given that the state is used in the computation of setpoints (line 13), Quarts requires
replicas to agree on the state. To this end, the following property is expected to hold.

Property 5.1. The state used by the controller for computing the setpoints can be known
exactly.

This property is satisfied by a wide range of controllers, including controllers using
Kalman filters [41] where the state is the gain matrix, or more sophisticated controllers
like [175], where the state is the time of the most recent voltage violation.

72

5.4. Quarts Design

The controller is assumed to be susceptible to delay and crash faults. The intermit-
tent nature of delay faults makes real-time agreement more challenging. As a controller
can be delay faulty for an arbitrarily long time, solutions that rely on failure detection
will incur a high latency-overhead for each setpoint. In order to address the challenges
of such intermittent faults, we require the controller to satisfy the following property.

Property 5.2. The controller can compute correct setpoints in the presence of intermit-
tent measurements.

In other words, a controller is assumed to be robust to non-idealities in the commu-
nication network or the software agents. Examples of such controllers are those that
use a Kalman filter that accounts for intermittent measurements [159] and the robust
COMMELEC controller that can handle missing measurements [160]. Controllers of
CPSs that exhibit this property can compute and issue setpoints, despite intermittent
faults, either in the network (losses of measurements) or in the controller (delay faults).
On the contrary, CPS controllers that do not exhibit Property 5.2, will eventually perma-
nently fail to compute and issue setpoints due to network losses, even in the absence
of software faults. This is because a controller that fails to compute setpoints for a
label r, cannot compute setpoints for all labels greater than r.

From this property, we find that a controller might compute setpoints for label
k < r — 1, be delay faulty for some time and then compute setpoints for label r, by
using the state corresponding to label k, without the knowledge of the intermediate
states. Note that the resulting setpoints would be correct, but might be sub-optimal
when compared to those computed using the state corresponding to label r — 1.

Lastly, as we use active replication, multiple replicas will issue setpoints of the same
label to the PAs. Therefore, we require the following property to hold.

Property 5.3. PAs are able to handle duplicate setpoints.

This property is satisfied by the CPSs if they already satisfy the state-safety property
(Theorem 4.5.2) by using intentionality clocks. Other CPSs can either use their labeling
schemes to perform de-duplication of received setpoints or use absolute setpoints,
rather than differential setpoints. An example of absolute setpoints is an electric-grid
controller instructing a battery agent that is injecting 8 kKW to ‘set the injected power
to 10 kW’, rather than to ‘increase the injected power by 2 kW’. Receiving identical
duplicates of the former has the same effect as receiving a single setpoint.

5.4 Quarts Design

We take a top-down approach to describing the design of Quarts. In Section 5.4.1, we
give a walk-through of a typical operation of Quarts by using, as example, a CPS for

73

Chapter 5. Quick Agreement among Replicated CPS Controllers

the control of electric grids that uses a Kalman-filter based controller [176]. Then, in
Sections 5.4.2, 5.4.3, we detail the design of the individual building blocks of Quarts.

5.4.1 Protocol Walk-Through

Quarts is applied to a CPS by replicating the controller, adding the red part (Algorithm
5.2 lines 12-14, 16), and implementing the collect_and_vote function (Algorithm 5.3)
that implements Algorithms 5.4, 5.5 and 5.6. In order to guarantee consistency, this
function performs agreement between the controller replicas and overwrites the set
of measurements Z, the state H, and the label of the last setpoint computation .
The function returns False when this replica should not compute for this label. The
collect_and_vote function has two parts, Collection and Voting, described in Section
5.4.2 and 5.4.3, respectively.

Algorithm 5.2: Model of the CPS controller with Quarts (in red).

17r «<0; /1 highest label of measurements received
2r” «0; /1 highest label of measurements computed with
3 7+ H ; /| vector of measurements with label »

1 H«0; /1 controller state

5

6 repeat // Thread 1: Receive and aggregate measurements

7 ‘ Z,r < aggregate_received_measurements(r);

8 forever;

9
10 repeat /1 Thread 2: Compute and issue setpoints
11 success <« False;
12 if r > r~ then

13 ‘ success, Z, H,r~ + collect_and_vote(Z,H,r,r7);

14 end

15 decision < ready_to_compute(Z, H, r);
16 if success and decision then

17 X ¢ compute(Z, H,r —r7);

18 H < update_state(Z, H,r — r7);
19 issue(X,7);

20 T4

21 end

22 forever;

The novelty of Quarts is that it performs agreement on measurements Z and the
state H before computation, as opposed to agreement on setpoints done by existing so-
lutions. By agreement on H for a label r, the replicas implicitly agree on the correction
factor, r — r—, which affects the subsequent compute and update_state functions. Our
choice to agree on the input stems from the observation that it enables an optimization
that increases the probability of a successful agreement. This optimization is referred

74

5.4. Quarts Design

to as the collection phase and involves replicas exchanging measurements and the
state in order to minimize the missing information in each replica.

Agreement is done in the subsequent voting phase, where replicas exchange a
digest of the measurements and the state they have. The subset of measurements
corresponding to the most-common digest is chosen for computation. The details of
the digest and the voting phase are explained in Section 5.4.3.

From Algorithm 5.2, note that the setpoints returned by the compute function are
uniquely determined by Z, H and r — . An example of such a controller is [176]: it
uses a Kalman filter for estimating the state of an electric grid and uses the estimated
state to compute and issue setpoints to PAs to maintain the grid in a feasible state.
Here, Z is composed of voltage and current phasors, and H is the Kalman-gain matrix,
and the » — ™ represents the “jump” in the linear state of the controlled process since
the last time a computation was performed by the controller. Recall that in a Kalman
filter [159], the measurements, the Kalman-gain, and the correction-factor uniquely
determine the output. Hence, agreeing on Z, H, and r~ for a given r is sufficient for
agreeing on the value of the setpoints.

With Quarts, the aforementioned CPS [176] works as follows. Every 20 ms, the PAs
send measurements, with a new label. When the first measurement with a new label
is received, the replica sets a timeout by which it expects to receive all measurements.
One possible value of the timeout is the one-way delay of the network (4,,). As the
measurements are sent over a lossy network, the controller replicas receive different
subsets of measurements. Upon timeout, each replica queries other replicas for the
missing measurements. Moreover, each replica that has a state with a label less than
r — 1 requests others for their most recent state. This way, more replicas have a similar
state and a set of measurements after collection, and the subsequent voting phase is
more likely to succeed.

Algorithm 5.3: collect_and_vote(Z, H,r,r7)

1 // Part 1: Collection

2 Zgoy < collect_missing measurements(Z,r);
3 Heou, 7, < collect_missing_state(H,r™);
4 S + indices of entries in Z.;;

5 send digest(S,r_) to all voters;

6

7 // Part 2: Voting

8 SUCCESS, Schosens Toppsen < VOte(r);

9 if successandr_, . =1, and S .., C S then
10 | returnTrue, Z ou[Schosen)s Heotts Topyps
11 else
12 | return False, Zcoy[Schosen)s Heotts ooy 5
13 end

75

Chapter 5. Quick Agreement among Replicated CPS Controllers

The collection phase in Algorithm 5.3 is realized through the functions collect_missing_measurements
and collect_missing_state (Algorithms 5.4, 5.5). Each of these functions lasts for at
most 26,, at each replica, as detailed in Section 5.4.2. These functions are independent
and can run simultaneously, resulting in a bounded latency of 26, for the collection
phase.

At the end of the collection phase, each replica sends to other replicas a digest of
the measurements it has obtained thus far. This begins the voting phase, in which each
replica chooses, using the vote function (Algorithm 5.6), the set of measurements and
the state to be used for computing setpoints corresponding to this label. If voting is
unsuccessful, or if the corresponding replica does not possess the chosen measure-
ments or state, then False is returned (Algorithm 5.3, line 12). This prohibits the replica
from computing setpoints (Algorithm 5.2, line 16). The voting phase has a bounded
duration of 34,, and is explained further in Section 5.4.3.

Note that, the voting phase requires an upper bound on the number of controller
replicas (faulty and non-faulty). This can be achieved either by statically configuring
the number of replicas every time a new replica is added or removed, or by using a
group membership algorithm such as [151]. As the addition of replicas is not done on
the real-time path, the introduction of a new replica can wait until the termination of
the group membership algorithm.

In the special case of two controller replicas, it is possible that both the collection
and the voting phase at a controller might last for zero time. This case occurs when the
controller receives measurements from all the PAs for this round, thereby not needing
to query other controllers for measurements. Moreover, as we shall see in Section 5.4.3,
receiving all measurements in a round entitles a controller in a two-replica system to
decide without voting. Additionally, in CPSs where the network losses are low, this
case occurs in a vast majority of the rounds for at least one of the replicas, thereby
adding zero latency for agreement. Note that a replica that moves to computation on
receiving all the measurements in a certain round still continues to help other replicas
by participating in the collection and voting phases without delaying computation.

Lastly, a controller replica must perform agreement for a round at most once.
In order to ensure this property across reboots, controllers store the highest round
number in which it participated in agreement on a persistent storage (such as disk).
Upon reboot, this number is retrieved and the replica does not take part in agreement
for previous rounds.

5.4.2 Collection Phase

The collection phase consists of replicas exchanging measurements and state, as
presented in Algorithms 5.4 and 5.5, respectively. As mentioned earlier, these can run

76

5.4. Quarts Design

Algorithm 5.4: collect_missing_measurements(Z, r)

1 S < indices of entries in Z;

2 send Quarts_Query<S, r>to all replicas; // Ask for missing indices
3 repeat

4 if Quarts_Query<Q, I> received and | = r then

5 /1 Received query, send response

6 send Quarts_Response<Z [Q N S|, r> to all replicas;
7 Ise if Quarts_Response<P, [> received and | = r then
8 /1 Received response, update set of measurements
9 Quarts_Update Z to include P;

10 Add received entries to 9

11 end

12 until timer 26,, expires;

13

14 return Z; // Return set of measurements after collection

[«]

simultaneously. The collection phase, designed with delay faults in mind, is terminated
after 20,,. Thus, non-delay-faulty replicas can proceed with the voting phase without
waiting for delay-faulty ones.

The main premise of collection is that the measurements and the state with the
same label have the same value. This is possible because of use intentionality clocks
(described in Chapter 4). At a PA, every time it issues a measurement, it increments
its local intentionality clock and tags the measurement with the value of the clock.
Moreover, the intentionality clocks are always incremented and never decremented.
Thus, two different measurements have different labels. Alternatively, measurements
with the same label have the same value as they are generated by the same PA. The
case of the state is more involved and is covered by Lemma 5.5.4.

Collecting Measurements

Eachreplica calls collect_missing_measurements(Z,r) (Algorithm 5.4). It forms S, the
set of IDs of the PAs from which it has received measurements with label . Then, it
sends a Quarts_Query to all replicas asking for the missing measurements (entries of
S).

For each Quarts_Query received, the replica sends a Quarts_Response that contains
the queried measurements that it has. Also, for each Quarts_Response received, the
replica updates the vector Z to include the newly received measurements. These

exchanges include the label r to ensure that stale measurements, caused by delay-
faulty replicas sending queries or responses, are ignored.

As this phase is performed simultaneously by all non-delay-faulty replicas, its delay
is upper-bounded by 2/, the time required for queries and responses to be delivered.

77

Chapter 5. Quick Agreement among Replicated CPS Controllers

Algorithm 5.5: collect_missing_state(H, r™)

1 send Quarts_Advertisement<r~> to all replicas; // Advertise state label
2 repeat
3 if Quarts_Advertisement<l> received and| < r~ then

4 /1 Received advertisement with smaller label, send my state
5 send Quarts_Update<H, r~> to all replicas;

6 else if Quarts_Update<H', |> received and! > r~ then

7 /1 Received state with higher label, update my state

8 H+ H;

9 rT
10 end

11 until timer 26,, expires;
12
13 return H, »—; // Return state and label after collection

Collecting State

Similarly, each replica calls collect_missing_state, passing it as input the current
state (H), and the label () of the measurements involved in the computation lead-
ing up to that state, henceforth referred to as the state label. The replica sends a
Quarts_Advertisement with the label of its state r .

If a replica receives a Quarts_Advertisement with a label lower than its own, it sends
a Quarts_Update with its state and label to all replicas, so that they can synchronize
their state accordingly. If a replica receives a Quarts_Update with a label higher than
its own, it changes its state and label.

5.4.3 Voting Phase

The collection phase ends with each replica sending its digest to all the voters. A digest
with a label [consists of (1) an indicator set S of measurements with label [that this
replica has, and (2) the state label »— at this replica. Quarts uses a total order among
digests. Consequently, we have a function max that returns the largest digest, based
on the total order. For each label, there exists a largest possible digest (full_digest)
that does not contain any missing measurements and that has »— = — 1. A possible
implementation of the digest is a concatenation of the state label with the bit-mask of
the measurements. For instance, computing setpoints with label [= 25: if ~ is 24 and
areplica has received measurements from PAs 1, 2, and 5 (m = 5), then its digest would
be “24.11001". The lexicographic ordering of the digest string gives the total order, with
“24.11111” being the full_digest. We use this implementation in our simulations.

Each replica maintains a list v of digests received with label » from other replicas,
with at most one entry per replica. From v, it attempts to vote and choose a digest,
such that all replicas choosing a digest with label r, choose the same digest.

78

5.4. Quarts Design

The voter also maintains two lists and three integers that are updated when a new
digest is received and stored in v. As the same digest can be received from several
replicas, we count the number of occurrences of each unique digest in v. We store the
digests with the highest count in S,,,. and their count in f,,.. Similarly, the digests with
the second highest count are stored in S;.. and their count in fs.. Finally, the number
of empty elements in v, which is the number of replicas from which the voter has not
received digests, is stored in fj.

There are four cases in which the voter can choose a digest. In all other cases, the
voter has to wait for more digests. (1) The number of empty cells in v is zero (lines
13-15). In this case, the voter has to choose one of the digests that are most common.
If there is only one, it is chosen; otherwise, it chooses the largest among them. (2)
There is only one most-common digest, and it will remain the most-common digest
no matter what the replicas that have yet to send digests send (lines 16-18). It is chosen
(as the obvious majority). (3) There is only one most-common digest, and there is at
least another digest (second most-common digest), and no matter what the replicas
that have yet to send digests send, any second most-common digest can be at most
as common as the most common one (lines 19-24). In this case, if the most common
digest is larger than all the second most common digests, the voter chooses it. (4)
The full_digest is the only most common one and no other digest can become more
common. As it is the largest by definition, it is chosen.

This approach enables the voter to successfully vote, before receiving digests from
all replicas, while guaranteeing consistency and accounting for delay-faulty replicas.
For instance, in a CPS with two controller replicas, when one of the replicas has
full_digest and has not received any other digests from other replicas, we have
fre = 1, fsec = 0 and fy = 1. Thus, item 4 (lines 25-31) is triggered, and the replica
successfully votes without having received any digests from the other replica. Thus
a two-replica CPS is available when one of its replicas is faulty, if the other replica
receives all measurements and is up-to-date on the state.

Note that, the voter returns unsuccessfully after 34,,, which is enough time for the
non-faulty replicas to send their digests.

79

Chapter 5. Quick Agreement among Replicated CPS Controllers

Algorithm 5.6: vote(r)

1 v < []; // vector of digests from each replica

2 S, « set of most common digests in v;

3 Ssec < set of second most common digests in v;
4 fme < count of each element of S,,,. in v;

5 fsee + count of each element of S, in v;

fo <~ number of empty cells in v;

repeat

(¢

o

o

end

/I Receive collection message

if digest (S, r—, 1) received from replica j and | = r then
vijl « (S, r7);

update Sines Ssecs fmes fsees fo USing v;

/1 Attempt vote

if fo = 0 then

/1 All digests received, choose max of S,,,.
return True, max(S;,.);

lse if ‘Smc’ - 1 and fmc > fsec + f() then

/1 Only one most common digest, and clearly the plurality
return True, S,,.[0];

Iseif [S,..| = 1 and f,,c = fsec + fo and fs.. # 0 then

/1 2" most common digests could have equal count
if S;,c[0] > max(Ss..) then

/1 Most common digest is the largest

return True, S,,.[0];

end

Iseif |S,..| = 1 and f,,. = fscc + fo then

/1 Other digests could have equal count
if S;.c[0] = full_digest then

/1 Most common digest is the largest
return True, S,,.[0];
end
end

until timer 30,, expires;
return False, NULL; // Return false because vote was unsuccessful

80

5.5. Formal Guarantees

5.5 Formal Guarantees

According to Definition 3.5, consistency is defined for two output events a and a as: if
a = a, then a.m = a.m. To prove that Quarts guarantees consistency, we first show that
the computations in the same round of controller replicas that use Quarts output the
same set of setpoints. This is captured by the notion of computation consistency as de-
fined below. Then we show that is sufficient to guarantee the consistent computations
property in order for a CPS to ensure consistency.

Definition 5.1 (Computation Consistency). Computation consistency is said to hold
for label r for a CPS iff all the setpoints with label r for the same PA have the same value.

Theorem 5.5.1 (Computation Consistency). A CPS that satisfies the model in Section
5.3 and implements Quarts (Algorithm 5.2) guarantees computation consistency in the
presence of any number of delay- or crash-faulty replicas.

Proof. The proof requires the following lemmas.

Lemma 5.5.1. IfAlgorithm 5.6 returns True for a labelr for controller replicas C; and
C;, then the chosen digests S’ and S’ are equal.

hosen chosen

Proof. For label r, one of the lines 16, 19, 24 or 30 of Algorithm 5.6 would have been
triggered on the replicas.

Line 16 The number of empty cells in v is zero. In this case, the voter has to choose
one of the digests that are most common. If there is only one, it is chosen, otherwise, it
chooses the largest among them.

Line 19 There is only one most-common digest, and it will remain the most-common
digest no matter what the replicas that have yet to send digests send. It is chosen (as
the obvious majority).

Line 24 There is only one most-common digest, and there is at least another digest
(second most common), and no matter what the replicas that have yet to send digests
send, the second most-common digest will be at most as frequent as the most common.
In this case, if the most-common digest is larger than all the second most-common
digests, the voter chooses it.

Line 30 The full_digest is the only most common one and no other digest can be-
come more common. As it is the largest by default, it can be chosen immediately. [

Let Zi, Z be the vector of measurements used for computation by controller C;, Cjin
round r, respectively. Then, we have the following result.

Lemma5.5.2. V' r,i, j, Z. = Z

81

Chapter 5. Quick Agreement among Replicated CPS Controllers

Proof. Z is the set of measurements used for computation for label r by a C; in
Algorithm 5.2 line 17.

If controller replicas C; and C; compute setpoints for label r, i.e., line 17 of Algorithm
5.2 is triggered, then on both C; and C; the function collect_and_vote must have
returned True (Algorithm 5.3 line 10).

Therefore, the function vote must have returned True, for label r.

From Lemma 5.5.1, we know that, V r, if Algorithm 5.6 on controller C; and C; returns
True, then S? =5

chosen chosen*
Additionally, as the measurements for label r received by from the same PA by C; and
C; are identical, Sy, ..., = S oeen, = Z& =Z3. O

Next, we can show that two controller replicas that compute setpoints use the same
state labels as shown below.

Lemma 5.5.3. When replicas C; and C; compute setpoints for a label r using state

labels r; andr; respectively,r; =r .

Proof. If controller replicas C; and C; compute setpoints for label r, i.e., line 17 of
Algorithm 5.2 is triggered, then on both C; and C; the function collect_and_vote
must have returned True (Algorithm 5.3, line 10).

Therefore, the function vote must have returned True, for label r.

From Lemma 5.5.1, we know that, V r, if Algorithm 5.6 on controller C; and C; returns
True, then S%, =87, .
From Section 5.4.3, we see that if two digests are equal, then they have the same state
labels.

Therefore, S

chosen

-9/

chosen Ty =T O

J

Lastly, we can show that the states represented by the same state labels are identical.

Lemma5.5.4. Vr,i,j, r; = r; = H, =Hj

Proof. We prove this lemma by strong induction on r, the label of setpoint being com-
puted.

Base Case: Whenr = 1,7, = Ty o= 0, then the states used for computing the first

setpoint are H.. = H’ = (). Thus, the statement holds for r = 1.

Induction Hypothesis: Let the statement hold of the labels in [1, /], where [> 1.
Thus,Vr e [1,1 -1}, i, j, r; =r; = H: = H
This means that any two replicas, which computed setpoints for a label r € [1,] — 1]

and had the same state label, had the same state.

82

5.5. Formal Guarantees

Inductive Step: To show that, for label {, Vi, j : C;,C; compute setpoints for la-
bell, 7 =1; = H}=H].

When a replica computes a setpoint, its state is updated by line 18 of Algorithm 5.2.
When both C; and C; performed a computation of setpoints for label / — 1, then the
label of their state would be updated to / — 1. Hence, [, = lj_ =[]-1.

Additionally, as, the states and correction factors used for this computation are the
same, due to the induction hypothesis, and from Lemma 5.5.2, we know that the mea-
surements used for the computation are also the same; the states resulting from the
computation are also same (Algorithm 5.2, line 18).

Therefore, we have I, = I; =1 —1and Hj = HJ

Thus, by principle of induction, Vr, i, j, r; = r; = H = HY O

From Algorithm 5.2, we see that the setpoints depend entirely on the measurements
Z used for computation, the state H, and the state label »—. Hence, it suffices to
show that, any two replicas, C; and C;, which compute setpoints for label r by using
measurements Z: and 77 states H' and H7, and state labels r; and i respectively,
will have Zi = Z/, H:. = HJ, and r; =r; . This is shown by Lemmas 5.5.2, 5.5.4 and
5.5.3, respectively. O

Now, we show that Quarts guarantees the consistency property (Definition 3.5) in a
CPS that satisfies the properties mentioned in Section 5.3.

Theorem 5.5.2 (Quarts Consistency). A CPS that satisfies the model in Section 5.3
and implements Quarts (Algorithm 5.2) guarantees consistency in the presence of any
number of delay- or crash-faulty replicas.

Proof. To prove this result, we will show that for a CPS that uses intentionality clocks
to label messages, computation consistency is sufficient to provide consistency in the
following lemma.

Lemma 5.5.5. A CPS that implements intentionality clocks (Algorithms 4.1 and Algo-
rithm 4.3) and guarantees computation consistency also guarantees consistency.

Proof. Leta, a € £° be such that a = a. To show that when the CPS implements
intentionality clocks and guarantees consistency, a.m = a.m

From the strong clock-consistency property of intentionality clocks under the inten-
tional equivalence relation in Theorem 3.6.3,a =a = a.m = a.m

Then,a =a = a.pa = a.pa

The events a and a can be either setpoint sending events or measurement sending
events

83

Chapter 5. Quick Agreement among Replicated CPS Controllers

Case 1: ¢ and a are setpoint sending events

Let x and 7 be the setpoints encapsulated in a and a, respectively
Thus,a.m =zand a.m =%

Also, a.l = a.l = that the setpoints x and x have the same label
Moreover, a = a = a.pa = a.pa

As the CPS satisfies computation consistency, z = &

Therefore, a.m = a'm

Case 2: ¢ and a are measurement sending events

Let us assume that a and a are two different measurement sending events such that a
occurs before a

Let ¢ty and t; be the time instants at which the PA executes the implement_setpoint
and create_measurement functions to generate event a

Then, from Algorithm 4.3, we know that the value of the intentionality clock at time ¢;
is Cy, = a.land attime ¢y is Cy, = a.l — 1

Let ¢t and t3 be the time instants at which the PA executes the implement_setpoint
and create_measurement functions to generate event a

Then, from Algorithm 4.3, we know that the value of the intentionality clock at time ¢3
is Cy, = a.land at time t2is Cy, = a.l — 1

As a occurs before a , we have t3 > ¢

As Algorithm 4.3 is sequential without preemption, we have ¢y < t; < ty < t3
Moreover, we have a.l = a.l

Thus, C, = a.l > a.l—1=Cy,butt; < to

This is a contradiction as intentionality clocks are never decremented (Algorithm 3.2
lines 13 and 15)

Thus, a and a are the same event. Therefore, a.m = a.m O

In Section 5.3, we assume that the CPS implements intentionality clocks and in Theo-
rem 5.5.1, we prove that such a CPS guarantees computation consistency. Thus, we
have that it also guarantees consistency. O

CPSs aim to have minimal latency between the generation of measurements and
the issuing of setpoints. Hence, agreement protocols for CPSs must have a low latency-
overhead. The latency overhead of a replica due to Quarts is the time spent in the
collect_and_vote function (Algorithm 5.2, line 7). It depends on the network delay
between the controllers. As described in Section 5.3, we consider a lossy network with
a bounded propagation delay §,, for non-lost packets. For a CPS using such a network,
Quarts guarantees bounded latency-overhead for each replica that issues a setpoint.

Theorem 5.5.3 (Quarts Bounded Latency-Overhead). When a non-faulty replica of
a CPS following the model in Section 5.3 and using Quarts (Algorithm 5.2) issues a

84

5.6. Performance Evaluation

setpoint, its latency overhead is bounded by 56, .

Proof. As mentioned earlier, the latency overhead of a replica due to Quarts is the time

spent in the collect_and_vote function (Algorithm 5.2 line 7). The collect_and_vote

function, described in Algorithm 5.3, consists of three functions: collect_missing_measurements,
collect_missing_state, and vote. As the statement applies only to non-faulty repli-

cas, we know from Section 5.3, that the operations that do not involve waiting for the

network to deliver messages have negligible delay.

The collect_missing_measurements (Algorithm 5.4) and collect_missing_state
(Algorithm 5.5) functions can be merged into one function without requiring paral-
lelism. The resulting function would send a Quarts_Query and a Quarts_Advertisement,
then continue listening to Quarts_Queries, Quarts_Responses, Quarts_Advertisements,
and Quarts_Updates until the timer of 2,, expires. As it is designed to terminate after
the timer expires, this collection function results in a bounded latency-overhead of
20,.

The vote function is also designed to terminate after the timer expires. Its timer,
however, is 36,, (Algorithm 5.6 line 33). Therefore, the voting phase has a bounded
latency-overhead of 30,,.

As aresult, Quarts is shown to have a bounded latency-overhead of 54,, due to its
collection and voting phases. O

5.6 Performance Evaluation

We evaluate the consistency (Definitions 3.5) of Quarts and that of existing protocols
[99, 161]. We also evaluate other performance metrics of CPSs, namely availability
(Definition 5.2), latency (Definition 5.3) and messaging cost. The analytical evaluation
of these metrics appears to be mathematically intractable. Therefore, we perform the
evaluation by using discrete-event simulations.

5.6.1 Performance Metrics

From Definition 3.5, we obtain a measure of consistency as follows. If consistency
holds for a CPS for setpoints with label , then put v, = 1, else ,. = 0. Note that~, = 1,
when no setpoints are sent by a CPS with a label r, or when only one of the replicas
sends setpoints for label ». The measure of consistency of a CPS is given by I' = E [v,.].

In addition to providing consistency, a controller of a CPS is required to have high
availability.

85

Chapter 5. Quick Agreement among Replicated CPS Controllers

Definition 5.2 (Availability). Availability is said to hold for a CPS for a setpoint with
label r with respect to. a PA A;, iff A; receives a setpoint with label r.

‘ If availability holds for a CPS for setpoints labeled r for a PA A, then put M =1, else
7. = 0. Then, a measure of the availability for setpoints with label r is 1, = %22:1 Vi,
and the availability of a CPSis ¥ = E [¢,].

Besides high availability, CPSs require low latency. Let S¢, 1 < i < m be the time
instant at which sensor i sends measurement with label r, and I} , 1 < j < gbethe
time instant at which the controller C; issues the setpoints with label . Then, latency
is defined as follows.

Definition 5.3 (Latency). Latency of a CPS for a setpoint with labelr isé, = mincp; g -

: i
Min;e(1 m] Sy

From Definition 5.3, we compute the mean latency of a CPS with an agreement
protocol as A = E[0,]. Besides having a low mean-latency, it is important that the delay
distribution is light-tailed. So, we also consider the 99" percentile of latency (5,99) in
our evaluation.

Another important performance metric for CPSs is the messaging cost needed
to provide consistency and high availability. For simplicity, we use the number of
messages exchanged as an indicator of messaging cost. Specifically, the messaging
cost (w,) of a CPS for computing and sending setpoints corresponding to label r is
evaluated as the total number of messages labeled r exchanged by the replicas among
each other and with the actuators. We consider the mean (2) and 99*" percentile (wpoo)
of messaging cost.

In summary, the metrics of interest are consistency (I'), availability (¥), mean and
99! percentile of latency (A, dp99), and mean and 99! percentile of messaging cost (€2,
wp99)-

5.6.2 Agreement Protocols

The state-of-the-art agreement protocols, against which we compare the performance
of Quarts, are active replication with Fast-Paxos consensus [161] and passive repli-
cation with hot or cold standbys [99]. Hereafter, we denote them as AC, PH, and PC,
respectively. We denote Quarts as Q.

Protocol AC All replicas receive measurements and perform computations. Before
sending setpoints to the actuators, the replicas agree on which replica sends the
setpoints for this label (which is equivalent to agreeing on which setpoint is sent), by

86

5.6. Performance Evaluation

using a consensus protocol. We choose the widely used Fast Paxos [161] protocol for
consensus, as it is optimized for low latency and guarantees consistency. This is an
example of an active-replication-based agreement protocol that ensures consistency
by agreement on the setpoints, as opposed to agreement on the measurements, as
done by Quarts.

Protocol PC This is a passive-replication scheme, in which only the primary replica
sends setpoints to the actuators. In PC, the standbys are cold, i.e., only the primary
replica receives measurements and computes setpoints. After each computation, the
primary replica sends heartbeats to the standbys, the absence of which is used to
detect the failure of the primary replica. The heartbeats also serve as a mechanism
for the synchronization of the state of the standbys with that of the primary replica.
When the primary replica is detected as faulty, the standbys elect a leader among
themselves by using Fast Paxos to hold a consensus. As the cold standbys do not
receive measurements, the newly elected primary replica can only begin computing
setpoints for next label.

Protocol PH This agreement protocol is the same as protocol PC, except that the
standbys in protocol PH are hot, i.e., they receive measurements and compute set-
points but do not send them to the actuators. As a result, when a new primary replica
is elected after the failure of the existing primary replica, it can issue setpoints for the
current label and does not have to wait for the reception of measurements of the next
label.

PC and PH are expected to have latency lower and availability higher than the
active-replication scheme AC, as the replicas do not hold consensus for every label.
For this reason, passive replication is the traditional choice of agreement protocol for
CPSs and is included in our evaluation.

5.6.3 Simulation Methodology

We consider a CPS for the control of electric grids that uses a Kalman-filter based con-
troller [176]. In this CPS, the PAs send measurements every 7' = 20 ms. As mentioned
in Section 5.3, the network is considered to be probabilistic synchronous [58], in which
packets are dropped with a probability p, and are otherwise received within a delay
bounded by §,, = 0.5 ms. We simulate this using a Bernoulli random variable with
success probability 1 — p. The detailed fault model is described below.

87

Chapter 5. Quick Agreement among Replicated CPS Controllers

Fault Model

The controller replicas are considered to have independent faults that consist of both
crashes and delays. Crash faults are fail-stop, causing a replica to be faulty indefinitely
until it is externally recovered. Delay faults are intermittent, i.e., a delay-faulty replica
might turn non-faulty after the duration of the computation that was delayed.

To simulate the bursty behavior of faults, we incorporate delays in the Gilbert-Elliot
model [177] as follows. Each replica could be in one of two states: normal state (N) or
crashed state (C), independent of other replicas. As shown in Figure 5.2, the transition
probabilities from N to C'and C'to N are g¢ and gy, respectively. In state IV, the replica
is faulty (its delay exceeds a threshold 7) with a probability p;, which simulates delay
faults. The computation delay of a replica is drawn from an exponential distribution
with a mean p such that P(delay > 7) = p,, where 7 is the threshold for a non-faulty
replica computation. The replica is considered unavailable if its delay is such that it
fails to send the setpoint before new measurements arrive.

qc

Normal (N) Crashed (C)
P(fault) = p, P(fault) = 1

qN

Figure 5.2 — Gilbert-Elliot model for simulating delay and crash faults

In state C, the replica is faulty with probability 1, thereby simulating crash faults.
The transition from state C' to state N signifies a repair after crash faults. The parame-
ters (o, qn, 1) of the model are evaluated from the desired probability of crash faults
(6.), probability of delay faults (6;), MTTR from crash faults (R), and delay threshold
(7) of the CPS as follows. First, we note that the MTTR is the mean time before a replica
exits state C. Thus, we have

R= 1/CIN
= gqv=1/R (5.1)

Then, to compute 6., we evaluate the stationary probabilities of states N and C, 7y
and 7¢, respectively

Ty = qnN
qc + qnN

o= €
qc + qnN

88

5.6. Performance Evaluation

mc is the total time spent by a controller replica in state C'. As the replica is faulty with
a probability 1 in state C', we obtain

0. =mc x1
gzqic
" go+an
0
_ 2
= qc R(1—6,) (5.2)

Similarly, we obtain p,; using the stationary probability of state NV as follows

04
Pd = —
TN

0a
1-6,

Moreover, p, is also the probability that the replica takes more than the delay threshold
(1) to compute a setpoint when its delay follows an exponential distribution with mean
1/p. Thus, we also have

pa =P(Exp[l/u] > 1)
— e /K
In(pq)

— p=-—2 (5.3)

The parameters 0, 6. and R are varied across different scenarios and 7 is taken as
constant with value 8 ms for the CPS. When the computation delay of the replica is
greater than the length of the control round 7, the replica is considered unavailable for
the setpoint of the corresponding label. Lastly, in protocols PC and PH, the timeout
after which a primary replica is detected as faulty is taken as 7, so as to allow the
primary replica sufficient time to send heartbeats to the standbys. Moreover, it leaves
the standys with 12 ms, i.e., 12 RTTs, to elect a new primary replica.

Quality of the Estimation

We use the relative accuracy (5) of an estimate (&) of a probability (either unavailability
of inconsistency) at a confidence level 1 — a as the measure of the quality of the
estimate. Specifically, a 1 — « confidence interval of & has a length of 7 times the
standard deviation of &, where 7 is obtained from the relation Ny ;(n) = 1 — /2. Then,

cisgivenbyc = V 5:(1;55)/ U \/}?j, where R is the number of rounds. Therefore, we
obtain g = \/%. To obtain a relative accuracy of 10% with a 95% confidence level, we

obtain 5 = 10% and n = 1.96.

89

Chapter 5. Quick Agreement among Replicated CPS Controllers

We run each simulation until the relative accuracy of the estimate is less than 10%
at a 95% confidence level. In other words, the 95% confidence interval of the estimated
value has a half width, from the central value, less than 5%. Hence, all our results can
be interpreted with the 95% confidence interval as [0.952, 1.05%].

5.6.4 Results

We simulated the 4 protocols (Q, AC, PC, PH) for several scenarios with 2 values of m
(10 and 100), 5 values for each of ¢ (1 through 5), 3 different fault models, and 10 values
of p (between 10~ and 0.05). Our simulation platform was a high-throughput cluster
with 278 nodes; and the simulation campaign lasted a total of 10 days. We consider the
following to be the nominal parameters of the CPS: g = 2, m = 10, p = 1073, 6, = 1074,
;=102 R=1s,6, = 05ms, 7= 8ms,and T = 20 ms. Henceforth, unless
specified otherwise, this is the set of parameters used.

Besides presenting results as a function of varying p and ¢, we also present results
from five characteristic scenarios. Scenario #1 is the nominal scenario as mentioned
above. Scenario #2 has m = 100 instead of m = 10 and shows the affect of number of
PAs. Scenario #3 has a more relaxed fault model than the nominal scenario. Scenarios
#4 and #5 have only crash faults and no delay faults. Moreover, Scenario #5 has g = 3
and shows the performance with 3 replicas in the absence of delay faults.

102 = > =
10° | —e Q
x— AC
_ v PH
B . &4 PC
|_|< 10° L | | |
= 1 2 3 4 5
ey Number of Replicas (g)
E
©
© 107
o e Q v PH
C
> »— AC &4 PC
103 |
10° L
1 1

1
10* 1073 107
Network Loss Probability (p)

Figure 5.3 — Unavailability with varying g and varying p. Unavailability of Quarts (Q)
with more than 3 replica is less than 4 x 1010

Figure 5.3 shows the unavailability (1 — V) for varying g and varying p. Tables 5.1,
5.2, 5.4 and 5.3 show the detailed simulation results for the chosen scenarios.

90

5.6. Performance Evaluation

Finding 5.1. Quarts provides availability higher than that of AC, PC and PH, while
maintaining 100% consistency.

Unavailability (1 — V)
Scenario: (m, g, 0., 64) Q \ AC \ PH \ PC
#1: (10, 2, 1074, 1073) [9.12x107° | 1.24x1073 | 9.87x10~* | 1.02x10~3
#2: (100, 2, 1074, 1073) || 1.46x10~% | 1.19x1073 | 9.76x10~* | 1.03x10~3
#3: (10, 2, 107°, 107%) | 1.02x107° | 9.98x10~* | 1.01x1073 | 9.96x10~*
#4: (10, 2, 1074,0) 8.14x107° | 1.37x1073 | 1.01x1073 | 1.02x1073
#5: (10, 3, 1074,0) 2.25x107% | 1.01x1073 | 1.01x1073 | 9.92x10~*

Table 5.1 — Unavailability results for the chosen scenarios

We simulate the protocols for g = [1, 5]. The first plot of Figure 5.3 shows that the
unavailability (1 - ¥) of Quarts is more than an order of magnitude lower than that
of other protocols with 2 replicas, and 4 orders of magnitude lower with 3 replicas.
Additionally, for more than 3 replicas, Quarts showed no unavailability in 10'° runs (~ 3
days of simulation). Simulating such extremely rare events requires more sophisticated
techniques such as Importance Sampling and Palm Calculus [178] and is left for future
work.

Inconsistency (1 —I')
Scenario: (m, g, 0., 04 PH \ PC
#1: (10, 2, 1074, 1079) 1.92x10°% 1.28x1073
#2: (100, 2, 1074, 1073) 1.68x1073 1.50x1073
#3: (10, 2, 107°, 107%) 2.40x107° 1.38x107*
#4: (10, 2, 107%,0) (0,4 x 10719* | (0,4 x 10~ 19
#5: (10, 3, 107%,0) (0,4 x 10719* | (0,4 x 10~ 19

Table 5.2 — Inconsistency results for the chosen scenarios. Inconsistency of A and AC is
zero. * No inconsistency was observed in 10'° runs

In order to put the availability improvement with Quarts into perspective, we ana-
lyze the MTTF [72] of the CPS, where a failure is defined as the inability of controllers
to reach agreement hence not issue setpoints. For the CPS under study that sends
setpoints every 20 ms, for ¢ = 1, an availability of 0.9987 translates to an MTTF of 18.2
s. Using two replicas, the protocols AC, PC and PH can increase the MTTF to 18.4 s,
19.6 s and 19.9 s, respectively. By comparison, the MTTF with Quarts is 5 minutes. Fur-
thermore, the MTTF with 3 replicas for protocols AC, PC, PH and Q is 19.7 s, 19.2 s, 19.9
s, and 4.54 days. As seen above, the existing protocols show marginal improvement in
availability with each additional replica, whereas Quarts enjoys a significant increase.

The second plot of Figure 5.3 confirms Finding 5.1 for different values of p. We see

91

Chapter 5. Quick Agreement among Replicated CPS Controllers

that, even at extremely high-values of p = 0.02, Quarts has ¥ = 0.9991; whereas this
value drops down to 0.98 for other protocols. This finding is further re-affirmed by the
results of the scenarios shown in Table 5.1.

The availability improvement of Quarts comes without any consistency penalty.
We find that the consistency of Quarts and AC is 1. However, the consistency guarantee
of AC comes at the cost of low availability, compared to Quarts. In contrast, PC and PH
have an inconsistency between 10~° and 10~ in the presence of delay faults, for the
scenarios considered, as seen in Table 5.2. In the absence of delay faults, the probability
of inconsistency for PC and PH could not be captured by our simulations in 10'° runs
hence can be considered small. For these scenarios, however, their availability is still
lower than that of Quarts.

Latency in ms (A, d,99)
Scenario: (m, g, 6., 64) Q \ AC \ PH \ PC
#1: (10, 2, 10 %, 10-%) | (0.96,3.08) | (4.28, 8.78) | (1.40, 5.59) | (1.41, 5.59)
#2: (100, 2, 10-%, 10-°) | (0.98,3.11) | (4.27,8.78) | (1.40, 5.58) | (1.41, 5.59)
#3: (10, 2, 105, 10°) | (0.82, 2.42) | (391, 8.09) | (1.12, 4.26) | (1.12, 4.26)
#4: (10, 2, 1074, 0) (0.39,0.78) | (3.52,4.18) | (0.25,0.5) | (0.25,0.5)
#5: (10, 3, 10 %, 0) (0.50, 0.84) | (3.50,4.15) | (0.25,0.49) | (0.25, 0.5)

Table 5.3 — Mean and 99*" percentile of latency for select scenarios

Finding 5.2. Quarts has a lower average-latency and tail-latency than other consistency-
guaranteeing protocols.

or Q PC
ab _ PH AC
<
2k
s Lol ol i - -
£ #1 #2 #3 #4 #5
g Scenarios
[}
C
ot
5 9F —
Q PC
6l PH AC
ugé
1 H H H
0 1 [
#1 #2 #3 #4 #5
Scenarios

Figure 5.4 — Mean and 99" percentile of latency in different scenarios
Table 5.3 and Figure 5.4 show that the mean latency of Quarts is less than that of

92

5.6. Performance Evaluation

AC with a factor of 4. PC and PH have a comparable mean that comes at the expense
of consistency. Quarts has a better mean latency than AC, as it does not perform
consensus in each cycle. Furthermore, in Quarts, when a replica is up-to-date, i.e., has
all the measurements and the state label » — 1, it can enter the voting phase without
waiting for the collection timer (24,,) to expire. In the meantime, it continues to listen
for queries and sends responses to other replicas.

We also see in Table 5.3 and Figure 5.4 that the tail-latency of Quarts is lower than
that of other protocols in the presence of delay faults, and comparable to that of PC
and PH in the absence of delay faults. Such low tail-latency is due to the bounded
latency-overhead of Quarts as shown by Theorem 5.5.3.

Finding 5.3. Guaranteeing consistency comes at the marginal expense of a higher mes-
saging cost.

Messaging cost in messages/label (2, wyg9)
Scenario: (m, g, 0., 0q) Q | AC | PH | PC

#1: (10, 2, 1074, 1073) | (4.04,6) | (5.17,6) | (3.87,8) | (3.00, 3)
#2: (100, 2, 1074, 1073) | (4.38,6) | (5.17,6) | (3.87,8) | (3.00,3)
#3: (10, 2, 107, 107%) | (4.04,6) | (5.10,6) | (3.74,7) | (3.00,3)
#4: (10, 2, 107%,0) (4.04,6) | (5.02,5) | (3.50,4) | (3.01,3)
#5: (10, 3, 107%,0) (9.18,15) | (9.02,9) | (6.67,8) | (5.01,5)

Table 5.4 — Mean and 99'" percentile of messaging cost for select scenarios

Sl Q mm PH
_ [AC PC L
5 6 —
o S
© - - -
g 1 |
()}
(0]
7 0
] #1 #2 #3 #4 #5
£ Scenarios
]
S
15
_g’ [Q | PH
()]
3 qo|lmm AC PC
g 2 -
3
A i Bd nd
#1 #2 #3 #4 #5

Scenarios

Figure 5.5 — Mean and 99" percentile of messaging cost in different scenarios

The mean messaging cost of Quarts and AC is marginally higher than that of PC
and PH and increases with the number of replicas. This is due to the collection phase

93

Chapter 5. Quick Agreement among Replicated CPS Controllers

in Quarts and the consensus employed by AC, for every setpoint. Such an exchange of
messages is the price to pay for achieving consistency. Table 5.4 and Figure 5.5 show
the mean and 99" percentile of the messaging cost. We see that the messaging cost
of Quarts is comparable to that of the other consistency-guaranteeing protocol (AC),
thereby reaffirming Finding 5.3.

5.7 Quarts+: Incorporating Asynchronous Sensors

Quarts provides consistency for CPS with one or more controller replicas, one or more
PAs and no sensors that directly communicate with the controllers. However, CPSs
often use asynchronous sensors that asynchronously record the state of the process and
send it to the controller in the form of out-of-band advertisements. The measurements
sent by PAs are considered in-band because they are sent in response to the setpoints
issued by controller replicas.

Figure 5.6 shows the architecture of such a CPS. Examples of asynchronous sensors
include PMUs (in the COMMELEC CPS) that periodically sense the voltage and current
at different points in the grid [53], temperature and pressure sensors in manufacturing
plants, etc. As the controller uses these out-of-band advertisements in the computa-
tion of setpoints, in addition to using measurements from PAs, Quarts’ agreement on
measurements alone no longer ensures consistency. Consequently, in order to con-
tinue providing consistency with the addition of asynchronous sensors, the replicas
also need to agree on advertisements. To this end, we propose Quarts+: it builds upon
Quarts, to provide the same consistency guarantees for a wider range of CPSs.

Controller

setpoints setpoints

measurements measurements

‘ Process Agent ‘adverti ements‘ Process Agent

‘ActuatorH Sensor | | Sensors | ‘ ActuatorH Sensor ‘

Controlled Resource Controlled Resource

v i Y i

Controlled Process

Figure 5.6 — Architecture of a CPS with PAs and asynchronous sensors that directly
communicate with the controller

The central issue is that Quarts requires that all inputs share the logical label,
such as Lamport clocks [85] or intentionality clocks. Logical clocks require a two-way

94

5.7. Quarts+: Incorporating Asynchronous Sensors

communication between agents. As asynchronous sensors do not communicate with
the PAs, nor does the controller send messages to asynchronous sensors, they cannot
use logical clocks. Instead asynchronous sensors use timestamped advertisements.
Hence, Quarts cannot be directly applied to CPSs that include them.

Consider an example in which two controller replicas, C; and C5, reach the same
round at different time instances and receive advertisements, a; and a5, from the
same asynchronous sensor, respectively. In order for the controllers to agree on which
advertisement to use, they cannot use Quarts hence must resort to general consen-
sus. In other words, in the absence of unified labeling schemes for all messages,
namely measurements, setpoints and advertisements, the problem is to reconcile
differences between the labeling scheme used by controllers and PAs, and the one used
by asynchronous sensors. It is impossible to guarantee such a reconciliation within a
bounded-delay [88]. In Section 5.7.1, we further detail this problem.

We observe that for asynchronous sensors with a known minimal inter-arrival
time of the events (A), consensus can be circumvented. We specify this and other
requirements on the CPS in Section 5.7.2. Using these properties, we extend Quarts to
guarantee consistency within bounded-delay for CPSs with both PAs and asynchronous
sensors. The new design (Quarts+) adds a bounded latency-overhead of 1 RTT to the
Quarts protocol. Moreover, for a vast majority of the cycles, the added latency-overhead
is 0, thereby enabling Quarts+ to benefit from the low latency and high availability
enjoyed by Quarts. We present the design of Quarts+ in Section 5.7.3, and prove its
consistency and bounded-latency guarantees in Section 5.7.4.

Lastly, in Section 5.7.5, we use discrete-event simulation to compare the availability,
consistency, and latency of Quarts+ with Quarts and other state-of-the-art agreement
schemes that were also used for evaluation of Quarts in Section 5.6.

5.7.1 Challenge with Asynchronous Sensors

The design of a deterministic voting function and the existence of a full_digest
hinges on the ability of each controller replica to form a digest. As noted earlier, Quarts
is able to do so because in each round, each PA sends exactly one measurement.
Moreover, measurements in the same round are assigned the same label by using
intentionality clocks. In order to create a digest with ones and zeros, a controller
can simply answer the question “Did I receive a measurement from PA i in round [?”.
However, a controller replica cannot answer the same question for advertisements
from asynchronous sensors.

This is because asynchronous sensors do not follow the same labeling scheme as
the PAs, nor do they follow a consistent labeling scheme among themselves. For ex-
ample, an event-driven sensor timestamps the advertisements when the event occurs,

95

Chapter 5. Quick Agreement among Replicated CPS Controllers

independently from the advertisements on other sensors. Additionally, asynchronous
sensors do not follow the same rounds as the PAs. For instance, in COMMELEC [4], the
computation round takes about 100 ms on average, whereas the asynchronous sensors
send advertisements periodically every 20 ms. Thus, on average, there are five adver-
tisements per one measurement. Furthermore, consistently choosing one of these
five advertisements in a round is another consensus problem, faced with the same
impossibility of bounded-time convergence limitations as mentioned earlier [88].

Therefore, with the introduction of asynchronous sensors, Quarts can no longer
form a digest and cannot vote on a digest to provide a consistent set of inputs (advertise-
ments and measurements) to be used for computation by the controller replicas. This
is the challenge in realizing low-latency agreement in the presence of asynchronous
sensors. To address this challenge, we require certain properties from the CPS, as
mentioned below.

5.7.2 CPS Requirements for Quarts+

In addition to the properties of a CPS required by Quarts, mentioned in Section 5.3,
we also assume that all agents (controllers, PAs and sensors) are time-synchronized
either by using GPS-based technique [179] or network protocols such as NTP [165] or
PTP [164].

The asynchronous sensors regularly measure the state of the process and send
out-of-band advertisements to the controllers. These advertisements are timestamped
at the time of measuring. We assume a lower bound on the minimum interval, between
two measuring events at a sensor ¢, is known and given by A;; and we assume that the
granularity of the timestamps is such that no two advertisements from the same sensor
have the same timestamp. In many cases, the sensors are quasi-periodic with a small
jitter [40]. In cases where the sensor is strictly periodic, A; is equal to its period. We also
assume that measurements from PAs are also timestamped at the time of measuring.
As aresult, if a PA sends the same measurement to two different controllers, then both
the copies have the same timestamp.

Note that, based on these assumptions, the losses of advertisements caused by net-
work losses or sensor delays are part of the model. Retransmissions are also permitted
by the model. However, a sensor that hangs then wakes up and sends two consecutive
different advertisements with timestamps less than A; apart is not considered.

With the addition of asynchronous sensors, the compute function of the controller,
described in Chapter 3 and used for Quarts in Algorithm 5.2, is adapted to include
advertisements, as follows. Each computation takes as input at most one measurement
from each PA and at most one advertisement from each sensor, then it produces as
output exactly one setpoint for each PA. Note that the difference is that advertisements

96

5.7. Quarts+: Incorporating Asynchronous Sensors

were not used in the compute function earlier.

5.7.3 Quarts+ Design

CPS controllers that use Quarts+ first perform Quarts to agree on the measurements
from the PAs. Additionally, in order to overcome the problems with Quarts and asyn-
chronous sensors discussed in Section 5.7.1, Quarts+ adds the following mechanisms
so that controller replicas can create a digest for voting, from their advertisements and
measurements. Note that this digest is functionally the same as the one used in Quarts
but contains information about advertisements, in addition to the information about
measurements contained in the one used by Quarts.

The only change required at the sensors and PAs is that they timestamp their outgo-
ing measurements and advertisements, as described in Section 5.7.2. The timestamps
are communicated to the controller replicas along with the measurements and adver-
tisements. Next, the controller replicas perform agreement on measurements by using
Quarts, as described in Section 5.4. As a result, a replica that successfully completes
the voting phase for a round will produce a chosen digest D of measurements and their
timestamps. Then, the successful replicas use a deterministic function (F) to obtain
a timestamp 7)) from the chosen digest D and the timestamps of the measurements
therein.

Next, each controller replica uses T and A; to choose at most one advertisement
from every asynchronous sensor i. If two controllers choose an advertisement from
a sensor, then the mechanism guarantees that they choose the same advertisement.
Then, to form a digest, the controllers use both the measurements voted upon by
Quarts and the locally chosen advertisements. Each controller exchanges its digest
with other controllers, and they all vote on the input vectors to choose the set of inputs
(both measurements and advertisements) to be used in the computation of setpoints
in this round.

Quarts+ is designed such that successful choosing of advertisements from all sen-
sors results in a full_digest. Therefore, similar to Quarts, in a CPS with two controller
replicas, if a controller replica has the full_digest (of both measurements and ad-
vertisements), it skips both the collection and voting phases and incurs zero latency-
overhead. The resulting model of a controller with the Quarts+ agreement mechanism
is described in Algorithm 5.7. The parts in red represent the modifications made to the
controller by Quarts+.

Note that, at line 15, we use the function quarts that is a wrapper around the
collect_and_vote function described in Algorithm 5.3. Similar to collect_and_vote,
the function quarts receives as input the vector of received measurements Z and the
round number r. Then, if the voting was successful, it performs the collection phase

97

Chapter 5. Quick Agreement among Replicated CPS Controllers

and voting phase of Quarts and returns success_quarts, along with the chosen digest
and the vector of chosen measurements.

Algorithm 5.7: Controller model with Quarts+ (parts in red)

17 <0 /1 highest label of measurements received

2 7+ []; /I vector of measurements with label r

3Y « 0 /1 list of timestamped advertisements

4 V<[] /1 vector of inputs to be used for computation
5 A < [Ay, ..., A\,]; // lower bounds of inter-arrival time of sensors
6

7 repeat

8 Z,r < aggregate_received_measurements(r);

9 Y < aggregate_received_advertisements();
10 forever;
11
12 repeat

13 success « False;
14 if» > r~ then

15 success_quarts, D, Z < quarts(Z,r);

16 if success_quarts then

17 Ty «+ F(D, Z);

18 success, V < agree_on_advertisements(D, Y, r, Ty, A);
19 end

20 end

21 decision < ready_to_compute(V,r);
22 if success and decision then

23 X ¢ compute(V);
24 issue(X,7);

25 end

26 forever;

In lines 8 and 9, the controller collects measurements and advertisements, respec-
tively. Lines 15-25 constitute the computation performed by a controller. A new round
of computation begins when the controller receives measurements with a label higher
than what it has seen before. This triggers Quarts in line 15, which is followed by the
mechanism introduced by Quarts+: agree_on_advertisements in line 18. If the agree-
ment is successful, the chosen vector of inputs V is used for the actual computation of
setpoints in line 23.

Obtaining 7; from Measurements

The collect_and_vote function of Quarts returns a unique digest D for a label r, within
a bounded delay 56,,. If a replica is successful in choosing D, then it has chosen the
same subset of measurements as all other replicas in that round. In line 17 of Algorithm

98

5.7. Quarts+: Incorporating Asynchronous Sensors

5.7, each replica then uses a predefined deterministic function F, such as max or min,
to obtain the timestamp 7j from the set of measurements in the chosen digest D. For
instance, if ¥ = max and D = 10110 for label » = 5, then the T} corresponding to label
5 is max(¢3,t3,t3), where ¢! is the timestamp of the measurement from PA i in round r.
As the function F is same on all replicas, and so is the chosen digest D, this approach
guarantees that all the replicas that choose 7T} in a particular round, choose the same
Tp, without additional latency overhead.

Obtaining Consistent Advertisements from 7

After T) is obtained, line 18 of Algorithm 5.7 is triggered, which in turn calls Algorithm
5.8. The first part of Algorithm 5.8 (lines 2-6) creates a digest for advertisements. Each
replica locally decides if it has a particular advertisement from each sensor. To this
end, in line 3, each replica uses the function has_recent_advertisement for each of
the asynchronous sensors.

Algorithm 5.8: agree_on_advertisements(D,Y,r, Ty, A)

1 MH +— 0; /1 digest of advertisements
2 for each asynchronous sensori do

3 if has_recent_advertisement (Y, Ty, A;) then

4 | MIi] « 1;

5 end

6 end

7

8 Send M to all replicas;

9 Vote on received digests to choose M’ using Algorithm 5.6;
10

11 if M is a subset of M then

12 V <~ measurements(D);
13 V.append(advertisements(M’);

14 return true, V; /1 success
15 else

16 | return false; /1 failure
17 end

The function has_recent_advertisement is as described in Algorithm 5.9. First, it
sub-samples, the advertisements from some sensor 7 from the list of all advertisements
Y, then it stores them in the list Y;. Then, to check for the two conditions C; and O,
the controller replica uses 7Ty, along with the lower bound on the inter-arrival time
between advertisements from that sensor (A;). Condition C; checks if the controller
replica has received an advertisement from that sensor with timestamp in the interval
[To,To + A;). Then, in condition Cs, the controller replica checks the same in the
interval [Ty, 7" + 2A;), where T is the timestamp of the last received advertisement

99

Chapter 5. Quick Agreement among Replicated CPS Controllers

from that sensor before 7.

Algorithm 5.9: has_recent_advertisement (Y, Tp, A;)

Y, < all advertisement from sensor i;
C1: Jadvertisement y € Y; such that y.t > Ty and y.t < Ty + A;;
T’ + highest timestamp of advertisement in Y; less than 7p;
Cy: Jadvertisement y € Y; such that y.t > Ty and y.t < T’ + 2A;;
if C1 or Cy holds then
| return True;
else
| return False;
end

© NG WDN =

It is guaranteed that at most one advertisement lies in the union of the two intervals
[T, To+A;) and [Ty, T +2A;), considered by conditions C and Cs, respectively. Hence,
if either condition holds, the replica can choose the advertisement with a timestamp
in this interval, and any replica that does so will choose the same advertisement. This
is due to the lower-bound on the inter-arrival time, A;, and is the subject of Theorem
5.7.1.

In other words, no two controller replicas choose a different advertisement for the
same sensor in the same round. In this way, by restricting the choice of advertisement
from each sensor in the same round, Quarts+ enables controller replicas to answer the
question that Quarts cannot answer in the presence of asynchronous sensors in Section
5.7.1, i.e., “Did I receive an advertisement from sensor 7 in round [?”. Consequently,
the controller replicas can now form a digest for advertisements M; this digest is then
voted upon by using the function vote used in Quarts in Algorithm 5.6.

Upon successful voting, in lines 11-15 of Algorithm 5.8, the controller uses the
chosen digest of measurements (D) and the chosen digest of advertisements (M) to
choose from the corresponding measurements and advertisements. These measure-
ments and advertisements are added to the input vector for computation V and sent
to the ready_to_compute function of the controller at line 21 in Algorithm 5.7, thus
marking the end of the Quarts+ mechanism. Note that from line 22 of Algorithm
5.7, the controller can compute and issue setpoints in a round, but only if Quarts+
completes successfully in that round. In this way, the availability of the controller is
traded-off for a guaranteed consistency. In Section 5.7.5., we evaluate the availability
performance of Quarts+ and compare it with that of other agreement mechanisms.

5.7.4 Formal Guarantees

Quarts+ guarantees consistency and it trades-off availability in order to maintain a
bounded latency-overhead, thus satisfying the low-latency requirement of real-time

100

5.7. Quarts+: Incorporating Asynchronous Sensors

CPSs. In this section, we formally prove the consistency and bounded latency-overhead
guarantees of Quarts+ for CPSs that follow the system model described in Section 5.7.2.

Theorem 5.7.1 (Quarts+ Consistency). A CPS that satisfies the model in Section 5.7.2
and implements Quarts+ (Algorithm 5.7) guarantees consistency in the presence of any
number of delay- or crash-faulty controller replicas, and of any number of asynchronous
sensors.

Proof. As aresult of Lemma 5.5.5, it is sufficient that computation consistency holds
in order for consistency to be guaranteed

From Algorithm 5.7, we see that the computed setpoints depend entirely on the input
vector V of measurements and advertisements (line 15)

We also see that the decision to compute depends on the boolean success returned by
the function agree_on_advertisements (line 12) and the function ready_to_compute
(line 13)

However, as the ready_to_compute depends only on V and r, it suffices to show that,
for every round r, replicas that receive a success flag set to true have the same V

First, in line 10, collect_and_vote returns the voted upon digest D and the chosen
vector of measurements Z

From Theorem 5.5.1, D and Z are guaranteed to be the same across all replicas that
successfully voted

Else, from Algorithm 5.7 lines 16 and 13, we see that the controller will not compute in
this round

Second, in line 11, (D, Z) is called

As this function is defined to be deterministic, and since D and Z are the same across
all replicas, the returned 7y is also the same across all replicas

Therefore, in line 12, we pass to agree_on_advertisements the same D, r, Ty and A,
and a possibly different Y.

We now look at Algorithm 5.8. In line 9, we perform the deterministic voting function
presented in Algorithm 5.6, and in lines 11-17, we return success only if the voted-upon
digest of measurements and advertisements is a subset of the present inputs at the
controller replica.

These two deterministic functions guarantee that V would be the same across all
replicas, as long as the digests are formed correctly, i.e., that a replica sets its i* bit to 1
if and only if it has the i measurement corresponding to a given round.

However, as advertisements do not belong to a round, then we must ensure that if two
replicas set their i*” bit to 1 in round r, then both replicas have the same advertisement
from sensor i.

101

Chapter 5. Quick Agreement among Replicated CPS Controllers

This is achieved by the has_recent_advertisement function that takes as input Y, 7,
and A;; Tp, and A; begin the same across replicas.

This function performs the following operation (Algorithm 5.9).

Let 7" be the highest timestamp less than 7j of a measurement in Y received from
sensor i (lines 1, 3).

It returns true if and only if there exists a measurement from sensor ¢ with timestamp t
such that ¢ € [Ty, max(Ty + A, T" + 2A;)).

Given that the interval is composed of deterministic linear operations on variables of
common value across replicas, the problem is reduced to showing that at most one
measurement exists with a timestamp in this interval.

We will prove this by contradiction.

Lett,to €I = [Tg, maX(To + Ay, T + 2[\1‘)), such that t; < t».

We have, t; > Tpand t5 > ¢ + A;.

Thus, to > Ty + A;.

Moreover, as t; is the first arrival after 7", t; > T" + A;.

Thus, to, > T + 2% A; Hence, ty > HlaX(TO + Ai, T + 2% Az) O

Next, we prove the bounded latency-overhead of Quarts+.

Theorem 5.7.2 (Bounded Latency-Overhead). When a non-faulty replica of a CPS
following the model in Section 5.7.2 and using Quarts+ (Algorithm 5.7) issues a setpoint,
its latency overhead is bounded by 69,,.

Proof. From 5.5.3,we have that when a non-faulty replica of a CPS using Quarts issues
a setpoint, its latency overhead is bounded by 54,,.

Quarts+ first consists of calling Quarts, thus incurring an upper bound of 54,, latency
overhead.

Then, Quarts+ performs local computations that require negligible computation time
(in the order of nano seconds), compared to network transmission (in the millisec-
onds).

Finally, Quarts+ performs an extra round of voting on the measurements digests (Algo-
rithm 2 line 9).

This terminates after ¢,, as described in the Algorithm 5.6.

Hence, the latency overhead is bounded by 54,, + 6,, = 60,,. O

102

5.7. Quarts+: Incorporating Asynchronous Sensors

5.7.5 Performance Evaluation

We use discrete-event simulation to evaluate the availability (Definition 5.2), latency
(Definition 5.3) of Quarts+ (referred to as Q+). We compare these results with those of
Quarts (referred to as Q), and other agreement protocols used in Section 5.6, namely
active replication using Fast Paxos [161] consensus algorithm (referred to as AC) and
passive replication using cold standbys (referred to as PC). We also show that Quarts has
non-zero inconsistency (Definition 3.5), thereby underpinning the need for Quarts+.
We do not report on the messaging cost of Quarts+, as this is similar to that of Quarts.

We use the same fault-model as described in Section 5.6.3, with the following
parameters: probability of delay faults 6, probability of crash faults 6., and the MTTR
from crash faults R.

Recall from Section 5.6.3 that the factors of the simulation that depend on the
CPS are (i) the number of replica g, (ii) the number of PAs m, (iii) the communication
loss probability p, (iv) the upper-bound on one-way network latency 6, (v) threshold
for non-faulty computation 7, and (vi) the cycle time of the CPS T'. In addition to
these, we also have the number of asynchronous sensors n and the inter-arrival time
between advertisements received from the same asynchronous sensor modeled as
an exponential distribution with mean 1/ shifted by A. The probability density
function of the inter-arrival time between two consecutive measurements from the
same asynchronous sensor is given by:

7(z—A)
e n , x> A

1
flasp, A) = # ,
0 , otherwise

We use the COMMELEC CPS for real-time control of electric grids [4] as it consists
of both PAs and asynchronous sensors. In COMMELEC, the cycle time 7" is 100 ms and
the asynchronous sensors are PMUSs that send measurements at least 20 ms apart, thus
A =20ms.

We varied the aforementioned parameters with n = {5,25}, m = {5, 10,50, 100},
g=1{2,3},q={10"41073}, 04 = {1074,1073,0}, 6. = {1075, 1074}, u = {21, 22, 25, 30}
and four protocols. This results in a total of 3000+ simulations that were performed on
a high-throughput cluster with 278 nodes, each simulation running either until the
95% confidence interval of the estimated value has a half width, from the central value,
less than 5% or a maximum of 10'° runs. Hence, all our results can be interpreted with
the 95% confidence interval as [0.95%, 1.052], where z is the reported estimate. Due to
space restrictions, we show results from a few representative scenarios. We use, unless
otherwise specified, n = 5,m = 5, g = 2,7 = 100 ms, y; = 21 ms, A; = 20ms, p = 1073,
6, =0.5ms,0; =1073,0, =10"* R=5s.

103

Chapter 5. Quick Agreement among Replicated CPS Controllers

-1
~ 10
|
Z 10-3
>
o
C
L 10
@
"
5 s —&— m=100 —— m=10
1071 % m=50 —e— m=5

22 24 26 28 30
U [in ms]

Figure 5.7 — Inconsistency of Quarts with 2 replicas as a function of y for different
values of m

Results

First, we study the inconsistency of Quarts to show the need for agreement on the
measurements from asynchronous sensors. Figure 5.7 shows the inconsistency of
Quarts as a function of x for different number of sensors. We see that the inconsistency
of Quarts increases with more asynchronous sensors and ranges between 10~2 to 10~%
for 5 sensors and 10~! to 107 for 100 sensors. As 1 increases, the measurements
become less frequent, resulting in lower inconsistency.

As inconsistency increases with the number of sensors, so does the need for the
extra agreement mechanism added by Quarts+. This incurs an additional availability
penalty that ranges from 1-5x for 5 sensors and 5-18x for 100 sensors. Specifically, the
average availability of Q+ for n = 5 for different values of y is 1.2 x 10~% and for same
for Qis 2.5 x 107°. At n = 100, these values are 2.4 x 10~* and 1.4 x 1073, respectively.
Hence, we conclude the following.

Finding 5.4. The inconsistency of Q increases with the number of asynchronous sensors.
The price to pay to avoid this higher inconsistency with Q+ is a larger availability
reduction, compared with Q.

Next, we compare the availability and latency of Q+ with other protocols by using
six characteristic scenarios, similar to those used for evaluation of Quarts in Section
5.6. The results for availability and average latency are as shown in Tables 5.5 and 5.6,
respectively. Scenario #1 is the basic setup we have been using, as described in Section
5.6.3. Scenario #2 shows the impact of more controller replicas. Scenario #3 shows the
impact of lower network loss rate. Scenario #4 shows the impact of lower delay fault
probability. Scenarios #4 and #5 are for crash-only faults.

Finding 5.5. Availability of Q+ is lower than that of Q but higher than AC and PC.

Except for in Scenario #3, we see that the availability of Q+ is almost an order
of a magnitude higher than that of AC and PC. In Scenario #3, the availability of Q+

104

5.7. Quarts+: Incorporating Asynchronous Sensors

Unavailability (1 —)

Scenario: (g, p, 6., 64) Q+ \ Q \ AC \ PC

#1: (2, 1073, 1074, 107%) || 9.9 x 107° 4.8 x 107 1.1x1072 | 9.8 x 1074
#2:(3,1073,107%,1073) || 4.62 x 1077 | (0,4 x 10~ 1°]* | 9.37 x 10=* [1.03 x 1073
#3:(2, 1071, 1074, 1073) || 1.18 x 107* | 335 x 1077 | 1.73 x 10~* | 9.92 x 10~°
#4: (2, 1073, 107%,0) 1.63x107% [1.60x107° [1.10x 1073 | 9.80 x 10~*
#5: (3, 1073, 107%,0) 3.33x 1077 | (0,4 x 10719]* [9.93 x 107% | 9.79 x 10~

Table 5.5 — Unavailability results for the chosen scenarios. * No event in 10'° runs

is comparable to that of PC, as PC performs very well when the network losses are
extremely low. However, it is worth noting that the inconsistency of PC in Scenario
#3is 1.3 x 103 due to false-positives in fault-detection and the presence of multiple
primary replicas, thus making it is unsafe for use.

In Scenario #4, we see that in the absence of delay faults, PC has no inconsistency
and has only 6x lower availability when compared to Q+. This good performance of PC
is attributed to the design of PC being tailored for crash-only faults. However, as only
the primary controller replica is involved in the control, PC fails to reap the full benefits
of additional replicas, as seen by the availability in Scenarios #2 and #5. Furthermore,
Q+ also has a significant increase in availability when compared to AC, with each
additional replica. This is similar to Q as found in Section 5.6, where agreement on
input was shown to reap maximum benefits from replication.

Finding 5.6. Average latency of Q+ is close to that of Q and significantly lower than that
of other consistency guaranteeing protocol AC.

Average Latency (A)
Scenario: (g, p, 0., 0q) Q+ | Q | AC | PC
#1: (2, 1073, 1074, 1073) || 0.245 | 0.243 | 3.517 | 0.249
#2: (3, 1073, 1074, 1073) || 0.455 | 0.306 | 3.502 | 0.249
#3: (2, 1074, 1074, 1073) || 0.242 | 0.242 | 3.504 | 0.250
#4: (2, 1073, 107%,0) 0.169 | 0.167 | 3.515 | 0.250
#5: (3, 1073, 1074,0) 0.401 | 0.259 | 3.500 | 0.250

Table 5.6 — Latency results for the chosen scenarios

Similarly as in Q, the replicas in Q+ do not need to communicate in each round to
reach agreement. A replica only performs agreement when it does not have the full
digest for inputs. This results in a low average latency of Q+ because, in the majority
of the cases, the replicas compute and issue setpoints with zero latency overhead; as
opposed to AC where the replicas require consensus in each round. The tail latency of
Quarts+ is bounded and is similar to that of Quarts with an extra latency of §,,.

105

Chapter 5. Quick Agreement among Replicated CPS Controllers

5.8 Conclusion

We considered the problem of agreement between replicated controllers in real-time
CPSs. We explained the need for agreement as a requirement for ensuring consis-
tency among the setpoints issued by controllers. We showed that failure to ensure
consistency can result in incorrect control of the underlying physical process by the
controller. The problem of agreement is particularly relevant when the controller
replicas are susceptible to delay faults (in addition to the usual crash faults) and the
CPS uses a reliable communication network that can drop, delay, or reorder messages.

We presented Quarts, an agreement protocol for CPSs among actively replicated
controllers. Quarts is designed and formally proven to guarantee consistency with a
bounded latency-overhead in a CPS with only PAs and no asynchronous sensors. To
continue providing the same guarantees in the presence of asynchronous sensors, we
presented an extension to Quarts, named Quarts+. We performed extensive perfor-
mance evaluation of both Quarts and Quarts+, and compared their performance with
that of existing agreement protocols using discrete-event simulation under different
conditions of number of replicas, network losses, fault profiles, etc. We showed that
besides guaranteeing consistency, the newly proposed mechanisms improve the avail-
ability of a CPS by more than an order of magnitude, when compared with existing
agreement protocols. Moreover, Quarts and Quarts+ also improve the tail-latency
performance of the CPS. These benefits come at a marginal increase in messaging cost
when compared to passive replication schemes.

As a result of Quarts and Quarts+ reliability mechanisms, we have a CPS that also
guarantees the the last of the desired correctness properties defined in Section 3.7, i.e.,
consistency, in addition to state safety and optimal selection provided by intentionality
clocks in Chapter 4. Together, these three properties imply linearizability, i.e., one-
copy equivalence. Therefore, we can implement active replication schemes with low
latency-overhead such that they do not alter the control behavior of a reliable, non-
replicated controller. In Chapter 6, we use these mechanisms to design Axo, a delay and
crash fault-tolerance architecture for CPSs; it provides high-availability while ensuring
correct control behavior. We also implement these mechanisms and demonstrate the
importance of consistency in the context of COMMELEC, a CPS for control of electric
grids. Moreover, we also apply these reliability mechanisms to SDN; these mechanisms
have similar characteristics and requirements as CPSs. To this end, we design QCL that
uses Quarts for agreement among replicated SDN controllers, and we show that it can
reduce the latency in installation of routing updates in a communication network by
several order of magnitude when compared to consensus-based approaches.

106

Axo: Tolerating Delay and Crash
Faults in Real-Time CPSs

The highest result of education is tolerance.
— Helen Keller

A software fault is the inability of software to perform its required function. A
fault in the central controller of a CPS can result in a failure, i.e., the controller failing
to maintain the underlying physical process in the desired state. As noted in the
earlier chapters, replication of the unreliable components (controllers) is used to avoid
such failures, despite faults. The ability of a CPS to continue performing the desired
control of the physical process despite faults in some of its components is called
fault tolerance. There are three main elements to fault tolerance: fault masking, fault
detection, and fault recovery. The reliability mechanisms described in Chapters 4 and
5, namely intentionality clocks and Quarts, cannot provide fault tolerance on their
own, as they are not helpful in the masking, detection or recovery from faults. However,
they enabled us to design Axo!, a delay and crash fault-tolerance scheme that uses
active replication of the central controller, introduced in this chapter.

The central idea of active replication is that by having enough replicas of the con-
troller, there will always be at least one non-faulty replica available to issue setpoints
to the PAs. In active replication, it is essential to ensure that the issued setpoints are
identical to those that would have been issued by a single non-faulty controller. This
property is called linearizability or one-copy equivalence and requires that the fault-
tolerance scheme ensure that all events in the CPS are correctly ordered (as done by
intentionality clocks in Chapter 4) and that the issued setpoints ensure consistency (as
guaranteed by Quarts and Quarts+ in Chapter 5). Although linearizability is a necessary
correctness criteria for a fault-tolerance scheme, it is not sufficient. For instance, in a
CPS with three replicated controllers, if the faulty controllers are unchecked, then over
time, all three of the controllers could turn faulty and none of the replicas would then

'Named after Axolotl, a species of salamander found around Mexico: it is extensively used in scientific
research due to its ability to quickly regenerate limbs.

107

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

be available to issue setpoints. Thus, the faulty replicas need to be quickly detected
and recovered.

In addition to fault detection and fault recovery, as the state of the physical process
in the CPS evolves with time, all measurements and setpoints have a validity horizon
or an expiry time associated with them. For example, in a CPS for control of electric
grids, let a controller receive measurements generated at ¢, form all the resources. The
controller issues, based on the the snapshot of the grid at ¢(, a setpoint to the battery
instructing it to inject more power into the grid. Let the setpoint be received at the
battery at time ¢; > ¢, such that the line connecting the battery to the grid at time ¢, is
congested. It might be unsafe for the battery to inject more power into this line as this
could result in breakage of the line. This characteristic of CPSs, where the same setpoint
is valid at one time and invalid later on, is captured by the timeliness correctness
property, which is orthogonal to the state safety, optimal selection and consistency
correctness properties discussed earlier. We begin this chapter by formalizing the
timeliness property and describing the challenges associated with ensuring timeliness
in a CPS designed using COTS components that are susceptible to delay and crash
faults.

Then, in Section 6.2, we review the related work on providing delay and crash
fault-tolerance. This is followed by the design of Axo in Section 6.3. The Axo design
comprises two libraries: the controller library and the PA library. These libraries are
agnostic to the logic of the CPS controller and the PAs, and they are designed such
that they can be easily integrated with an existing CPS. We demonstrate this through
an open-source implementation of Axo that is described in Section 6.4. Using this
implementation, we also study the latency overhead due to Axo. In Section 6.5, we
prove the fault-tolerance properties of Axo. Specifically, we prove that Axo guarantees
timeliness with minimal reduction in availability. Additionally, we derive bounds on
the time Axo takes to detect and recover from crash and delay faults, and we validate
these bounds through experiments with the Axo implementation.

Lastly, we consolidate the other reliability mechanisms, (intentionality clocks,
Quarts and Quarts+) with Axo to obtain an implementation of full-tolerance proto-
col that guarantees both linearizability and timeliness, therefore enabling real-time
CPSs to operate correctly despite delay- and crash-faulty controllers and unreliable
communication. We study, through two deployments with different CPS, the impact of
fault-tolerance on the control performance of CPSs. The CPSs used are:

e The COMMELEC CPS for real-time control of electric grids (Section 6.6)

¢ An inverted pendulum controlled by an LQR controller (Section 6.7)

Our concluding remarks are presented in Section 6.8.

108

6.1. Timeliness in a CPS - Definitions and Challenges

6.1 Timeliness in a CPS - Definitions and Challenges

In order to formalize timeliness, we first introduce conception time and validity horizon.
The conception time ¢. for a setpoint is defined as the time instant at which the
controller begins processing the measurements used for computing this setpoint.
This time is the instant at which the controller finishes reconstructing the perceived
state of the physical process, using the measurements received from the PAs and
advertisements from the sensors. The perceived state is used for computation of the
subsequent setpoints. Thus ¢. is the time instant at which the perceived state of the
physical process by the controller is closest to the actual state.

Recall that we assume a controller can only be crash or delay faulty, and not Byzan-
tine faulty. Therefore, as the controller deems this state to be usable for computation
(using the ready_to_compute function of Algorithm 3.1) before actually starting to com-
pute the setpoints, the setpoints computed using this state cannot steer the physical
process into an infeasible state, if they are implemented at ..

However, as the actual state of the physical process evolves with time and the
perceived state at the controller is constant, these computed setpoints would only be
valid for some time. This is called the validity horizon of the setpoints. For instance,
in the COMMELEC [4] CPS, the measurements sent by the PAs are usually valid for
few tens of milliseconds, as they include a short-term prediction of the state of the
electric resource. In the case of a PV, this prediction indicates the power that the PV
can inject in the next few milliseconds, based on the short-term prediction of the
solar irradiance at that time instant. The quality of this prediction degrades with time,
therefore, reducing the quality of the perceived state of the grid reconstructed using
that measurement. Hence, if the setpoints computed using this measurement were to
be implemented at a time when the solar irradiance is much different, thereby causing
the PV to inject a much higher or lower power, then they could drive the grid into an
infeasible state. Therefore, we define a valid setpoint as follows.

Definition 6.1 (Valid Setpoint). A setpoint is valid, if and only if, at the time of reception
(t;) ata PA, t, < t.+ 7,, wheret. is the conception time of this setpoint and 7, is the
validity horizon. Else, it is invalid.

Note that, as each setpoint is sent to exactly one PA, each setpoint has a well-
defined time of reception, hence, a well-defined valid or invalid status. Moreover,
the setpoints sent to different PAs resulting from the same computation have the
same conception time, but possibly different times of reception. Thus, we define the
timeliness correctness property for one PA as follows.

Definition 6.2 (Timeliness). Timeliness is said to hold for a PA P, if and only if all
setpoints received by P are valid.

109

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

In order to ensure timeliness, the software agents (controllers and PAs) in the
CPS need to accurately measure t. and t,. However, in the presence of delay faults,
an accurate measure cannot be obtained due to the non-zero execution time of the
measuring function calls. Thus, the software agents can only obtain estimates ¢} and
t¥, respectively. These estimates should be obtained such that they do not violate
timeliness. For example, if ¢, < ¢¥, then the setpoints could be accepted until ¢} + 7, >
t. + 7., thereby possibly violating timeliness. Alternatively, if ¢, > ¢%, valid setpoints
could be incorrectly discarded. Axo’s approach to solving this issue and the associated
assumptions are presented in Section 6.3.

In addition to correctly accepting and discarding setpoints, faulty controller replicas
must be detected and recovered (repaired by rebooting). We define a faulty controller
as follows.

Definition 6.3 (Faulty Controller). A controller C is faulty at timet, if all the setpoints
whose conception time equals the latest conception time at or beforet are invalid.

As seen from Definition 6.3, a controller can be faulty for some time and then
issue a setpoint that is valid at a PA, whereby it stops being faulty without any external
intervention. This highlights the intermittence of delay faults that makes them difficult
to be detected. Crash faults are a special case of delay faults with the duration of the
fault being infinite, i.e., the controller replica continues to remain faulty until repaired.

Crash faults are typically detected by probing mechanisms such as heartbeat [107].
This approach is inutile for delay faults as they are an end-to-end phenomena, with
the two ends being the controller and the PA. A faulty replica can correctly send
the heartbeat while incurring a delay in the computation, thereby fooling the failure
detector and remaining undetected. To address this issue, we introduce a feedback
mechanism, in the form of validity reports, from the PAs to the controller replicas, as
described in Section 6.3.

A single computation can result in several setpoints, some of which are received
at their respective PAs within the validity horizon and others are not. In this case,
the controller replicas receive several conflicting validity reports. Additionally, as the
communication network can drop, delay or reorder messages, controller replicas can
lose some validity reports or receive old validity reports. The challenge then is to
efficiently aggregate and reconcile recent validity reports to decide whether a replica is
faulty.

Lastly, as delay faults are transient, it is non-trivial to decide when to regard a replica
as faulty. For instance, if a replica is delay faulty for only one computation, it could be
superfluous to detect as faulty because rebooting it would be more disadvantageous
than letting that replica to continue running. Alternatively, if each delay-faulty replica
is left undetected for long time, then all the replicas might be faulty at a later time,

110

6.2. Related Work

thereby resulting in loss of control by the CPS.

6.2 Related Work

To the best of our knowledge, Axo is the first scheme that addresses delay-fault toler-
ance for CPSs that use COTS-based hardware and software components.

In the literature, delay faults for real-time systems have been studied under the
name of timing faults [132,180, 181, 182]. The scheme closest to Axo is the work done
by Verissimo and Casimiro on TCB [132]. They propose the TCB architecture and
an associated programming model that dictates how to encapsulate and rewrite the
time-critical functions of real-time CPSs in the TCB module. The TCB module is a hard
real-time component designed such that every function has a bounded WCET. This
approach is not applicable to the upcoming COTS-based CPSs that are characterized
by their large code-base that consists of third-party libraries and generally complex
functions, for which it is not feasible to rewrite and implement in the TCB. Moreover,
several components of the TCB architecture require an implementation specific to
each CPS, whereas Axo is a layer of software that can be used on any CPS that satisfies
the assumptions (Section 6.3.1) and requires only minor additions to the CPS controller
software. This enables the deployment of Axo on existing CPSs. We demonstrate this
by deploying Axo on two different CPSs.

Another approach to delay-fault tolerance is the timing-failure detection under
the TTA that also relies on bounding the WCETs of the different function calls. This
requires the static analysis of generally complex functions that might include COTS
software. Additionally, we have also seen that in some CPSs such as COMMELEC [4],
the execution time heavily depends on the parameters provided at run time. This
would require further dynamic analysis of the execution time, a task that does not fit
within the real-time constraints of CPSs. Moreover, TTA requires a priori knowledge
of all time instants at which a controller or a PA sends and receives messages in a
round [183]. This is a much stronger requirement than TCB and cannot be applied to
COTS-based CPSs.

Other work [180] in this field has focused on improving the QoS and response time
of the systems. The authors focus on transaction systems as opposed to CPSs, and do
not aim at providing hard real-time constraints, as Axo does.

Active replication protocols, such as [76,100, 113, 114], use multiple replicas, all of
which simultaneously compute setpoints. When one of the replicas is delay faulty, it
can still send a setpoint at some time after its validity horizon. The implementation
of such a setpoint violates the timeliness property hence jeopardizes the control of
the process done by other correct controller replicas. To discard such setpoints and

111

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

provide timeliness in the presence of delay faults, Axo uses active replication with
an added mechanism. Active replication techniques rely on replica determinism (or
linearizability) for correct control [184]. We use Quarts and intentionality clocks to
provide replica determinism.

To detect inconsistencies [86], mechanisms for fault detection rely on monitoring
the replica, such as using heartbeats [99], or on probing the replica for its current state.
Such mechanisms target crash-only faults and cannot be extended to delay faults that
are inherently an end-to-end property. Replicas themselves do not contain any state to
indicate whether or not they are delay faulty, hence probing or monitoring the replicas
will not provide insight for delay-fault detection. Our solution makes use of the PAs in
order to correctly detect delay faults.

Another method for to detecting faults is through the detailed modeling of the
controller under faulty and non-faulty conditions [125, 185]. The trained models are
then used to classify a replica as faulty during run-time. Such methods are prone to
modeling errors and are limited to CPSs that have constant workloads, making them
unsuitable for generic CPSs where the workload of the controller is not known a priori.

6.3 Axo

We first describe the assumption on the controller and PAs required by Axo in Section
6.3.1, followed by the design of Axo in Section 6.3.2.

6.3.1 Assumptions

We assume that the software agents in the CPS, namely the controller replicas and the
PAs, are time-synchronized. As CPSs perform real-time operations on distributed
nodes, they naturally have a global notion of time either obtained by GPS [179]
or network protocols such as NTP [165] or PTP [164]. The inaccuracy of the time-
synchronization protocol is upper-bounded and the bound (¢;) is known to Axo.

We also assume that there exists a known validity horizon 7, for each setpoint. Axo
requires 7, as input in order to perform fault masking and fault detection.

We consider the same controller model, as in the previous chapters (introduced
in Algorithm 3.1). In order to have linearizability, Axo requires that the controllers
implement intentionality clocks (Chapter 4) for the ordering of events, and Quarts and
Quarts+ (Chapter 5) for consistency. The resulting design of the control is augmented
with a new mechanism to provide timeliness, as described in Section 6.3.2. The con-
troller is assumed to be susceptible to crash or delay faults. Byzantine faults [119] that
result in malicious setpoints are not considered.

112

6.3. Axo

The PAs are assumed to be non delay-faulty. Unlike the central controller, the PAs
are not single-points of failure of the CPS. When a PA fails, one controlled resource is
affected but not the entire physical process. Moreover, the functions implemented by
PAs are often simpler than the those implemented by the controller. Thus, they are less
susceptible to delay faults.

As in previous chapters, we assume a probabilistic synchronous network [58] that
can drop, delay, reorder or retransmit messages.

6.3.2 Design
Overview

Axo uses the active replication of the central controller with 2¢g + 1 replicas to tolerate g
crash and delay faulty replicas. In the special case of ¢ = 1, Axo only requires g + 1 = 2
replicas. This is because fault masking, fault detection and fault recovery in Axo can
be performed with g + 1 replicas, but the agreement mechanism (Quarts) generally
requires 2g + 1 replicas, except in the case of g = 1.

Each controller is assigned a unique replica ID that serves as an identifier for
all ensuing Axo-related message exchanges. Each controller independently receives
measurements and advertisements, performs agreement on the measurements by
using Quarts, performs agreement on advertisements using Quarts+, computes and
issues setpoints. In order to ensure timeliness, Axo needs to discard invalid setpoints
at the PA. To this end, it performs timestamping of outgoing setpoints at a controller.
The code of the controller is instrumented to obtain an estimate (¢}) of the conception
time and to send this estimate to Axo. At the controller, Axo attaches the received
timestamp to the outgoing setpoint. At the PA, the setpoint is accepted or discarded
based on its validity. All these operations are done transparently with respect to the
controller and the PAs. For this, Axo uses one library at the controller replica and one
at the PA namely, the controller library and the PA library (as shown in Figure 6.1).

The controller library comprises three components: the tagger, the detector and
rebooter. The PA library consists of the masker. Together, the tagger and masker
achieve fault-masking, i.e., discard invalid setpoints. The tagger receives ¢ from the
controller. It also intercepts all outgoing setpoints at a controller replica and appends
each setpoint with the last received timestamp ¢}. Additionally, the tagger creates
the Axo header that contains other information regarding the state of this replica.
This includes the health of the replica (h), a score that indicates the recent latency
performance of the replica and that is used to decide if the replica is delay faulty
(see Section 6 for more details). The health is constantly updated using its current
value and the validity of new setpoints. Thus, a newly added replica, or a replica that
lost some messages, can seamlessly synchronize with its peers and reconstruct the

113

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

0] 1

| Controller PA A4
¢ ‘1’ Controller Library | : PA Library

T A T
1 1 \ 1
1 1 \ 1

Timestamp }(t.* !
}

1 Setpoint

Setpoint 4

3 Setpoint NAxo Header

Masker

2 Replica
Information Detector

yi
EXT_DET 6/

Rebooter

5 Validity Report

6 INT D

EXT_REC

Figure 6.1 — Axo design

latest state of the all other replicas in the CPS. In this way, Axo exploits the inherent
communication between PAs and the controller replicas in a CPS to maintain the
the detection mechanism soft-state [169]. The setpoint, along with the Axo header,
containing the information required for fault-masking and recreating the original
setpoint, is sent to the masker on the corresponding PA.

At the masker, the setpoint is accepted or discarded based on the time of reception,
the validity horizon and ¢}. Then, the masker sends a validity report to all the controller
replicas, indicating whether the received setpoint was valid or not. This enables them
to decide whether the controller replica that sent the setpoint is non-faulty or not. If
the setpoint is valid, the masker reconstructs the original setpoint and forwards it to
the PA that receives and implements it as if it were sent directly by a controller.

The detector on each replica processes the received validity reports to update its
health and that of other replicas, in order to detect a crash- or delay-faulty replica.
When areplica C; is detected as faulty by another replica C}, the detector on C; informs
its rebooter to recover replica C; by rebooting it. As noted in earlier works on software
faults [124, 128, 186], simply rebooting a machine resets the state of the operating
system and the software stack, thereby making it non-faulty.

Next, we described the fault-masking, fault-detection and fault-recovery mecha-
nisms in detail.

114

6.3. Axo

Fault Masking: Tagger and Masker

Algorithm 6.1: Controller model with all the reliability mechanisms namely
intentionality clocks, Quarts, Quarts+ and Axo. The parts in red show the modifi-
cations to the controller made by Axo

17«0 /1 highest label of measurements received
2 7« 0 /| vector of measurements with label r
3Y « 0 /1 list of timestamped advertisements
4V« 0 /1 vector of inputs to be used for computation
5 A [A1, ..., \n]; /1 Tower bounds of inter-arrival time of sensors
6
7 repeat
8 Z,r < aggregate_received_measurements(r);
9 Y < aggregate_received_advertisements();

10 forever;

11

12 repeat

13 success «+ False;

14 if » > r~ then

15 success_quarts, D, Z < quarts(Z,);

16 if success_quarts then

17 Ty < F(D,Z);

18 success, V < agree_on_advertisements(D,Y,r, Ty, A);

19 end

20 end

21 tr <+ Thow;

22 decision < ready_to_compute(V,r, Tyow);

23 if success and decision then

24 send ¢! to the tagger ;

25 X < compute(V);

26 issue(X,r);

27 end

28 forever;

Fault masking is achieved by the tagger and the masker, using the controller to

obtain an estimate ¢} of the conception time of a setpoint ¢.. To explain this mechanism,
we present the consolidated model of the controller in Algorithm 6.1. It comprises
all the reliability mechanisms introduced in this thesis, namely intentionality clocks,
Quarts, Quarts+ and Axo. The label r is obtained using intentionality clocks. Lines
13-18 represent Quarts and Quarts+. The newly added lines in red (lines 21 and 24) are
due to Axo and will be the focus of our attention.

The purpose of the extra lines added to the controller by Axo is to obtain an estimate

t: such that t; < ¢, (to ensure timeliness) and that ¢ is as close as possible to ¢. to
minimize reduction in availability, as discussed in Section 6.1. The increased expres-

115

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

siveness of our controller model due to the ready_to_compute function enables us to
obtain such an estimate. As the controller deems the perceived state of the process
sufficient to compute setpoints at Algorithm 6.1 line 22, it is therefore the conception
time of the subsequent setpoints. As the controller is susceptible to delay faults, it
might incur a large delay in the ready_to_compute function. So, we measure ¢ at line
21. The recorded timestamp is sent to the tagger at line 24.

Algorithm 6.2: Tagger

11«0
2 for each message received do
3 if message is timestamp then
| Update t};
else if message is setpoint SP then
\ Prepend Axo header and send SP to the masker of the PA;
else if message is from detector then
| Update t;and h;
end
10 end

© NS G s

The tagger is as described in Algorithm 6.2. For each setpoint, it receives the
timestamp ¢} from the controller and intercepts setpoints on their way to the PA. Then
it uses the ¢} to create the 20-byte Axo header that comprises

e Replica ID (1 byte)

¢ Destination port of the original setpoint (2 bytes)

e Setpoint timestamp: estimate of the conception time of this setpoint ¢} (8 bytes)

e Detector timestamp: computed as the last time at which its detector processed a
validity report ¢4 (8 bytes)

e The health of the replica h (1 byte)

The last two fields of the Axo header are obtained from the detector. These values
are regularly updated every time the detector processes a validity report received from
the PAs (Algorithm 6.2 line 8). The tagger prepends the Axo header to the setpoint and
sends it to the masker.

Algorithm 6.3: Masker
1 for each setpoint received do

2 if 7),,, <t:+ 7 then

3 \ Remove Axo header and send setpoint to PA;
4 end

5 Send validity report to detectors of controllers;
6 end

The design of the masker is given by Algorithm 6.3. For each received setpoint, the
masker records the time of reception. Then, it compares the ¢} in the Axo header of the

116

6.3. Axo

received setpoint with 7, where 7 is a conservative measure of the validity horizon. It
is computed using the upper-bound on the inaccuracy of the time-synchronization
(05) and the upper-bound on the computation time at the masker between performing
the validity check (line 2) and sending the setpoint to the PA (line 3). 7 is given by
To — (205 + 0p,). As proven in Theorem 6.5.1, this approach guarantees timeliness.

If the setpoint is valid, the masker removes the Axo header, modifies the destination
port of the message using the destination port in the Axo header, and forwards the
setpoint to the PA. It also uses the other fields in the Axo header to create and send a
validity report to all controller replicas. A validity report VR consists of the following
five fields, first four of which are same as found in the Axo header:

e timestamp ¢} of the setpoint (VR.ts)

e Replica ID (VR.id)

e The health of the replica (VR.h)

e Detector timestamp of the issuing replica (VR.td)

¢ A flag indicating if the setpoint was valid at the time of reception (VR.v)

Fault Detection: Detector

The design of the detector is given by Algorithm 6.4. It consists of five main blocks:
initialization (line 1), the aggregation of validity reports (lines 5-15 and 38-41), update
of the detector timestamp (lines 18-19), delay-fault detection (lines 21-25), and crash-
fault detection (lines 28-34).

The detector on each replica maintains a database DB with one record for each
replica, including itself. We denote each record in the database by db. The record db
for areplica with ID id is obtained as db = DBJid] and contains the following fields:

e Setpoint timestamp: the highest ¢} in all the validity reports processed for that
replica (db.ts)

e Detector timestamp: the highest received detector timestamp (db.td)

e The health of that replica with ID id, as seen by current replica (db.h)

e Non-faulty flag: A flag showing if the replica was non-faulty in the last validity
report (db.n f)

When the detector boots, it initializes the record in the database with its own ID
(line 1) as follows. The setpoint timestamp (t¢s) and the detector timestamp (td) are set
to the current time. The heath field for a healthy replica is set to its maximum value
H,,q- The non-faulty flag (n f) field is set to true as the replica is considered non-faulty
at boot.

The detection mechanism is triggered at a replica, when it receives a validity report
(VR). The first part of the detection mechanism is the aggregation of validity reports
(lines 5-15 and 38-41). As validity reports can be delayed, lost, retransmitted, or

117

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

reordered, aggregating them efficiently is tricky. To efficiently aggregate the reports,
we identify each report with its setpoint time VR.ts. As all the reports from a single
computation have the same conception time, the validity reports resulting from all
the PAs corresponding to this computation have the same ¢s. Alternatively, we could
also use the label of the setpoint obtained from the intentionality clock. When a new
validity report is received, the database for this record is updated according to the
function updateDB given by Algorithm 6.5.

In updateDB function, the setpoint timestamp db.ts and the detector timestamp
db.td of the database record for the replica in the validity report are set to the respective
values in the validity report. This indicates that the replica in the validity report was
active at VR.ts and that its detector was active at VR.td, thereby other replicas are not
to mark it as crash faulty. Then, the health of the replica is updated using exponential
averaging with a parameter «, and penalty — H,,,, when the replica was faulty, or a
bonus + H,,,, when the replica was non-faulty. The exponential averaging serves three
purposes:

(1) It smoothens out the health and dampens the effect of outliers, thus preventing
short and transient delay faults from resulting in costly rebooting.

(2) It captures the recent history of replica, thus a marking a replica that has a high
frequency of delay faults, as faulty.

(3) It keeps the health between — H,,,, and + H,,,., thereby preventing overflow.

By using exponential averaging, Axo marks a replica as delay faulty based on the
frequency of delay faults rather than the presence or absence of the faults. The value
a (0 < a < 1) represents the weight given to the historical performance of the replica
and the instantaneous frequency of delay faults that is deemed as faulty by the CPS.
The last operation in the updateDB function is to set the non-faulty flag of the controller
replica to the value of the valid flag present in the current validity report. Notice that
we update the health, based on the previous value of the non-faulty flag. This is done
to avoid penalizing a replica in the cases when some of the PAs receive invalid setpoints
and others receive valid setpoints. Recall from Section 6.1 that a replica must not be
detected as faulty if only some of the PAs receive invalid setpoints for a given label. To
this end, the detector performs a logical OR of the VR.v flags received in reports with
the same setpoint timestamp (lines 38-41). Thus, if at least one of the PA receives a valid
setpoint in a round from the controller replica, the controller is deemed non-faulty. As
the replica needs to be deemed non-faulty even if the last validity report returns with
the valid flag set to true, we delay the update of health until the next validity report
for this setpoint. This adds extra latency in the detection of a faulty replica, which is a
small price to pay to avoid costly rebooting of non-faulty replicas.

After processing the report and updating the database, the detector timestamp
of the replica is updated at Algorithm 6.4 lines 18. Then, the detector timestamp
and the health of this replica are sent to the tagger; they are then sent to the PAs in

118

6.3. Axo

subsequent Axo headers, and in turn echoed in the validity reports. In this way, newly
added replicas can learn about the existing replicas, the last time they were active, and
their health score; thereby making detection soft state [169]. When a validity report
corresponding to a replica that is already present in the database is received (lines
14—15), the health in the database is updated to the minimum of the existing health
and the received health. Thus, replicas do not overestimate the health of other replicas,
hence a truly faulty replica is quickly detected.

Once the reports have been aggregated and the tagger has been informed of the
new database information, the detector can perform the actual fault-detection. A
replica is detected as delay faulty (lines 21-25) when its health in the database falls
below a threshold. For a replica to be detected as delay faulty by its own detector, the
threshold H;,, is used; whereas detecting other replicas makes use of the threshold
H.,. < H;,. This enables a replica to be detected by its own detector, before it is
detected by others. This is particularly useful, as the routine for internal recovery; is
quicker than that for external recovery as described in the section on fault recovery.

The parameter « and the two thresholds for health, H;,; and H.,;, can be varied to
trade-off speed of detection for tolerance of transient delay-faults. A higher « gives less
weight to the penalty term causing slower detection, and vice versa. On the contrary,
a higher H;,; or H.,; reduces the number of invalid setpoints permitted by a replica
before being deemed faulty, causing faster detection.

For crash-fault tolerance, we use the parameter 7. that is the time of relative inac-
tivity of a software agent after which it is considered crash faulty. Thus, if a replica is
stalled for longer than 7, it is deemed faulty. In Axo, we compare the inactivity of a
replica with that of its peers, instead of using a constant time of inactivity to detect
a crash fault. This is particular useful in CPSs with a non-constant rate of issuing
of setpoints, where waiting for a constant time of inactivity of a replica can result in
incorrect fault-detection. For each replica in its database, the detector compares the
value of ts with the maximum of all ¢s’s. If the difference is greater than 7., then that
replica is deemed crash faulty. In this way, a replica is only considered to be crash
faulty if it has been inactive for a period of 7. while other replicas have been active. A
similar check is done for td’s, to detect detector crashes.

Fault Recovery: Rebooter

The design of the rebooter is given by Algorithm 6.6. The rebooter reacts to two types
of detection messages from its local detector, namely internal detection message
(INT_DET) and external detection message EXT_DET. To communicate with other re-
booters in order to perform remote recovery, the rebooter uses the external recovery
request message (EXT_REC) and ACK messages. The messages from the detector to the

119

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

rebooter (INT_DET and EXT_DET) are timestamped with the setpoint timestamp present
in the validity report that caused the detection event.

When a replica C; detects another replica C; as faulty, by using Algorithm 6.4, the
detector on C; sends an EXT_DET to its local rebooter. This triggers the rebooter on
C; to initiate recovery of the faulty replica C; by sending external recovery requests
(EXT_REC) as seen in Algorithm 6.6 lines 8-17. In order to confirm that C; has indeed
rebooted due to this detection event, C; waits for an ACK message for a time 7, after
sending the EXT_REC. In order to maximize the chances of successful recovery, in the
presence of network losses, C; repeats this process until the ACK is received, with a
maximum of maxSend number of tries, as configured. Furthermore, when C; accepts
the reboot request from C}, it sends an ACK with a timestamp ¢ + 7;.p00¢ to all controller
replicas, where 7,..500¢ iS @ parameters that dictates the minimum interval between
consecutive reboots. When a replica that is currently performing external recovery of
C; receives an ACK with a timestamp larger than that of the detection event, it marks
C; are recovered and stops the recovery protocol.

The threshold 7, is also used to minimize superfluous reboots in the presence
of message losses: for example, in a case when C; and C}, both detect C; as faulty, butin
different rounds. This can happen due to network losses causing some validity reports
being lost at C;, thus making C; and C}, have different timestamps of detection events.
As a result, they will send EXT_REC messages with different timestamps, triggering
different reboots. This is avoided by using 7;cpoot-

Alternatively, when a replica detects itself as faulty, it sends an INT_DET to its re-
booter. When a rebooter receives an INT_DET with a timestamp higher than the last
time that the replica rebooted, the replica is immediately rebooted. In contrast to
external recovery, internal recovery does not incur any latency or messaging overhead.
Therefore, it is preferred over external recovery. Hence, the threshold for external
recovery (H.,.) is chosen to be less than that for internal recovery (H,).

In order to avoid multiple reboots from the same detection event, the rebooter
stores the last time it rebooted (LastReboot) in a persistent storage (such as disk) and
reads it at the time of initialization.

Given that the rebooter needs to respond to remote reboot requests, it needs to
be non-susceptible to crash faults. Else, the replica cannot be recovered, as it is not
possible to remotely reboot an unresponsive machine. In our analysis, we assume that
the part of the rebooter that handles external recovery requests is non crash-faulty. In
our implementation, we achieve this by using a simple heartbeat mechanism on the
detector that monitors the rebooter and that re-instantiates it in case of faults.

120

6.3. Axo

Algorithm 6.4: Detector

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

initialize DB[myID];
for each report VR received do

end

if VR.id ¢ DB or VR..ts > DB[VR.id].ts then

/1 New report

if VR.id ¢ DB then

/1 New replica

create DB[VR.id];

DB[VR.id].ts + VR.ts;

DB[VR.id].td < VR.td;

DB[VR.id].nf < VR.y;

DB[VR.id].h < Hpaz;

else

/1 Existing replica

DB[VR.id].h < min(VR.h, DB[VR.id].h);

updateDB(DB[VR.id|,VR);

end

// Update and send detector timestamp to the tagger

DB [myID].td < max(DB.ts);

Send DB|myID|.h, DB[myID].td to tagger;

/1 Delay fault detection

if VR.id # myIDand DB[VR.id|.h < H.,; then
EXT_DET(DB[VR.id].ts,VR.id);
delete DB[VR.id];

elseif DB[myID|.h < H;,; then

| INT_DET(DB[myID].ts);

end

/1 Crash fault detection

for each id in DB do

if id = myID then
| INT_DET(max(DB.ts));

else
EXT_DET(max(DB.ts), id);
delete DBJid] ;

end

end

end

Iseif VR.ts = DB[VR.id].ts then

/1 Possibly new report from a different PA

DB[VR.id|.nf + DB[VR.id].nf vV VR.v;

end

if max(DB.ts) — DBJid].ts > 7. or max(DB.td) — DB[id].td > 7. then

121

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

Algorithm 6.5: updateDB(db,VR): Function to update detector database

db.ts «— VR.ts;
db.td «— VR.td;
if db.nf then

| db.h« o xdb.h+ (1 — @) X Hpags
else

| db.h« o xdb.h— (1 — @) X Hpags
end
db.nf + VR.v;

[=-JNEN RS B

Algorithm 6.6: Rebooter

1 lastReboot < loadLastReboot();
2 for each message received do
3 if message is INT_DET (t) then
4 if t > lastReboot + Trepoor then
5 saveLastReboot (t) ;
6 reboot the replica;
7 end
8 else if message is EXT_DET(t;, ID) then
9 sentCtr + 0;
10 while sentCtr < maxSend do
11 send EXT_REC(t1) to replica ID;
12 sentCtr++;
13 listen for T, ;
14 if (ACcK (ty) received) and (to > t1) then
15 | break;
16 end
17 end
18 else if message is EXT_REC(t) then
19 if t > lastReboot + Trepoor then
20 send ACK(t + T,epoot) to all replicas;
21 savelLastReboot (t);
22 reboot the replica;
23 else
24 | send ACK(1astReboot + Tyehoor);
25 end
26 end
27 end

122

6.4. Implementation

6.4 Implementation

We developed an open-source proof-of-concept implementation of Axo in C++2. In
order to demonstrate how Axo can be easily integrated with an existing CPS, we de-
signed an API in C++ that can be used to instrument a CPS controller to measure ¢
and send it to the tagger, as described in Algorithm 6.1.

The API provides two functions for recording t?, (get _timestamp_ptp and get_timestamp_gps)
and one function (send_timestamp) to send it to the tagger in the desired format. We
make a distinction between the CPSs that use PTP- or GPS-based time-synchronization
because PTP-based time-synchronization has a much lower clock-update rate, when
compared to GPS. This can result in a time-synchronization inaccuracy of 65 ~ 5 ms.
Thus, in order to be able to mask delays in the range of milliseconds with PTP-based
time-synchronization, we use the offset of the slave clock from the master clock to
correct the timestamp, by using the function get_offset. This function is called period-
ically with a period T}, ¢ 4.+ (default 1 s). This approach lowers the time-synchronization
inaccuracy to d; ~ 100 us. The three functions need to be inserted in the controller at
the appropriate locations, as required by Algorithm 6.1. Besides these modifications to
the controller using the Axo AP], the installation of Axo is plug-and-play. It requires
no more information about the inner workings of the controller or the PAs, hence is
agnostic to the CPS.

In order to characterize the latency overhead due to the Axo API, we profiled its
function calls on the NI cRIO-9068 industrial computer that is commonly used for in-
field deployments of CPSs. The average time spent in the get_timestamp_gps function
is Agps = 14.26 us, and the time spent in the send_timestamp function is Ag.,q =
33.18 us. The time spent in the get_timestamp_ptp function, however, depends on the
period (T} fse¢) with which the get_offset function is called. The get_offset function
takes about 194 ;s on average. Thus, the average time taken by the get_timestamp_ptp
function (A,,) is in the range [194 us, 209 ps]. Therefore, the latency-overhead due
to the Axo API when the CPS uses GPS is Ay, + Ageng = 46.44 ps and, the latency-
overhead when the CPS uses PTP is in the range [227.18 us, 242.18 pus].

To achieve a plug-and-play design, the tagger needs to intercept setpoints sent from
the controller to the PAs. To this end, we use the 1libnetfilter_queue® (NF_QUEUE)
framework from the Linux iptables project. NF_QUEUE is a user-space library that
exposes a network-layer interface that enables filtering and modifying packets, trans-
parent to the application layer. We use this interface to filter packets, based on the
destination IP address of the PAs and the destination port number of the PA application,
thus, limiting the footprint to only the relevant packets. In the NF_QUEUE framework
all filtered packets are queued until further dequeued by a user-space application.

2Available at https://github.com/Wajeb/axo.
3http:/ /www.netfilter.org/projects/libnetfilter_queue/

123

https://github.com/Wajeb/axo

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

Thus, once the filtering rules are in place, all the packets remain in the queue until they
are dequeued by the tagger. Therefore, if the tagger crashes, the setpoint cannot bypass
Axo, thereby upholding the timeliness property by trivially discarding all setpoints at
the controller.

To ensure that the rebooter always functions correctly despite crashes, in order to be
remotely recovered by other replicas, we implement a heartbeat mechanism between
the detector and rebooter. When the detector loses five consecutive heartbeats, it
attempts to reinstantiate the rebooter. If it fails, the detector will reboot the machine.

We also incorporated Quarts and intentionality clocks along with the Axo imple-
mentation, as libraries that can be used by a CPS for ordering of events and controller
consistency. The proof-of-concept implementation currently supports up to 256 con-
troller replicas. However, in practice most CPSs do not use more than 3 or 4 replicas.
We deploy this implementation with two CPS and present the results of the case studies
in Sections 6.6 and 6.7. We also use the same implementation with SDN in Chapter 7.

6.5 Performance Guarantees

In this section, we will prove that the Axo design presented in Section 6.3 guarantees
timeliness and maximizes availability. We also derive and experimentally validate
bounds on the detection and recovery time of Axo, for delay and crash.

6.5.1 Timeliness Guarantees

Recall from Definition 6.2 that timeliness requires that the PAs never implement invalid
setpoints. For Axo, we have the following result.

Theorem 6.5.1 (Axo Timeliness). If all controller replicas of a CPS use the controller
library and all PAs use the PA library described in Section 6.3.2, then timeliness is
guaranteed for all PAs.

Proof. Let s be a setpoint computed at some controller replica C' with a timestamp
t¥ < t., where t. is the first instant at which the measurement to compute this setpoint
were processed. (refer Section 6.1)

As C contains the controller library, then s will be intercepted by the tagger.

If P does not contain an PA library, it will never receive s, thereby upholding timeliness.
Otherwise, the tagger will forward s to the masker of P.

Recall from Section 6.1 that the time at which the setpoint is received at P is ¢,.

By Definition 6.1, s is valid if and only if ¢, < ¢, + 7,.

Based on Algorithm 6.3 line 2, the masker of P will only accept s at¢: <t} + 7.

Recall that both ¢} and ¢} are measured locally at C' and P, respectively.

124

6.5. Performance Guarantees

Since the inaccuracy in time-synchronization protocol is J, the true time at which the
setpoint is received at the masker is ¢, < ¢!+ ds.

Similarly, the true time at which the setpoint is first valid ¢, > ¢} — §,. Therefore,
th<ti4rT = t. <te+T+ 205

Since the processing time of the masker is bounded by 6., then ¢, < ¢/ + 6,,.

Thus, any accepted setpoint will arrive at P att, < t.+ 7 + 205 + O

Butr =71, — 20 — 0,

So, the masker of P will only accept and forward s to P ift, < t. + 7.

Therefore, any setpoint s received by P will be valid. O

Note that a CPS, where the PAs discard all setpoints, also trivially satisfies timeliness.
However, such a CPS would fail to control the physical process as no setpoints are
implemented. Therefore, besides providing timeliness, a CPS must be available to
perform the control of the physical process. A measure of how available a CPS is when
providing timeliness is given by Timely Availability as follows.

Definition 6.4 (Timely Availability). Timely availability is said to hold for a PA P in an
interval [a, V], if and only if P receives at least one valid setpoint in [a, b] from a set of
controller replicas C. Consequently, C is said to provide timely availability for P in [a, b].

Additionally, when the replicas in C use a fault-tolerance protocol f- such as Axo —
to provide availability, we say that f provides timely availability.

Recall from Section 6.3.1 that the upper-bound on the synchronization inaccuracy
of the time-synchronization protocol is J;. Thus, any measurement of time has an
uncertainty of ;. Consequently, the uncertainty in recording the end-to-end delay
of a setpoint is 24,. Therefore, to guarantee timeliness, any fault-tolerance protocol
needs to conservatively discard setpoints with an end-to-end delay greater than 7, —
20s. Moreover, this deadline needs to be further offset, in order to account for the
computation time of the fault-tolerance protocol (67). Hence, in order to tolerate
delay faults, all fault-tolerance protocols need to discard potentially valid setpoints
whose end-to-end delay lies in the uncertainty interval [7, — 265 — é¢,7,], thereby
reducing availability. For Axo, we have the following result that shows how Axo provides
timely availability when any other fault-tolerance protocol with the same timeliness
guarantees also provides timely availability.

Theorem 6.5.2 (Axo Timely Availability). Consider an interval|a,b] and a fault-tolerance
protocol f that, using a set of g replicas C, guarantees timeliness for a PA P. If f provides
availability for P in [a,b], and the time taken by f to process a setpoint is at least as
much as that taken by Axo, then Axo, usingC, also provides availability for P in [a, b].

Proof. Consider a CPS with a PA P.
LetC = {C',...,C9} be a set of g replicas of the controller of this CPS.

125

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

Let S be the set of setpoints sent by all controllers in C in the interval [a — 7,,].
Consider a fault-tolerance protocol f, applied to C, that guarantees timeliness for P.
Denote by C; the set of controllers C when f is applied to them.

Let R = {s € S : sisreceived by P in [a, b] and s is valid}.

Formally, f : S — Ry C R.

In other words, R is the set of valid setpoints sent by C and received by P in [a,b]. R
is the subset of R that are received by P when f is applied to C. Therefore, f provides
availability for P in [a, b], if and only if [R ;| > 0. Note that we only consider the interval
[a — 7, b] for the set S, since setpoints sent outside this interval can never be valid if
received in [a, b].

We define the following operations and sets:

Let Sy C S, be the set of setpoints, sent by C in [a — 7,, b], that f permits to be sent to P.
Thatis, S \ Sy is the set that f discards before sending.

Let o I S—S§ f

Let Ny C Sy be the set of setpoints that the network delivers to P in [a, b], when f is
applied.

Then, Ny = {s € Sy : sis delivered to P in [a, b]}

Lety: S — Ny

Then, Ry C Ny

Let 3y : N =Ry

Therefore, f = By oyoay

Intuitively, o is the operation of discarding setpoints before sending them, and thus
depends on the fault-tolerance protocol. v is the operation performed by the network,
which is considered to be transparent to the fault-tolerance protocol. j; is the op-
eration of discarding setpoints before they are received at P, in order to guarantee
timeliness.

Let F, be the class of fault-tolerance protocols that guarantee timeliness to hold for P
by using controllers in C. We consider all f € F, to have at least as much processing
time for each setpoint as Axo.

As Axo guarantees timeliness (Theorem 6.5.1), Axo € F,

As Axo uses active replication, it ensures that all g controller replica in C are active and
send setpoints to P.

Furthermore, as the tagger (Algorithm 6.2) never discards setpoints, all the setpoints
sent by the controllers are forwarded to P.

However, the tagger incurs a processing time to each setpoint, thus not all setpoints
will still be sent in [a — 7,, b].

This processing time is also incurred by all f € F,, therefore

VieFy:SCSu0CS (6.1)
Now we apply 4. Since ~ is transparent to the fault-tolerance protocol, then VA, B, s €

ANBands ¢ v(A) = s ¢ ~(B).

126

6.5. Performance Guarantees

Then, it follows from Equation 6.1, that
VfEFgZNngAxo (62)

Since all fault-tolerance protocols f € F, guarantee safety, they need to discard invalid
setpoints.

Let, 7 < 7, be the delay after which f discards setpoints.

Note that 74,, = 7 = 7 — 205 — O

Then

Ry = Br(Ny) = {s € Ny : end-to-end delay of s < 7} (6.3)
Note that,

VAN, fa € Fyomp <7, = B (A) C B, (A) (6.4)

To guarantee safety, any fault-tolerance protocol needs to conservatively discard set-
points that lie within the uncertainty interval brought about by the uncertainty in
measuring time (0,) and the processing time of the setpoint (07). Since, 67 > 6,,, then

VfeFg1p <7 (6.5)
Then, using Equations 6.2, 6.3, 6.4, 6.5, we conclude that

Vf € -ngRf C R azo
= Vf e F|Rf| >0 = [Rawe >0

6.5.2 Bounds on Recovery Time

Now, we derive upper and lower bounds on the distribution of recovery time with Axo.
The recovery time is the time taken for a replica to be detected and recovered, after
it starts being faulty. Evaluating the exact expression for recovery time seems to be
mathematically intractable. Hence, we derive the bounds and validate them through
experimental results of fault recovery obtained using the implementation of Axo, as
described in Section 6.4 along with a test CPS controller. Besides validating the com-
puted bounds, this also serves as a validation of the proof-of-concept implementation
of Axo.

127

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

Analytical Controller and Fault Model

Although the fault model used in simulation studies for Quarts in Section 5.6 expresses
both delays and crash faults, along with the delays in each round, it does not lend itself
well for mathematical analysis. We will use a simplified fault model described below.

The faults on a controller replica are independent of the faults on other replicas.
Each controller replica is in one of two-states faulty or non-faulty. As a controller
replica experiences different delay in the faulty and non-faulty states, the inter-arrival
times of setpoints issued by the setpoints follow different distributions in the two states.
The inter-arrival time of setpoints follows a Poisson process with rate \,, when the
replica is in the non-faulty state; and a rate A ;, when the replica is in the faulty state. As
the delays in the faulty state are larger, the frequency of setpoints in the faulty state is
lower, i.e., A\ < A,. Furthermore, the probability that a setpoint issued by a controller
replica takes more than 7, i.e., the probability that a computation results in invalid
setpoints is 6. Then, the stationary probability of a replica being in the non-faulty state

As(1-0)

ism, = m; and the average rate of sending setpointsis \o = A\ (1 —m,) 4+, .

As in previous chapters, the communication network is assumed to be probabilistic
synchronous [58] with a loss probability p and the maximum one-way network latency
of the messages received messages ¢;,.

Lastly, we assume that at least one of the PAs is non-faulty and capable of receiving
setpoints. A CPS without any non-faulty PAs would remain uncontrolled with or
without Axo, and is thus uninteresting. Note that additional non-faulty PAs increase
the chances of detection and recovery, thereby improving the derived bounds.

Analytical Results

Theorem 6.5.3 (Delay-Fault Recovery). In a CPS with g controller replicas, if a replica
Cy starts to be delay faulty at timet = 0 and remains faulty till timet, then a lower
bound (P,(t)) and upper bound (P4(t)) on the probability that it is recovered by timet is
given as follows:

l _NmB 1 CD(Noat), et (N, (v — B)t)
ey E Rl T L e L e LA S])]
P(t) = 1 — (1 — By (1))
_ F(Na ’Yt) ’YN #t F(Nv (’7 B B)t)
Rl e KO e e

128

6.5. Performance Guarantees

where,
log(L(Heet 41 00
5= 0p)/T 7= A0 n=rap, N = 2T) p g [T et

Proof. First, we derive the probability for g = 2.

In a two-replica CPS, the probability that the delay-faulty replica Cy issues enough
delayed setpoints in [0, #1] to be detected by the second replica C4, given that C; is
non-faulty throughout is computed as follows.

P%..(t1) = P(Cp issuing i > N setpoints in [0, ¢;] that are

N-1 i 2
. _ (L= p)*hy)es (v
received by Cy) =1 — Z i

=0

(6.6)

Equation 6.6 is based on the model of the controller described in the previous
section: it gives the cumulative distribution function (CDF) of a Poisson distribution,
where the parameter is the rate of a faulty replica issuing setpoints (A ;) multiplied by
the probability of the corresponding report being received (1 — p)2. NN is the number of
consecutive reports, corresponding to delayed setpoints, that are sufficient to detect a
delay fault. N can be derived from «, H¢,;, and H,,,, from Algorithms 6.4, 6.5, and is
as mentioned in statement of the theorem.

The PDF of the above expression can be obtained by taking the derivative, resulting
in the Erlang distribution.

d (1= p)?) Ve le 0

Paet(t1) = ——Pger(t1) = (N —1)!

ai (6.7)

In a two-replica CPS, the probability that C; will recover a delay-faulty replica Cy,
that was detected as faulty at ¢ +d, at [t2, t2 +dt], given that C is non-faulty throughout,
is given by P,.(6t), where 6t = to — (t1 + d).

P, (5t) = P(Cy receives one reboot message in [to, to + dt])
d f(lermét) _ 1— pef(l;rp)ét
T,

(6.8)

129

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

Equation 6.8 can be obtained by modeling the process of receiving reboot messages
(Algorithm 6.6) as a Poisson process of rate (1 — p)/T,,, where 1 — p is the probability of
receiving a reboot message and 1/7, is the rate at which they are sent. The approxi-
mation of the periodic sending process, as an exponential one, is justified by the low
rate of the Poisson process. This approximation facilitates the derivation of the above
expression.

The probability of C, being non-faulty in [0, 6¢] is:

IP,,s(6t) = P(C1being non-faulty at t = 0 and in (0, 6t])

e Anbt (6.9)

In Equation 6.9, we consider the fault model of a controller replica, where 7, is
the stationary probability of being in a non-faulty state. This is multiplied by the
probability of not transitioning to the faulty state, within a period of §t.

Using Equations 6.7, 6.8, 6.9, we can define the lower and upper bounds on recov-
ering a delay-faulty controller replica.

For a lower bound, we consider a two-replica system, the worst-case network delay,
and that a faulty replica cannot help in detection and recovery. Increasing the number
of replicas, decreasing the network delay, or considering the cases in which faulty
replicas can take part in detection or recovery, will increase the probability. Therefore,
the lower bound is justified. It is given as follows:

t—20 t
P4 (t) = / Pges(t1) / P, (t2 — t1 — 20)P, s (t2 — 25) dtg dt;
t1=0 to=t1+20

Note that the lower bound always considers two-replica CPSs regardless of g.

For an upper bound, we relax the condition of dependence between replicas:
we consider that each additional replica in the system can detect and recover Cj
independently. We also consider that all these replicas are always non-faulty, and that
the network has zero delay. These relaxations always result in an increase in the actual
probability. Therefore, the upper bound is justified. It is given as follows:

130

6.5. Performance Guarantees

Py(t) =1~ (1=Py(t)*"

Paet(t1) / Prec(te — t1) dto dty

to=t1

Py(t) =

t1

L~

The derivation of P},(t) and P%(¢) results in the statement of the Theorem.

Theorem 6.5.4 (Crash-Faulty Controller). In a CPS with g controller replicas, if a replica

Cy starts to be crash faulty at timet = 0 and remains

faulty till timet, then a lower

bound (P.(t)) and upper bound (P%(t)) on the probability that it is recovered by timet is

given as follows:

PL(t) = Py(t — 20)

(Be_(D+G)% A(l—p)Tr —(E+G)T eDj—":T
DYETC E1G ¢ + prrtc
,(DJrG)l t
B T (AQ—p)T, —(F+G)-L 1
e _(D+F+G © "t E+G)_ t<m
. | ABO-p)T, (6_(D+G)%—6E%>
e_(EJrG)TT" t> 7.
Py(t) = (E1G)(DFE+G)
AB(1—)TT< (DA 7 F%)
_ (PG £ S ‘
F+G)(D+F+G)
B ei(DJrG)%—e % i
k FrO(ETD)
Pe(t) =1— (1 —Ps(t))"
—_DIc EJ DL DJ _EL
¢ oo Tt omome T ST
DE —J At
IO E) 102 L 1}
_DIc Tc _p_t
P3(t) =\ g=iioam (e VT —eF)e P t> 7
DE —-DZIc JIey —Jit
_W(e Tr —¢ TT)e Tr
~(PF)
where,
Ao 3 2
A:)\(l—p)T—f B=01-p)>°T A \pymn, D=(1-p)T.A
n T

131

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

E=(1-p), F=M1-p>?T,, G=XMbOTr, J=(9— D\ (1—p)°T;

Proof. We first derive the following probabilities.

We define the notion of awareness, where a replica C; is aware of replica Cy at t,, if
the detector database at C; contains an entry for Cy at ¢,. This condition is satisfied if
C) sends a setpoint with a conception time ¢y > t, — 7, the report of which is received
by C;. The probability of such an event, given that Cj conceives another setpoint at ¢,
and that C; is non-faulty throughout, is given as P, (6t), where 6t = ty — t,:

P, (5t) = P(Cy issues a setpoint of conception time ¢y — dt, which is received by C;)

= Ao(1 — p)ZeRo1-p)%0t (6.10)

Equation 6.10 considers the controller model described earlier and uses the time-
reversal property of Poisson processes.

We now consider a g-replica CPS, in which Cy crashes at ¢, the other g — 1 replicas
are assumed to be able to detect this independently, and are all non-faulty throughout.
For this, each controller can be modeled as receiving setpoints at a rate of (g — 1)\, (1 —
p)2. The network is considered to have a fixed one-way delay of d for packets that
are not dropped. Under such conditions, the probability of a replica C; detecting C
as crash faulty in the interval [¢;, ¢; + dt], given the above conditions and that C; was
aware of Cy, is given as P.(dt, g), where 6t = t; — to — d.

P.(dt, g) = P(C; # Cp conceivs a setpoint at t; — d, the report of which is received by C; at ¢;)

B 0 0t < Te 6.11)
g = DA = p)2e - Dm=p?6m) 5t > '

Note that the above expression is an upper bound when g > 2, but is exact when
g = 2, since the condition of independence is not required when there is only one
replica participating in detection.

Next, we derive a lower bound and upper bound on the probability of recovering
from a crash fault by using Equations 6.10 and 6.11. We will also use P, and P,y from
Equations 6.8 and 6.9, respectively.

The conditions for lower and upper bound are similar to those presented in the
proof of Theorem 6.5.3. For a lower bound, we consider a two-replica CPS, the worst-

132

6.5. Performance Guarantees

case network delay, and that a faulty replica cannot help in detection and recovery.

Te t—26 t

Pl (t) = / / / P, (to)Pe(t1 + to, 2) x

to=max(0,7c—t) L1=Te—t0o ta=t1+26

]P)T(tg — (tl + 2(5))]P’nf(t2 + (to + 25)) dto dtq dtg

For an upper bound, we relax the condition of dependence between replicas:
we consider that each additional replica in the system can detect and recover C
independently. We also consider that all these replicas are always non-faulty, and that
the network has zero delay. These relaxations always result in an increase in the actual
probability. Therefore, the upper bound is justified. It is given as follows:

Py(t) =1~ (1 Py(t))*"

Pg(t) = / / / Pa(to)Pc(tl + 1o, g) X]P)T(tg — tl) dty dtq dty

to=max(0,7c—t) t1=Tc—lo t2=t1
The derivation of P.(¢) and P%(t) results in the statement of the Theorem. O

Experimental Validation

We use three controller replicas (¢ = 3): each with a test controller and the controller
library, and one PA with the PA library. The setup includes two computers connected
by an Ethernet link. For the PA, we use a Lenovo T410 laptop with a 2.67 GHz Intel
Core i7 processor with 4 GB RAM running a 64-bit Ubuntu operating system. For the
controller replicas, we use 64-bit Ubuntu Virtual Machines that are each configured
with 1 GB RAM using VirtualBox. The virtual machines run on a MacBook Pro with
MacOS 10.10.5, a 2 GHz Intel Core i7 processor and 16 GB RAM. All three controller
replicas are configured to be in the same LAN that is bridged to the physical Ethernet
interface in order to communicate with the PA.

The times of computation of the test controller are drawn from a Poisson process
with a rate \, = 1/100 s~! when the controller is non-faulty and A\ = 1/200 s~
when the controller is faulty. The validity horizon 7, is 17 ms, the upper-bound on the
masker’s computation time is ¢,,, = 0.1 ms, the upper-bound on the synchronization
inaccuracy is 0 = 1 ms, and the upper-bound on the network latency is §,, = 2 ms.
Lastly, the threshold, after which an inactive controller is considered crash faulty, 7. is

133

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

9=0.01, p=0.01

1.0 T T 7 v
g e—e Upper Bound
E= 0.5 — Experimental
e! 4~—4 Lower Bound
E 0.0 1 1 1 T
5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
o Time [s]
S _ _
r_ju 10 . . 0=0. 02,Lp 0.01 . .
e e—e Upper Bound [1
g 0.5} — Experimental H
(@] ~—a |Lower Bound
0.0 ; ; ; .
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [s]
Figure 6.2 — Time to recover from delay-faults for varying 6
1.0 . . 0=0.01, p=0.01 x .
g e—e Upper Bound
E= 05 — Experimental [
Q +— Lower Bound
43 0.0 ! ! 5 !
5 0.00 0.25 0.50 0.75 1.00 1.25 1.50
v Time [s]
r_ju 1.0 0=0.02, p=0.01 .
I e—e Upper Bound
£ 05 — Experimental [
8 &~ Lower Bound
0.0 ! ! 5 :
0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time [s]

Figure 6.3 — Time to recover from crash-faults for varying ¢

taken as 500 ms.

In each experiment, C is configured to start being faulty at a random time and
remain so until recovered, whereas C; and C5 follow the parameters of the scenario.
The time at which C starts being faulty and the time at which it is recovered is recorded,
and their difference is reported as the recovery time. We repeat each experiment 10
times to obtain the confidence intervals on the various quantiles of the distribution of
recovery times.

We performed experiments for different values of p and 6. We noticed, from both
our experiments and the analytical lower and upper bounds, that the packet loss
probability p did not have a major effect on the probability of detection in the range of
0% and 2% loss probability (a realistic range of loss probabilities for CPSs). This result
shows that the detection and recovery algorithms of Axo are resilient to network losses
in this range.

134

6.6. Case Study I: COMMELEC

However, the dependence on 4 is significant. Figure 6.2 shows the results of the
experimental simulation of a delay-faulty Cy, with p = 1% and 6 = 0.01, 0.02. Figure
6.3 shows the same for a crash-faulty Cjy. We notice that the experimental distribution
is within the analytically computed bounds. In addition to validating the lower and
upper bounds, these results show the effect of a higher fault rate on the detection and
recovery performance.

6.6 Case Study I: COMMELEC

Here, we study the effect of the reliability mechanisms proposed in this thesis namely
(Quarts, Quarts+ and Axo) on the control of an electric grid by the COMMELEC [4] CPS.
We give a brief background on COMMELEC in Section 6.6.1, followed by the description
of the test-setup in Section 6.6.2. Then, we present results from two experiments that
demonstrate the importance of fault detection and recovery in Section 6.6.3, and the
effect of inconsistency in Section 6.6.4.

6.6.1 COMMELEC Background

In COMMELEQ, the electric grid is controlled by a central controller, called the GA.
COMMELEC also includes resource agents that send the state of a single resource, such
as a battery or a PV. These form the PAs of the COMMELEC CPS as shown in Figure
6.4. It also comprises PMUs that periodically (every 20 ms) stream the state of the grid
in the form of voltage and current phasors. The PMUs constitute the asynchronous
sensors in the COMMELEC CPS. In Figure 6.4, we have a COMMELEC CPS with one
GA, one battery resource, one PV resource, one load resource, and three PAs. Using
the measurements from the PAs and the advertisements from the sensors, the GA
computes and issues setpoints. The control round lasts roughly 100 ms.

The main goal of the GA is to maintain the grid in a feasible state, i.e., respect the
voltage limits at the buses in the electric grids and the ampacity limits in the lines.
The GA also implements one or more auxiliary policies such as providing primary
frequency support, acting as a virtual power plant, or following a dispatch signal.

The GA follows the model of the controller presented in Algorithm 3.1 that trans-
forms to 6.1, with the inclusion of the reliability mechanisms. It is implemented in
C++, uses third-party software libraries, and runs on an off-the-shelf Linux computer.
It is susceptible to both crash and delay faults, as shown in Section 1.2.2.

135

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

S09(oA L

7 » \\
y \ \ \\
Vv N | PMUs
/ | \
/ 1 \
/ \ \
/ 1 \\
B1 ! B2
_. // ' T '\‘\83

—

Figure 6.4 - COMMELEC architecture with 3 resources and PAs

6.6.2 Test Setup

We used the 13-bus CIGRE low-voltage benchmark grid, with three resources: a 15kW
uncontrollable load of heaters in a building, a 25kW/25kWh battery storage, and a
20kW uncontrollable PV as shown in Figure 6.5. There are five PMUs streaming voltage
and current phasor measurements to the GA, at different locations in the grid. In this
case study, we configured the GA to assist autonomy, i.e. the power imported from,
and exported to, the upper-level grid should be minimized at all times.

6.6.3 Importance of Fault-Tolerance

In this experiment, we use COMMELEC with two physical replicas, each running one
instance of the GA on an off-the-shelf Scientific Linux (version 7.1). We use the on-
campus microgrid facility at EPFL [92]; it is a 1-1 scale replica of the the 13-bus CIGRE
low-voltage benchmark grid shown in Figure 6.5.

The setpoints have a validity horizon (7,) of 10 ms. Consequently, the controller
is designed to compute and issue setpoints within 10 ms. First, we measured the
computation times for around 10 million measurements. We observe that 32 setpoints
(0.00032 %) have a computation time greater than 10 ms. Therefore, we conclude that,
although very rare, delay faults are observed in real-life deployments of CPS. Also,
delays added due to the communication network further increase the risk of delay
faults.

In order to demonstrate the fault tolerance of Axo, we artificially reduce 7, to 7 ms,
increasing the number of faults. We use Axo with two controller replicas (C1, C5). The
time after which a replica is considered crash faulty () is 500 ms. The time between
successive recovery messages (7,) is 1 ms. For time synchronization between the

136

6.6. Case Study I: COMMELEC

B03 Bo1
)
5 L01 @+ @

@ PMU Locations
@ AGENTS Locations
(N) Breaker Locations

Figure 6.5 — 13-bus CIGRE low-voltage benchmark grid controlled using COMMELEC
to provide autonomy by minimizing the total export or import of power at bus BO1.
Grey areas are unused

1.0+
45 o8}
O
E 0.6+ e Delay of Axo
= 04 = Delay of C1
g T v Delay of C2
w2t -7

|
0'00 1 2 5 6 7

Time [ms]
Figure 6.6 — Timeliness guarantee of Axo

replicas and the PAs, we use PTP that has a synchronization inaccuracy (J5) of 1 ms.
Lastly, the upper bound on the computation time of the masker (4,,,) is 0.1 ms. This
leaves us with 7 = 4.9 ms.

Figure 6.6 shows the empirical CDF of delays of setpoints sent by C'; and C5, mea-
sured at the masker. It also shows the effective delay of setpoints at the PAs, after the
unsafe ones were discarded by the Axo masker. We observe that, although the setpoints
sent by controllers have delays > 4.9 ms (= 7), the setpoints eventually received at
the PAs are all valid, i.e., have an end-to-end delay < 4.9 ms < 7 ms (= 7,), thereby
demonstrating the timeliness property of Axo.

Additionally, the set of controller replicas is said to be available if the PAs receive

137

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

a setpoint every 100 ms. We find that the availability with C; alone is 97.36% and
with C; alone is 97.54%, which amounts to about 38 and 35 minutes of downtime.
With Axo, however, the availability was found to be 99.86%, which is only 1.5 minutes
of downtime. In these experiments, the controller replicas were recovered 38 times,
thereby demonstrating the importance of fault recovery in providing high availability.

6.6.4 Effect of Inconsistency

In this experiment, we study the effect of inconsistent setpoints on the autonomy
performance of COMMELEC by experimenting with and without Quarts+. Inconsistent
setpoints might cause undesirable effects in the the grid and the resources, hence are
unsafe to be tested in the real-grid. We used T-RECS [187], a virtual commissioning
tool for studying the control performance of CPSs for electric grids in the presence of
network and software non-idealities. T-RECS has been validated to give results that
are reproducible on the campus microgrid, as shown in [187]. Therefore, the results
obtained from T-RECS can be considered to be similar to those that would have been
obtained from the real grid.

In order to highlight the effect of inconsistency, we performed stress tests, in
which we subject the GA replicas to artificial delays in computation and a burst of
extreme network conditions of 10% loss rate. The aim is to understand the effect of
inconsistency on a CPS, without running experiments over several days or weeks, as
would be required due to the low probability of inconsistency observed in Section
5.7.1.

In each experiment, we record the power at the slack bus (connecting the microgrid
to the upper-level grid), and compute the energy mismatch in order to quantify the
error in the control performance of the COMMELEC GA. The energy mismatch, in this
case, is the integral of the absolute value of the power profile observed at bus BO1. We
also compute the maximum deviation from zero power at any given point.

First, we benchmark the performance of a single non-replicated GA that is not
exposed to delay faults or message losses. Then, we compare this to two cases, one
in which the two replicated GAs do not perform agreement, and one in which they
perform agreement with Quarts+.

We observe, in Fig. 6.7, the energy mismatch of the three scenarios discussed earlier.
The ideal case provides the benchmark tracking-performance level, and it encounters
some mismatch due to the unpredictable nature of real-time PV production and load
consumption. For the entire duration of the experiment, Quarts+ shows a better
performance than the non-agreeing case.

Furthermore, we recorded the worst-case deviation from the tracking signal (zero

138

6.7. Case Study II: Inverted Pendulum

| —¥— no agreement (2 replicas)
—e— quarts+ (2 replicas)
| —&— ideal (1 replica)

[y
w

mismatch (kWh)

Cumulative energy

o
1

0 500 1000 1500 2000 2500 3000
Running time (seconds)

Figure 6.7 — Energy mismatch over time in COMMELEC

power) for each scenario. We observe that the non-agreeing case has a value of 33 kW:
this exceeds the ampacity limit of the line connected the microgrid to the upper-level
grid. Note that a single replica would never compute a set of setpoints that results in
such a violation. The inconsistency between the replicas producing different outputs
led to this. We do not observe such violation when using Quarts+.

Finally we observed, in 4% of the rounds, potential inconsistencies that would
have arisen had we not performed agreement on advertisements. This highlights the
importance of including asynchronous sensors in the agreement protocol.

6.7 Case Study II: Inverted Pendulum

In this section, we demonstrate how applying Axo affects the stability of an inverted
pendulum system, a common control problem as seen in a motorized two-wheeled,
self-balancing personal transporter such as a Segway. We use the example in [188], of
an inverted pendulum mounted on a motorized cart, in an LQR controller attempts to
maintain the pendulum upright by modulating the voltage of the motor, thus changing
the force applied on the cart. The controller periodically receives the state of the
pendulum. This state includes the position of the pendulum on the x-axis (x), the
pendulum angle measured from the y-axis (¢) and the derivatives of the = and ¢. The
state information forms the measurement that is sent by the pendulum that is the
PA. The goal of the LQR controller is to keep the pendulum upright with ¢ = 0° and
pivoted at x = 0 m.

For the experiments, we use Mininet [97], where the LQR controller and the PA
are hosted on different nodes. The controller and the PA communicate by using a
communication network with a loss probability p = 0.001 and the upper bound on the
one-way delay d,, = 0.5 ms. The controller operates at 100 Hz, resulting in a control
cycle of 10 ms. Figure 6.8 shows a snapshot of the inverted pendulum setup from the
experiments. We record the = and ¢ in each experiment.

To highlight the effect of delay on the stability of the pendulum, we evaluate the

139

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

Real-Time Motion of Pendulum

0.6] Simtime = 16.1s, True time: 17.2s

y coordinate
o
o

—2.0 -1.5 -1.0 —0.5 0.0 0.5 1.0 15 2.0
x coordinate

Location, Angle vs Time 20

1.0f 410

o
[

o
<}

phi (in degrees)

x (in meters)

|
et
wn

|
|y
o

{-=10

=151

Figure 6.8 — Snapshot of the inverted pendulum from experiments

step response of the CPS with a single controller, when a step of 1 N is applied as an
external force. Figure 6.9 shows the step response for different values of controller
delay. We see that ¢ and = experience a higher overshoot and a longer settling time as
the mean delay of the controller increases. For delays greater than 20 ms, the system
becomes entirely unstable. This shows the real-time requirements of an inverted
pendulum system, hence the applicability of Axo in masking, detecting, and recovering
from delay faults.

Next, we study the impact of Axo on the stability. For this, we use two replicas of
the LQR controller as shown in Figure 6.10. As the CPS consists of only one PA, each
controller issues only one setpoint in a round. Thus, this CPS does not require Quarts.
Hence, we use only Axo for these experiments. The LQR controller is written in Python.
Therefore, we created an Axo API in Python and integrated it with the LQR controller
on each replica. The Python APl is only 15 lines of code, thereby indicating the ease of
deployment of Axo with a new controller.

We evaluate three metrics: the instability rate, MTTI, and MTTE Instability rate is
the fraction of the time the pendulum experiences an overshoot (¢ > 20° or z > 0.2 m),
and the MTTTI is defined as the mean time until an overshoot occurs. The MTTF is the
mean time until the pendulum reaches an angle that the LQR controller is not tuned
to handle (¢ > 35°).

140

6.7. Case Study II: Inverted Pendulum

0.15 50

0.10

—-50|

0.05 —100

X [m]
X [m]

—-150 |

0.00
-200

—0.05 L~ ! ! ! —250
1.0 1.5 2.0 2.5

Time [s]

200
150
100

50

=50
-100
—150

I I _200 I I I I
1.0 1.5 2.0 2.5 1 2 3 4 5

Time [s] Time [s]

¢ [degrees]
¢ [degrees]
o

-5 L L

Figure 6.9 — Step response of the pendulum with a single controller for different values
of controller delay

We use a bursty delay-fault model. Crash faults are not introduced because the
system of two replicated controllers without Axo fails to control the pendulum after
some time, as the replicas are not recovered. The delay of each controller is exponen-
tially distributed with a mean of 2 ms in the good state and 80 ms in the bad state. The
probability of transition to the bad state is 6, which is varied across several scenarios;
and the mean burst length is 20 computation cycles.

Figure 6.11 shows the additional stability brought about by using Axo for a repre-
sentative fault-scenario (§; = 10~3). Table 6.1 shows the computed metrics after a
large number of runs. The results are to be interpreted as the mean of an exponential
distribution obtained by fitting. The results show that, for all scenarios, Axo improves
stability in all the metrics by up to 25x, with the improvement becoming more apparent
as the probability of delay faults increases.

141

Chapter 6. Axo: Tolerating Delay and Crash Faults in Real-Time CPSs

LQR controller 1 Voltage

LQR controller 2

T, %, ¢, ¢

Figure 6.10 — Illustration of the inverted pendulum CPS with two controllers and one
PA (the pendulum)

10 . Wlthoutleo .
5 -
0 I
_5 - .
? _10 1 1 1
s 0 50 100 150
:]5)1 Time [s]
3 .
g 10 . With Alxo .
5 .
0
_5 - .
_10 1 1 1
0 50 100 150
Time [s]

Figure 6.11 - Stability of the pendulum with a replicated controller

Scenario | Instability (%) MTTI (s) MTTF (s)
Ch) NoAxo | Axo | NoAxo | Axo | NoAxo | Axo
#1:1x 1073 | 19.56 1.86 | 57.89 | 79.16 | 73.30 | 118.32
#2:2x 1073 | 2393 | 278 | 25.33 |[31.70 | 22.29 47.06
#3:5x 1073 | 54.04 | 6.25 7.31 7.42 1.28 32.73

Table 6.1 — Instability of an inverted pendulum in selected scenarios with varying 6,

142

6.8. Conclusion

6.8 Conclusion

In this chapter, we presented Axo, the first protocol for tolerating delay faults in real-
time CPSs that use COTS-based hardware and software components. We describe
the masking, detection, and recovery mechanisms for delay and crash faults. These
mechanisms are designed to be soft state to enable the seamless addition of new
replicas and removal of faulty replicas. Moreover, Axo is designed to be controller-
agnostic, enabling easy deployment to a wide range of existing CPSs.

We formally proved that Axo guarantees the timeliness correctness property. In
conjunction with the Quarts and intentionality clocks presented in earlier chapter,
the consolidated design of a CPS with all the reliability mechanisms provides delay
and crash fault tolerance. Specifically, this includes linearizability provided by Quarts
and intentionality clocks, and timeliness provided by Axo. We also analytically char-
acterized the time to recover a faulty replica by Axo and experimentally validated the
evaluated expressions.

We presented an open-source implementation of Axo in C++ and an API that can
be used by existing CPSs to instrument their controller in order to use Axo. We used
this implementation to demonstrate the fault-tolerance properties of Axo through two
case studies with real-world CPS namely, the COMMELEC CPS for real-time control
of electric grids and an inverted pendulum CPS. In the first study, we deployed Axo
and Quarts with COMMELEC in a full-scale microgrid test-bed on the EPFL campus
and demonstrated that the resulting CPS can continue to perform the desired control
even in the presence of delay and crash faults. We also demonstrated the importance
of Quarts+ by showing how inconsistent setpoints issued by disagreeing controller
replicas can adversely affect the control policies of the COMMELEC controller. In the
second study, we showed that tolerating delay faults with Axo improves the stability of
an inverted pendulum and increases its MTTI.

In this way, we designed reliability mechanisms for real-time CPSs, formally proved
their correctness properties, and demonstrated their reliability properties through
implementation and deployment with real-world CPSs.

143

fld The Quick Coordination Layer for
Consistent-Controller Replication
in SDN

Quick decisions are unsafe decisions.
- Sophocles, 450 BC

Challenge accepted!
- Quarts, 2018 AD

In the previous chapters, we designed reliability mechanisms for CPSs, i.e., com-
puter systems that control a physical process. Now, we notice that communication
networks such as SDNs also fit the model of CPSs. The difference in SDNs is that the
controlled process is not a physical process, rather the routing rules in the commu-
nication network. We find that SDNs conform to the model of the CPS presented in
Chapter 3, as follows. The CPS controller is the centralized SDN controller and the PAs
are switches. The switches send information about the events in the communication
network to the controller in the form of measurements. The controller receives these
events, computes routing updates and sends them as setpoints to the switches. The
switches implement the routing updates in order to realize the desired communication
policies in the network.

The SDN controller is a single point-of-failure that is susceptible to crash and delay
faults and is often replicated for high availability. The replicated controllers need
to coordinate in order to achieve control-plane consistency. This problem is similar
to the agreement problem discussed in Chapter 5. Failure to perform agreement
before installing the routing updates, potentially violating control-plane consistency,
can result in the violation of certain safety policies of the SDN controller such as
edge-isolation, edge-disjoint isolation. Alternatively, the conventional approach to

145

Chapter 7. QCL for Consistent-Controller Replication in SDN

achieving control-plane consistency uses consensus that adds some latency on average
and a very high latency in the tail. In this chapter, we use Quarts (Chapter 5) and
intentionality clocks (Chapter 4) to design QCL for achieving agreement with low
latency-overhead. With QCL, we can quickly and safely install updates on the switches.
This greatly improves both the average and tail-latency of replicated SDN controllers,
in comparison with replication schemes that use consensus.

7.1 Introduction

SDN relies on a “logically-centralized” controller with a global view of the network
to manage the network state and to implement networking policies. In practice, to
address controller failures, a highly available logically centralized controller is imple-
mented by replicating a single-image controller. Implementing a logically-centralized
controller also involves using multiple controllers for scalability, e.g., by sharding the
state between controllers, but this is orthogonal to the issue of state-machine replica-
tion for high reliability studied in our work. The challenge with replication is to ensure
control-plane consistency with low latency.

In the literature, two types of approaches are proposed to ensure control-plane
consistency for replicated single-image controllers. On the one hand, there are high-
latency consensus-based approaches that guarantee (strong) consistency, such as
Onix [189], Ravana [190] and Onos [191]. On the other hand, we have SCL [31] that
only provides eventual consistency guarantees [89], in order to provide low latency and
high availability. Eventual consistency ensures that in absence of network events, all
controllers will eventually have the correct view of the network, i.e., topology, desired
policy and the forwarding rules installed in the network will eventually be the same
as those computed by a single-image controller that uses the same view. As a result,
replication schemes that guarantee eventual consistency do not wait for agreement
between replicas; they proceed with an update installation, as soon as one replica is
aware of an event.

7.1.1 Problem

Although eventual consistency is sufficient to provide some safety policies such as
way-pointing and node isolation [31], it cannot guarantee a large number of safety
policies, such as edge isolation, node disjoint isolation, edge disjoint isolation [192],
and other policies that refer to more than one flow at a time. These safety policies
are required by applications that need isolated resources (switches or physical links)
in order to exchange privacy-sensitive data while sharing network infrastructure, as
traffic patterns can reveal information. Existing solutions fall short in cases when these
policies also require low latency. For instance, isolated delivery of sensitive data is a

146

7.1. Introduction

(b) Flow-Paths by C4.

([J
1 1
6——07—0 11 ._’_.6——07—0) 11
10 10
2 ; gy
(c) Flow-Paths by Cs. (d) Installed Flow-Paths.

Figure 7.1 — Example of edge disjoint isolation violation
common security requirement for data exchange between financial institutions.

We show an illustration of the problem with eventual consistency and one such
safety policy: edge disjoint isolation. Consider the network state shown in Figure
7.1(a). We have two flows, f; and f, starting from switches 1 and 2, and terminating at
switches 11 and 10, respectively. Two controllers, C; and Cs, initially have the same view
of the network. They both implement shortest-path routing, as well as edge disjoint
isolation safety policy, i.e.,, the paths of flows fi, f» should not share a common link.
The initial routing paths of flows f; and f, are 1 —4 — 11 and 2 — 5 — 10, respectively.

Let us assume that two events occur: links 1 — 4 (event e;) and 5 — 10 (event e)
break almost simultaneously (Figure 7.1(d)). Due to different network delays, C first
learns only about e;, and C, first learns about e;. They do not ensure agreement but
rather each issues updates to modify the routing tables of the switches involved in the
new paths and in the old paths. We assume that a switch uses the last installed update
for a flow to serve packets of that flow. Moreover, in SCL [31], the controller uses the
last known state from a switch to compute updates. As a result, C; and C; compute the
new routes as shown in Figures 7.1(b) and 7.1(c), respectively, and issue updates for
the switches. Each controller considers the edge disjoint isolation to be satisfied, but,
an interleaving of the updates from C; and C; can violate the safety policy as shown
in Figure 7.1(d). The state in Figure 7.1(d) could be reached by the following order of
events: (1 installs its updates on all involved switches, then C installs its updates, but
the update from C; for switch 1 is delayed due to e.g., network losses. Conversely, if the
controllers had a consistent view of the network, i.e., were in agreement, the computed
routes could be: fyvial —6—-7—8 —11and fyvia2 —3 —9 — 10.

Additionally, existing eventually consistent schemes such as SCL [31] are unable to
support reactive applications, such as NATs and firewalls, for which the first packet

147

Chapter 7. QCL for Consistent-Controller Replication in SDN

triggers an update installation and subsequent packets have to be handled by rules that
causally follow from the first rule. Although vector-clock based labeling is a possible
solution for achieving causal order, it can only provide partial order, as two vector
clocks can be incomparable. Achieving total order would require the controllers to
agree on the labels of sent updates. Hence, satisfying all safety policies in a general
SDN and implementing all networking applications, requires consistency that typically
relies on consensus. However, forming consensus is known to suffer from high latency.
In this chapter, we achieve the best of both worlds, i.e., guaranteeing consistency
(like consensus mechanisms), while obtaining low latency (like eventually consistent
schemes).

7.1.2 Our Approach and Challenges

We answer the question: When can a controller replica proceed with computing the
updates without agreement with other replicas and without violating control-plane
consistency? The challenge lies in the fact that even-though the ground truth of the
SDN lies in the switches, it is difficult to consistently retrieve it on all the replicas; even
in a failure-free scenario due to unavoidable network and processing delays.

In our work in Chapters 4 and 5, we have shown that for a special class of real-
time CPSs, it is possible to forgo agreement in most cases and to use light-weight
agreement instead of generic consensus. These systems have a known number of
replicas controlling a known number of distributed agents; and the controller performs
deterministic computation. Although these prerequisites are satisfied by SDN, some
key challenges need to be addressed before the solutions can be applied.

In this work, we apply Quarts for agreement, as proposed in Chapter 5. Recall that
Quarts is a low-latency agreement mechanism, which requires a consistent labeling
of events in the SDN. Labeling is also needed to have a total order among updates
sent, in order to implement reactive controller applications such as NAT. For this, we
use intentionality clocks proposed in Chapter 4 that can express the relationships
among SDN events better than the classic logical clocks such as Lamport clocks [85]
or vector clocks [118]. However, intentionality clocks apply only to systems where the
distributed agents are synchronous or round based. We extend the labeling solution to
SDN, where the switches are asynchronous.

Lastly, Quarts performs best with regards to latency when all the switches advertise
their state at the same time. This is not the norm in SDN, where only switches expe-
riencing an event communicate with the controller. We address this problem with a
probing-mechanism (details in Section 7.3.4).

148

7.1. Introduction

7.1.3 Contributions

We present QCL, a distributed coordination layer connecting single-image controllers
replicas and switches in SDN. QCL builds upon the eventually consistent scheme of
SCL [31] and extends it with the Quarts low-latency agreement mechanism to addresses
the aforementioned challenges. As a result, QCL guarantees strong control-plane
consistency at a small cost in latency, compared to eventually-consistent solutions.

We formally prove that QCL can implement all the safety policies and networking
applications like the underlying single-image controller. On top of that, we characterize
the set of safety policies that can be satisfied by the eventually-consistent schemes and
show that the corresponding set is larger for QCL. Finally, we prove that the worst-case
latency overhead of agreement in QCL is upper-bounded.

We evaluate QCL through a simulation and study availability, response latency
and consistency for various network policies. We compare the performance of QCL
to that of SCL [31] and consensus-based schemes [190, 191] in both, datacenter and
ISP topologies. We find that, with QCL, the median data-plane convergence time
after an event is 0.6x that of Ravana [190] and 0.5x that of Consensus [191]. The
latency improvement with QCL is more profound at the 99*" percentile of convergence
time, with QCL being 160x faster than Consensus and Ravana. When compared to
the eventually-consistent scheme SCL, the median latency of QCL is double that of
SCL and the tail latency is comparable. However, SCL can violate the safety policy of
edge disjoint isolation with a probability in [6 x 1077, 4 x 10~4] for different values of
network loss rate and number of replicas (see Section7.5). The low median-latency
and drastically lower tail-latency render QCL an ideal replication scheme when strong
consistency is required.

We show the applicability of our solution through a proof-of-concept implementa-
tion with the POX SDN controller [93]. We compare our implementation with SCL and
show that our solution has comparable performance with SCL in both response and
convergence time.

The rest of the chapter is organized as follows. We introduce the system model in
Section 7.2. We present the design of QCL in Section 7.3 and elaborate the formal con-
sistency and latency guarantees of QCL in Section 7.4. We evaluate QCLs performance
in detail through simulation in Section 7.5, and we present implementation results in
Section 7.6. Finally, we review related work in Section 7.7 and provide our conclusions
in Section 7.8.

149

Chapter 7. QCL for Consistent-Controller Replication in SDN

7.2 System Model

We consider that the SDN setup comprises multiple replicas of a single-image con-
troller (e.g., POX [93], Ryu [94]) that communicate with and install updates on switches.
In this section, we describe our assumptions about the communication network, the
switches, and the requirements on the single-image controller. The network can drop,
delay and reorder packets, and links in the network can fail at any point in time. Similar
to previous chapters, the one-way propagation delay between any two end-points is
bounded by §,, — everything beyond is considered to be a delay fault.

A controller can suffer at any point in time from a crash fault or a delay fault.
Byzantine faults are not considered. We require the following properties from the
single-image controller.

e Controller applications are deterministic. If given the same network state, each
replica will compute the same set of updates. This is the key requirement present in all
the previous works [31, 162, 190].

e Controllers trigger computation upon receiving an event. Like in SCL, the con-
trollers do not incrementally update the retained state. Instead, they recompute the
state based on received messages from the switches. This makes the controller stateless
and enables QCL to perform low-latency agreement.

We relax some constraints of SCL. In addition to proactive controller applications
that compute updates, based on the network state, we enable reactive controller
applications that respond to individual packet-ins, e.g., NAT and firewall.

As normally done in SDN deployments, we assume that switches communicate
only with controllers and not with each other. Idempotent behavior is required when
a switch installs updates, i.e., installing the same update twice has the same result as
installing it once. QCL ensures control-plane consistency by performing agreement.
However, for data-plane consistency, we rely on existing mechanisms for consistent-
update installation, which are included in the design for completeness, but we claim
no novelty. Specifically, we integrate the labeling-based mechanism proposed in [193].

7.3 QCL Design

QCL acts as a coordination layer for single-image controllers (e.g, POX, Ryu). The
design of QCL is inspired by that of SCL [31]. Similarly to SCL, QCL consists of two
components: the QSP and the QCP, shown in Figure 7.2. There is one QCP on each
controller and one QSP on each switch. We use the term proxy to refer to either a QSP
or a QCP. Algorithms 7.1 and 7.2 describe the design of QCP and QSP, respectively.

150

7.3. QCL Design

Policy Coordinator

Single Image Single Image Single Image
Controller Controller Controller
Qcp Qcp Qcp

\!
Qsp Qsp | Qsp |
[s |

Figure 7.2 — Components in QCL

A QSP receives OpenFlow [194] events from its corresponding switch and then
relays the state of the switch to the QCPs. The events can either be network events that
depend on the topology of the network, such as a change of port status, or packet-ins.
The two types of events are handled differently by the QSP, as described in Section 7.3.3.
All events are labeled according to the labeling scheme described in Section 7.3.2.

A typical example of the working of QCP is as follows. When an event occurs at a
switch, it is relayed to all the QCPs by the QSP of that switch. When a QCP receives this
message, it probes all other QSPs for the most recent state of their switches. All QSPs
that receive a probe, respond with their most recent state. The mechanism used by a
QSP to export the state of a switch is described in Section 7.3.3. The QCPs wait for the
responses from the QSPs, for a fixed time after sending out the probes. Once this time
passes or all responses from all QSPs are received, the QCPs perform agreement on
the received messages by communicating with each other using Quarts proposed in
Chapter 5.

When two or more QCPs use Quarts, each QCP either decides on a set of inputs to
be used in the update computation by its controller or decides not to let the controller
compute. Furthermore, if two or more QCPs decide to compute, they will necessarily
choose the same set of inputs. QCPs that decide to compute, send the chosen input
upstream to their SDN controllers. Although it is possible that two QCPs decide
differently, i.e, to compute or not to compute, these difference do not affect controller
agreement and control-plane consistency. This is because a QCP deciding to not
compute is equivalent to the controller not issuing any updates, thereby not conflicting
with other compute updates. Moreover, agreement on input as opposed to agreement
on the updates as done in consensus results in optimizations that enable low-latency
response to network events by QCL. The agreement mechanism used by QCL, that
uses Quarts at the heart of it, is given by Algorithm 7.3 and detailed in Section 7.3.4.

151

Chapter 7. QCL for Consistent-Controller Replication in SDN

When a controller sends the computed updates to its QCP, the QCP relays them
to the QSPs with appropriate labels. Additionally, in order to distinguish between
messages from different controllers, each proxy is given a unique id. If a QSP does not
receive an update in response to one or more of its events, either because of network
losses or as a result of the controllers not computing due to Quarts, the QSP will trigger
a new round of agreement after a timeout of 7}..;. To this end, after the timeout, the
QSP will send the same events with a higher label to the QCPs. Similarly, if an update
received by the QSP does not use the most recent state of the underlying switch, then
this update this discarded, and the same events are sent later with the higher label.
This is discussed further in Section 7.3.5.

The number of QCPs (n_qcp) and QSPs (n_gsp) are assumed to be constant and are
known to all the QCPs. Addition and removal of both switches and controllers, and
planned policy changes are all assumed to be infrequent; they are handled by a policy
coordinator, using a non time-critical mechanism such as two-phase commit [195]
between the policy coordinator and the controller replicas.

7.3.1 QCL Messages & Functions

QCL uses three types of messages for communication between a QSP and a QCP,
namely Status, Probe and Update. Each message has a label [. The other fields in the
individual messages are described below.

Status<l, i, m> is the message used by a QSP to advertise the state of the corresponding
switch, when an event occurs on the switch or is sent by a QSP in response to Probe. i
is the id of the QSP and m is the body of the message.

Probe<!> is the message used by a QCP to query the current state of a switch from the
QSP.

Update<l, ack, m> is a routing update to be installed on the switch, sent by a QCP to a
QSP. ack indicates to the switch if its Status message was used in computation of this
update, in which case, ack = True, else it is False. m is the body of the message that
contains the actual routing updates.

In addition to the these messages, the QCPs also exchange other messages for
agreement, as described in Section 7.3.4.

The four main functions performed by a QCP are (i) receiving status messages from
QSPs and initiating Quarts (first function of Algorithm 7.2), (ii) performing Quarts to
obtain the agreed upon status messages (Algorithm 7.2 line 11), (iii) sending the output
of Quarts to the controller for the computation of the updates (second function of
Algorithm 7.2, and (iv) sending the Update messages, including the updates received

152

7.3. QCL Design

from their controllers, to the related QSPs (third function of Algorithm 7.2).

The four main functions performed by a QSP are (i) sending Status messages to
QCPs when receiving an event from the switch (first function of Algorithm 7.1), (ii)
responding to Probe messages received by QCPs with Status messages (second function
of Algorithm 7.1), (iii) sending to QCPs Status messages if there exist events for which
it has not received an update (third function of Algorithm 7.1) after a timeout of 7},
and (iv) receiving and checking the Update messages and sending them to the switch
(fourth function of Algorithm 7.1).

7.3.2 Ordering QCL Messages

Ensuring control-plane consistency requires that all the proxies have the same message
ordering. The QSPs export a snapshot of the SDN to the QCPs using Status messages.
A snapshot consists of the network topology and the state of the forwarding tables
at all switches. The snapshot is recreated at the controllers from received Status
messages. Each time a switch event occurs at a QSP, the snapshot of the SDN changes.
Additionally, the snapshot also changes every time a new update is installed.

We employ a labeling mechanism that uses scalar logical-clocks to label all outgoing
messages. The purpose of the labeling mechanism is to ensure that messages belonging
to the same snapshot have the same label. For instance, if event e, occurs after e; on
the same switch, then the corresponding Status messages must have different labels
and the label of e must be higher. This property is called local causality. If a controller
computes two updates for two different switches in response to the same snapshot,
then they must have the same label because they belong to the same snapshot.

To achieve this behavior, we use intentionality clocks (Chapter 4) that are adapted
from Lamport clocks [85] to capture the notion of a snapshot in a system. Each QSP
and QCP maintains a local logical-clock. Each outgoing message is tagged with a label.
The label is obtained as the value of the local logical-clock right before sending the
message. The logical clock is never decremented. It is incremented by the following
rules as mentioned in Section 4.4: (1) each QSP increments its logical clock by one,
when it receives an event from the switch or when it experiences a timeout (Algorithm
7.1 lines 7 and 27). (2) On receiving a message, the logical clock at each recipient is
updated to the maximum of the local clock and the received label.

Thus, the labels of the outgoing messages from a QSP (Status) follow the same
causal order as that of the events on the switch. This also enables QCL to support
reactive controller applications such as NAT and firewall. The labels ensure that
message ordering at the controllers is the same as the causal order at each switch. To
ensure that the total order is maintained across QSP reboots, we augment the label
with an epoch that is incremented at each QSP reboot. We assume that the epoch is

153

Chapter 7. QCL for Consistent-Controller Replication in SDN

stored in a persistent storage.

7.3.3 Exporting Switch State by QSP

Recall that the QSPs export the state of their switch by using Status messages so that
the controllers can recreate the state of the network in order to compute updates
in SDN. This approach is similar to SCL [31]. Although SCL allows only for network
events that concern topology changes, we also allow for packet events (PACKET_IN in
OpenFlow [194]) that require a per-packet update from the controllers.

The Status message after a network event includes the new state of the switch that
comprises port status and flow-table entries. As a result, a new network event at a
switch can overwrite an older network event. In contrast, packet events do not over-
write themselves. The Status after a packet event includes the OpenFlow PACKET_IN
message, in addition to port status and flow-table entries as before. Moreover, all
subsequent Status messages from this QSP must include this information until the
corresponding Update has been installed on the switch. For this, we update the vector
packet_events when a packet event occurs and an update is installed, in Algorithm 7.1
lines 9 and 37, respectively.

In Algorithm 7.1, we see that the current state of the switch that is exported in
Status messages is only updated with the clock at lines 11, 20 and 28. This ensures
that all outgoing messages from a QSP with the same label have the same body, a key
property to ensure control-plane consistency as seen in Section 7.3.4.

7.3.4 Agreement at QCP

We use the Quarts agreement algorithm at the QCPs. Quarts performs agreement on
the input of the QCPs, i.e., Status messages, as opposed to agreement on the output, i.e.,
Update messages, as done by consensus mechanism [115]. To do so, Quarts requires
labeled messages from each QSP such that any two messages with the same label from
the same QSP have the same body. In QCL, this is provided by the labeling scheme
described in Section 7.3.2.

In order to minimize latency, the QCPs using Quarts first decide whether they need
coordinate with others to reach agreement or can locally decide on the set of messages
that will be agreed upon by other QCPs. The deciding condition is the presence of the
most recent state from each QSP. When an event occurs on a switch in SDN, only that
switch communicates with the controllers. In QCL, this would mean that only one
switch will send a Status message with a new label to the QCP. In such a scenario, for
each new label, the QCPs need to agree and cannot decide locally, as no QCP would
have the Status from all QSPs corresponding to the new label. Hence, we introduce a

154

7.3. QCL Design

probing mechanism before beginning agreement at line 13 in Algorithm 7.2. When a
QCP receives a Status message, it sends a Probe message to all QSPs asking for their
state corresponding to the label of the received Status. The QSPs reply with the Status
message. This mechanism is similar to probing in SCL where the controller proxies
periodically probe the switch agents, except that probing in QCL is lazy, i.e., initiated
only when an event occurs. Lazy probing has a lower bandwidth requirement.

The probing phase lasts for a fixed time of 26,,, where §,, is the bound on the one-way
network latency as described in Section 7.2. At the end of the probing phase, Quarts is
initiated with the vector of received Status messages (Algorithm 7.3 line 11) and the
value of the local logical-clock. Quarts is round based, where a round is indicated by a
label (e.g., C' in Algorithm 7.3, line 11). Each round has two bounded-latency phases,
namely collection and voting. During collection, each QCP collects missing Status
messages from other QCPs. This also lasts for a period of 24,,, during which if a QCP
misses a Status message a QS, then it queries other QCPs for this message, and receives
the message from QCPs that have it. In the voting phase, each QCP shares a digest with
its peers: this is a message indicating the QSPs from which it has received the Status
messages. Then, each QCP uses the received digest to choose one digest by using a
deterministic voting function. If, at a QCP, two digests are tied with the same number
of votes, then the digest with the highest number of messages is chosen. The chosen
set of messages M,c.q is forwarded to the respective controllers for computation.

Note that a possible outcome of the collect_and_vote function in Algorithm 7.3
line 11 that implements Algorithm 5.3 from Quarts is success = False. In this case, the
QCP will not forward the Status messages to the controller (Algorithm 7.2 line 15) and
prepare for the next round. Conversely, if success is True on two QCPs for in the same
round, then Quarts [162] guarantees that their M,,.q is identical.

Recall that the controller is assumed to recompute the state of the network from
the received inputs. Thus, if M, 4..q does not have the Status message from a switch,
this switch is treated to be a part of network partition. As we shall see in Section
7.4, this behavior does not impact safety policies such as edge-disjoint isolation and
only affects liveness policies such as shortest-path routing. As similar phenomenon is
observed in SCL when all the SCL probe replies from a switch are lost in a round.

As the controller is assumed to be deterministic (see Section 7.2), when two con-
trollers compute updates with the same set of Status messages, the resulting Update
messages will be identical. Also, as network partitions and failures are infrequent, most
of the times, all QCPs have all the Status messages after the probing phase. Therefore,
most of the times the QCPs will skip the collection phase and go straight to voting.
In the special case of two controller replicas, if a QCP has all the messages after the
probing phase, it skips both collection and voting, and forwards the messages to the
controller without any added-latency due to agreement. This is possible because in

155

Chapter 7. QCL for Consistent-Controller Replication in SDN

rounds when the other replica has fewer messages, the replica with fewer messages will
choose not to compute as a result of voting phase, because the digest corresponding to
all messages has the highest priority.

Note that we use Quarts (without agreement on controller state) as described in
Chapter 5, without any modifications to the collection and voting phase. In Chapter 5,
the QCPs perform agreement only once, as it was designed for real-time CPSs, where
performing agreement on messages after their real-time deadline is passed is superflu-
ous. This however, is not true in SDN. Thus, if a QCP does not reach agreement after a
first attempt, more attempts for agreement can be performed. As the QCPs exchange
Status messages with each other in the collection phase, it increases the chances that
all QCPs have the whole set of messages. Thus, performing more collection rounds
improves the chances of success of the subsequent voting.

In Algorithm 7.2, for ease of presentation, the QCP does not process Status messages
if the controller is busy computing. However, this can be optimized for even lower
latency, by performing agreement among QCPs for a higher label while the controller
computes updates for an older label.

7.3.5 Data-plane Consistency

The agreement mechanism described earlier guarantees control-plane consistency.
However, in order to enforce the safety policies, the updates also need to be installed
consistently on all the switches, i.e., data-plane consistency is needed. For consistent
update-installation, we rely on prior work [193], where a packet is tagged with a label
by the first switch in its data path and all subsequent switches serve the packet with a
rule with the same label. Thus, at the time of installing the updates, we use the label
in the Update messages sent by the QCP to tag the rules as belonging to a particular
snapshot of the network.

Additionally, from Algorithm 7.1 line 35, we see that an Update is only forwarded to
the switch, if it was computed with the most recent state of the switch. Although we
have not found any safety policies that could be violated by not performing this check
before installing the update, it certainly is a good practice for liveness. For instance,
the switch could be instructed to forward packets on a port that is down, in which
case the update will be installed and the QSP will not trigger new computations, as the
acked field will be set to true, thereby violating connectivity (a liveness policy).

156

7.3. QCL Design

Algorithm 7.1: QSP Design

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C <+ reads epoch from persistent storage;

S «—1; // Current status
acked < True; /1 Was the last event acked?
Set event_timer to T} ; /1 Timer to send a Status message
packet_events < []; /1 Unacknowledged packet events
on event ¢ received from the switch

C+—C+1;

if e is a packet event then
| Add e to packet_events;
end
S + Updated current status ;
acked < False;
Send Status< C, id, S>to all QCPs;
Set event_timer to T}¢; /1 Send Status if fires before Update
end;
on receive Probe<l>
if C <! then
if C < then
C
S + Updated current status ;
end
end
Send Status< C, id, S>to all QCPs;
Set event_timer to T}
end;
on event_timer fires and acked = False
C+—C+1;
S «+ Updated current status ;
Send Status< C, id, S>to all QCPs;
Set event_timer;
end;
on receive Update<l, ack, m>
if C <[then
C+ 1
if ack then
Send m to the switch;
Remove all acked events from packet_events ;
acked < True;
Cancel event_timer;
end
end
end;

157

Chapter 7. QCL for Consistent-Controller Replication in SDN

Algorithm 7.2: QCP Design

1 C 0 /1 Logical clock use to label events
2 S_Crt« []; /1 Vector of current status messages
3 ACK+« []; /1 ACKs to be sent to the switches
4 controller_free + True;
5 compute < False;
6 qcp_free < True;
7 onreception of Status<l, i, m>and qcp_free = True
8 if C < then
9 C+ 1 /1 New status; update clock
10 S Crt «+ [];
11 S_Crtli] «+ m;
12 qcp_free < False;
13 Send Probe<C'> to all QSPs;
14 success, S_Crt < Agreement(S_Crt, C,n_gsp);
15 if success then
16 for1 <i<n_gspdo
17 if S_Crt[i] =L then
18 | ACKI[i] < False;
19 else
20 | ACKI[i] + True;
21 end
22 end
23 compute < True;
24 else
25 | qcp_free =True;
26 end
27 end
28 end;
29 on controller_free = True and compute = True
30 controller_free < False;
31 compute < False;
32 Send S_Crt to the controller;
33 end;
34 on reception of computed updates from the controller
35 for each update m for QSPi do
36 | Send Update< C, ACK[i}, m>to QSP i;
37 end
38 qcp_free < True;
39 controller_free < True;
10 end;

158

7.3. QCL Design

Algorithm 7.3: Agreement(S_Crt, C,n_gsp)

1 repeat

2 on reception of Status<l, i, m>

3 if C = [then

4 | S_Crt[i] < m;

5 end

6 if Y. (S_Crt[i] #1) = n_gsp then
7 | break;

8 end

9 end;

10 until timer 26,, expires;

11 success, Mggreed < collect_and_vote(S_Crt, C); /1 Algorithm 10 of Quarts

12 return success, Mygreed;

159

Chapter 7. QCL for Consistent-Controller Replication in SDN

7.4 Formal Guarantees

In this section, we provide formal guarantees for QCL concerning control-plane con-
sistency and enforcing safety policies. We define control-plane consistency and prove
that QCL guarantees consistency. To this end, we first provide the definition of enforce-
able safety policies. This is followed by proving that QCL guarantees the enforceable
safety policies.

Furthermore, as QCL requires agreement on events before deciding on updates
for switches, when agreement is not successful, no updates are sent to the switches.
However, events that are unacknowledged at a switch, trigger a retransmission in order
to re-initiate a computation. Moreover, when an event is a network event, it might be
overwritten by a more recent network event, e.g., a port down event followed by port
up event is essentially a port up event. We call such events converse events. We show
that all events are eventually acknowledged by QCL, unless their converse events take
place.

Lastly, we compare the set of enforceable safety policies by QCL and SCL. We
show that the set of safety policies that can be satisfied by QCL is a superset of the
corresponding set of SCL.

7.4.1 Control-Plane Guarantees

Recall from Section 7.3, that the QCPs receive events as Status messages, perform
agreement using Quarts, forward the vector of agreed Status messages to their respec-
tive controllers, receive the updates issued by their controllers and forward them to
the QSPs. Consistency is said to hold in SDN for label r if and only if the updates with
label sent by QCPs to QSPs have the same value for the same QSP.

Theorem 7.4.1 (QCL Consistency). The design of QCP presented in Algorithm 7.2 guar-
antees consistency in the presence of any number of delay- or crash-faulty replicas.

Proof. From Lemma 5.5.2, Quarts ensures that if two QCPs, @; and @), return success = True
for label C' (Algorithm 7.3 line 11), then they have the same M,,.q. Furthermore, as
controllers are stateless and deterministic, agreement on the inputs used for updates’
computation is sufficient to guarantee that the resulting updates received by @; and
@; from the respective controllers are identical. Lastly, the value of the label does not
change while the controller is computing, i.e., while qcp_free =False (Algorithm 7.2
lines 7, 12 and 38). Hence, the outgoing updates have the same label. O

In addition to providing control-plane consistency, it is desirable to have a low-

160

7.4. Formal Guarantees

latency overhead due to an agreement mechanism among QCPs, which is implemented
by Algorithm 7.3. The latency overhead of a QCP is defined as the time spent by the
QCP in Algorithm 7.2 line 14.

Theorem 7.4.2. (Bounded Latency-Overhead) The latency overhead of a non-faulty
QCP is less than or equal to 76,,.

Proof. The duration of Quarts at a QCP is at most 56,, (From Theorem 5.5.3). Moreover,
the probing phase (Algorithm 7.3 lines 1 — 10) takes at most 24,,. O

7.4.2 Enforceable Safety Policies

Safety policies must never be violated by a controller. We define a safety policy s as
enforceable if there exists a single-image controller C' that never violates s. Then, s is
said be enforceable by C or C enforces s. Let S¢ be the set of the enforceable safety
policies by the single-image controller, C. Moreover, we say that s is enforceable by
a logically centralized controller LC with one or more controller replicas of C, if LC
never violates s. The set of all safety policies enforceable by LC' is Sp.c.

From SCL [31], we have that S, (the set of safety policies enforceable by SCL)
includes a policy s if and only if it can be expressed entirely as a condition on exactly
one path, i.e., the path violates or obeys the policy regardless of other existing paths
in the network. For example, way-pointing states that the packets of a flow should
follow a path that includes a given set of switches in the network. On the contrary, the
definition of safety policies in S¢ can concern multiple flows, hence multiple paths.
For example, edge disjoint isolation for flows f; and f; states that their paths p; and p,
should not share a link. Note that S,,; C S¢.

From prior literature on distributed systems [192], we know that when the control-
plane is sharded across different controllers, it is impossible to enforce safety policies
in Sc. However, we do not consider sharding in this chapter, thereby the impossibility
result does not apply.

From the example of edge disjoint isolation in Figure 7.1, we notice that policies
in S¢ require control-plane consistency. Specifically, the controllers C;, C5 that are
replicas of C', compute two different sets of paths for flows fi, f2, each set satisfying the
safety policy. However, the true paths followed come from different controllers, and
this interleaved set of paths does not satisfy the safety policy. In the absence of control-
plane consistency, there needs to be a mechanism so that all switches, serve all flows,
by using the updates from the same “chosen” controller; this is in fact a consensus
problem and is faced with the same drawbacks of doing consensus in control-plane.

161

Chapter 7. QCL for Consistent-Controller Replication in SDN

7.4.3 Safety Policy Guarantees

We prove that for any single-image controller C, each safety policy in S¢ is enforceable
when replicating C with QCL.

Theorem 7.4.3. (QCL Safety) For any single-image controller C, each s € S¢ is enforce-
able by a logically-centralized controller obtained by replicas of C using QCL, under the
model described in Section 7.2.

Proof. As s is enforceable by C, the set of updates for label r, U?, computed by C,
does not violate s. Let U! be the set of updates computed by the i*" replica of C, C;.
Control-plane consistency implies that U = U? for any C;. Furthermore, as updates
are assumed to be idempotent, an installation of U} for each C; has the same result as
an installation of U?. O

Note that, as Ss; C Sc and S, = Sc, QCL enforces more safety policies than those
enforced by SCL.

As QCL requires agreement on Status messages before deciding on updates for
switches, when agreement is not successful, no updates are sent to the switches. Also,
as explained in Section 7.3.3, a network event that overwrites another network event
is denoted as converse event. For instance, a port up event overwrites a previous
port down event. QCL ensures that events are not lost. This is an important property
showing that consistent updates will be eventually computed, thereby providing live-
ness. For each unacknowledged event at a switch, computation of updates will be
re-triggered by Status messages from its QSP, until an update is received.

Theorem 7.4.4. (No Lost Events) QCL guarantees that every event will be eventually
acknowledged except if the converse event takes place.

This result derives from the fact that the QSP (i) sets the acked field to false when an
event occurs (Algorithm 7.1 line 12), (ii) tracks if the last event emerged at the switch
has been acknowledged (variable acked at line 26 of Algorithm 7.1) and (iii) installs
updates only if they have been computed accounting for the current state of the switch
(checked at the receive Update function of Algorithm 7.1, line 35).

Moreover, in order to correctly implement reactive controller applications such as
NAT and firewall, it is important to ensure that all packets in the flow (after the first) are
handled by updates that causally follow after the first update. This requires that any
two updates received at a switch (possibly from different controllers) are comparable,
i.e., there must exist a total order among updates. The labeling mechanism and control-
plane consistency in QCL guarantees that two updates u; and uy with labels /; and I,
respectively, received at a switch, are identical if {; = l». Alternatively, if [; < [y, then u;

162

7.5. Performance Evaluation

is time-wise before uy, proving total order. Consequently, we conclude that QCL can
be used to implement reactive controller applications.

7.5 Performance Evaluation

We use discrete-event simulation to compare the performance of QCL with other
replication schemes [99, 161, 190, 191]. We begin by describing our simulation setup
in Section 7.5.1, followed by description of the replication schemes in Section 7.5.2.
Finally we present the results of the study on safety policy (edge disjoint isolation) and
liveness policy (shortest path) in Section 7.5.3 and Section 7.5.4, respectively.

7.5.1 Simulation Setup

The data-plane is modeled as a graph of switches and the corresponding flows, and
the control-plane is modeled as g independent controllers whose computation time is
drawn according to the combined delay- and crash-fault model introduced in Section
5.6 for the performance evaluation of Quarts. This fault model is an adaption of the
Gilbert-Elliot model [177], where the controller is either in the state of normal operation
N or crashed C. When in state NN, a controller can either finish its computation within
a deadline 7 or be delayed with probability 6, and exponentially distributed delay time.
When in state C, the controller is crashed and does not issue updates. The controller
enters this state with a probability 6. and returns to state NV after a MTTR of 30 s. We
take 7 = 10 ms as the mean update computation time of a non-faulty controller.

We use an out-of-band communication network between the data-plane and
control-plane that is modeled as probabilistic synchronous [58]. The out-of-band
network will drop or delay messages, with a probability p. Messages that are delivered
have a maximum delay of §,,.

We do two types of experiments. First, in order to highlight the additive value of
QCL, we study the probability of a safety policy violation under eventual consistency,
namely edge disjoint isolation. We use the topology shown in Figure 7.1(a). Second,
we compare liveness policies and delay properties of the replication schemes by simu-
lating two datacenter fat-tree topologies [96] with 8 and 16 port switches referred to as
ft8 and ft16, respectively. We also simulate an ISP topology, AS 1221, mapped in the
Rocket-Fuel Project [196]. We also vary the MTTF Ay and MTTR A, of the links in the
network.

7.5.2 Replication Schemes

We also study the following replication schemes.

163

Chapter 7. QCL for Consistent-Controller Replication in SDN

-
-
-3 -
1077 e
-
-
—

—
-
- -
- -
- -

-k- SCL, g=3 —&— SCL, g=2

-+=- Passive, g=3 —— Passive, g=2

2 4 6 8 10
Network Loss Rate (p) [%]

Figure 7.3 — Unsafety in SCL and Passive schemes. Unsafety of QCLis 0

Ravana [190]: Ravana guarantees consistency and uses primary-standby replica-
tion [99]. Before responding to an event, the primary replica synchronizes with the
standby replicas using view-stamped replication [86]. The latency overhead in Ra-
vana is caused by the state-synchronization mechanism. We implement the “totally
ordered events” flavor of Ravana from [190] to compare with QCL that also provides
total ordering among events.

Passive: We implement the “weakest” flavor of Ravana [190], which provides lower
latency than Ravana, at the cost of eventual consistency. The state synchronization
between the primary and standbys is performed using an unreliable mechanism,
where the standbys might be out-of-sync for some time. If the failover from primary to
standby happens during this period, then safety rules can be violated. Moreover, when
the primary is detected as faulty by one or more backups, a new primary is elected
using a leader election mechanism that employs consensus, which adds latency.

SCL [31]: SCL is an active replication scheme that provides eventual consistency.
To provide low latency, the controllers forgo agreement. As a result, the response time
of SCL is the smallest among all the replication schemes. Any possible state conflicts
among the controller replicas are resolved via a periodic-gossip mechanism, and safety
policies might be violated during the period of conflict.

Consensus [191]: To study the latency performance of consensus, we simulate
ONOS [191]. However, instead of using Paxos [115] for consensus, we use Fast Paxos
[161] that is optimized for lower latency. ONOS is a consistency-guaranteeing replica-
tion scheme, but suffers from higher response time due to consensus latency.

In QCL, if a switch does not receive updates for an event for a period 7, = 1 s
since the last time a Status message was sent, it resends the Status to all the controllers
to re-initiate the computation of the updates. In SCL, the gossip mechanism among
QCPs is performed every T;..; = 1 s.

164

7.5. Performance Evaluation

7.5.3 Safety Policy Results

We quantify the safety violation by SCL and Passive schemes when the safety policy is
edge disjoint isolation for flows f; and f5 in Figure 7.1. We notice that violation of the
edge disjoint isolation can be observed in ISP-like topologies where redundant paths
of different hop-count are available for each flow, as opposed to a datacenter topology
where the redundant paths are mostly of similar hop-count.

In each iteration, we create two simultaneous link events: breaking of link 4—11 and
link 5 — 10. Once the rules from all the controller replicas are installed, we check if the
paths violate edge disjoint isolation. Unsafety is defined as the fraction of iterations in
which edge disjoint isolation is violated. We use 65 = 1 x 1073, 0. = 1 x 1074, 6, = 1 ms;
and vary g as 2 or 3, and p as 1%, 5% or 10%.

Figure 7.3 shows the unsafety of SCL and Passive as a function of network loss rate
p for different number of replicas g. We see that, for both schemes, unsafety increases
with p. For SCL, unsafety with two replicasis 6 x 10~ atp = 1% and 4 x 10~* at p = 10%,
whereas for Passive it is 3 x 107" atp = 1% and 4 x 10~* at p = 10%. The unsafety
of Passive is slightly lower than SCL because it does unreliable state synchronization
as opposed to no-agreement in SCL. As noted earlier, a safety policy must never be
violated by an SDN controller; QCL adheres to this property (Theorem 7.4.3). An
unsafety of 4 x 10~* with SCL motivates control-plane consistency.

The unsafety of SCL increases sharply with more replicas, as the probability of
disagreement increases with more replicas. Hence, as more replicas are used for higher
availability, the agreement between the replicas becomes critical.

7.5.4 Liveness Policy Results

We measure response time as the time between the occurrence of an event at a switch
and the installation of the new update on that switch. During this interval, a new event
might occur on this or another switch, i.e., the network snapshot is modified. This will
trigger a computation of new updates. Hence, installation of an update at a switch does
not necessarily imply that the required liveness (shortest path) policy is satisfied. Also,
partial installation of updates i.e., at a subset of the switches involved after a network
event does not necessarily imply that the required liveness policy is satisfied. We say
that the data-plane has converged if both safety and liveness policies are satisfied after
an event. Thus, convergence time is time between occurrence of an event and the
convergence of the data-plane. We show the median and tail (99*" percentile) response
and convergence times. We also measure unavailability as the fraction of time during
which the shortest path liveness policy is violated for at least one flow.

In this section, we use two sets of parameters: normal and aggressive. In the

165

Chapter 7. QCL for Consistent-Controller Replication in SDN

normal setup, weusep = 1x1073,0. = 1x 1074, 65 = 1 x 1073, A\ = 24 hrs, A, = 12 hrs.
In the aggressive setup, weusep = 1 x 10726, = 1 x 1073, 6, = 1 x 1072, A\y = 12 hrs,
Ar = 6 hrs. With these values of \; and),, in ft16 with 3072 links, there is an event
every 15 s and 7.5 s in the normal setup and the aggressive setup, respectively. We
vary the number of controller replicas g and network delay §,,.

We use ft16 with the normal parameter set, ¢ = 2 and round-trip time of 1 ms, i.e.,
0, = 0.5 ms as a basic scenario to highlight the main findings. We do sensitivity studies
for varying §,, g, different topologies and fault profiles. Figure 7.4 shows the ECDF of
response times and convergence times, along results on unavailability for different
schemes.

Finding 7.1. The median response and convergence time with QCL is lower than that
of consistency-guaranteeing schemes and higher than that of eventually-consistent
schemes.

Taking a closer look, we see from Scenario 1 in Table 7.1 that the median response
time with QCL is 0.6 x that of Ravana and 0.5 x that of Consensus. To better visualize
the improvement in the tail, we show on the log scale the CCDF of the response and
convergence times in Figure 7.5. From Scenario 1 in Table 7.1, we see that the median
and the tail response times of QCL are 1.2x and 1.1x that of SCL, respectively. In
contrast, the tail response time of Ravana, Passive and Consensus is 2x that of QCL,
whereas the tail convergence time is two orders of magnitude (~ 160x) larger than that
of QCL. This makes QCL clearly a better choice for datacenter networks that aim for
low tail-latency [95].

Finding 7.2. The tail response and convergence time with QCL is comparable to that
of eventually-consistent schemes and drastically lower than consistency-guaranteeing
schemes.

The improvement in response time due to QCL is attributed to the unbounded
latency overhead of some form of consensus mechanism used in Passive, Ravana and
Consensus. Also, the underlying agreement algorithm of QCL, has a higher probability
of reaching an agreement than Consensus.

Due to its lower response and convergence time, QCL has an availability three
orders of magnitude higher than Passive, Ravana, and Consensus, as shown in Figure
7.4(c). The unavailability of QCL (7.1 x 107%) is comparable to that of SCL (5.9 x
10~9); this highlights the efficacy of QCL in maximizing liveness and providing safety
guarantees. The drastically high availability of QCL and SCL is also the reason for the
low tail-latencies measured at 99" percentile. Note that the tail measured at 99.99*"
percentile and the maximum response time and convergence time for SCL and QCL
also show a similar trend. Findings 1 and 2 are true also for other scenarios (see Tables

166

7.5. Performance Evaluation

Median and Tail Response Time [ms]
| Setup SCL | QCL | Passive | Ravana | Consensus
1 | Basic 0.73,3.86 | 1.9,4.56 1.3,7.01 | 2.82,9.35 | 3.77,8.91
21g=3 0.57,2.56 | 1.91,3.65 | 1.27,6.84 | 2.81,8.29 | 3.65,8.44
314,=0.1ms 0.55,3.18 | 0.74,3.57 | 1.05,7.39 | 1.38,6.61 | 2.19,7.66
4|06, =1ms 1.05,3.89 | 3.22,6.1 | 1.48,6.44 | 4.7,11.49 | 7.01, 12.92
51¢9g=3,6,=1ms | 0.83,2.84 | 3.42,5.23 | 1.62,7.77 | 4.65,9.64 | 7.03,12.37
6 | ft8 0.79,3.39 | 1.52,4.1 | 1.27,6.59 | 2.78,7.84 | 3.72,9.12
7 | aggressive 0.76,3.72 | 2.16,5.3 | 1.33,7.18 | 2.83,8.33 | 3.77,11.1
8 | g=3, aggressive || 0.59,2.27 | 1.89,3.92 | 1.27,7.27 | 2.83,7.76 | 3.65,8.79

Table 7.1 — Median and tail (at 99*" percentile) response times for different scenarios.
The column Setup shows the difference in each scenario from basic setup seen in
Figure 7.4

Median and Tail Convergence Time [ms]
| Setup SCL | QCL | Passive | Ravana | Consensus
1 | Basic 0.77,5.01 | 1.93,5.32 | 1.39,815.79 | 2.89, 759.48 | 3.84, 855.36
21g=3 0.59,2.71 | 1.92,3.89 | 1.41,858.44 | 2.91,861.6 | 3.69, 791.75
319,=0.1ms 0.6,3.71 0.75,4.0 1.13,825.56 | 1.42,759.94 | 2.21, 829.39
419,=1ms 1.09,4.53 | 3.25,6.87 | 1.53,688.12 | 4.82, 764.15 | 7.05, 854.38
5|9g=3,6,=1ms || 0.86,2.99 | 3.45,5.68 | 1.71,880.37 | 4.73,875.17 | 7.08, 786.05
6 | ft8 0.82, 3.88 1.54,4.4 1.35,749.94 | 2.83,617.33 | 3.75,813.46
7 | aggressive 0.88,6.07 | 2.28,10.29 | 1.53,887.37 | 2.98,922.55 | 3.98,971.8
8 | g=3, aggressive || 0.63, 2.93 1.97,4.6 1.49,912.17 | 2.96, 967.87 | 3.72, 865.85

Table 7.2 - Median and tail (at 99" percentile) convergence times for different scenarios.
The column Setup shows the difference in each scenario from basic setup seen in Figure
7.4

7.1 and 7.2). Next, we study the variation in the latency improvement of QCL with
different parameters. Specifically,

Finding 7.3. The latency improvement of QCL increases with more replicas and de-
creases with larger network delay and larger network size.

From Scenarios 1 and 2 in Tables 7.1 and 7.2, we see that the response and con-
vergence times of all schemes reduces with more replicas. The addition of replicas
makes the controller more “available”, in the sense that the controller becomes more
reactive [111]. As QCL can reach an agreement with fewer available replicas, its prob-
ability of agreement increases faster than Consensus and Ravana, by adding more
replicas. Hence, with g = 3, the latency improvement increases on average by 2.2x
for tail response time and by 200 x for tail convergence time. A similar trend is seen in
Scenarios 4 and 5.

167

Chapter 7. QCL for Consistent-Controller Replication in SDN

In Scenarios 3 and 4, we vary the one-way network latency §,, to 0.1 ms and 1 ms,
respectively, from 0.5 ms in the basic scenario. As QCL performs agreement, its latency
is limited by the latency of the out-of-band control network. Thus, we find that average
convergence time of QCL increases as §,, increases. However, the difference in increase
is much lower than that of Ravana and Consensus because, on average, the agreement
mechanism of QCL exchanges less traffic than Consensus and Ravana. As a result,
for §,, = 0.1 ms, we see that the tail-latency improvement with QCL, with respect to
Consensus and Ravana, is 2.1 x for response time and 205 for convergence time, on
average. For §,, = 1 ms, these drop to 1.9x and 110x, respectively.

We also find that at lower §,, QCL closely follows SCL, whereas the difference is
larger with high values of §,,. This is because SCL is even less network-intensive in
responding to events as it does not perform agreement. Hence, the response time of
SCLis very close to d,,. As seen earlier, the performance of QCL can be further improved
to be closer to SCL with more controller replicas. When more replicas cannot be used,
a marginally higher convergence time is a small price to pay for guaranteed control-
plane consistency. Alternatively, for SDN controllers that do not require control-plane
consistency and do not implement applications based on packet events such as NAT
and firewalls, SCL could be used instead of QCL, for lower latency. However, we remark
that this seriously reduces the utility of the SDN controller.

As QCL performs agreement on n_gsp number of Status messages, its performance
depends on the number of QSPs. We see from Scenarios 1 and 6 that, as the size of
the network increases, the convergence time of QCL increases. The same effect is also
observed in Consensus schemes, albeit for a different reason. In Consensus schemes
in large networks, more events might occur while the controllers are agreeing, thereby
increasing the convergence time.

As noted earlier, the performance of QCL is dictated by the performance of agree-
ment algorithm Quarts. Thus, the convergence time of QCL depends on the success of
Quarts, which depends on the fault parameters 6. and 6;, and the network loss rate
p. Scenario 7 with the aggressive setup shows the impact of these parameters. We
see that the performance of all schemes is affected by increased fault-rate; and the
low-latency schemes QCL and SCL are affected the most. This can be remedied by
appropriately dimensioning the degree of replication when the controller is expected
to be faulty, as shown by the similarity in performance of Scenarios 1 and 8. For a more
details on the performance of Quarts for a wider range of fault profiles, see Chapter 5.

ISP Topology In order to study the performance of QCL in a non-datacenter topology,
we simulated the AS 1221 ISP topology with §,, = 10 ms in Scenario 7. Figure 7.6
shows that although the tail convergence time of QCL is increased when compared
to SCL due to larger one-way latency, the large improvement when compared to

168

7.5. Performance Evaluation

Consensus, Ravana and Passive is still preserved. Moreover, as ISP networks have
multiple, redundant paths of different costs, there is a higher chance of violating safety
policies, such as edge disjoint isolation, than in datacenter networks, as explained in
Section 7.5.3. Therefore, such networks can benefit from both low latency and zero
safety violation, offered by QCL.

Lastly, to characterize the quality of service of the shortest path policy, we measured
path-inflation, i.e., the relative increase in number of hops in the observed path of the
flow when compared to the actual shortest path. We did not observe any difference
between the path-inflation with different schemes. This can be attributed to the large
number of equal cost redundant paths in datacenter topologies. For the ISP topology
AS1221 in setup 9, we notice that the 99" percentile of the maximum path-inflation
across all flows, was 25% for SCL and QCL, 75% for Ravana, and 100% for Consensus.
The median value of the same metric was same for all schemes. We attribute the
slightly better path-inflation for SCL and QCL due their higher availability and quick
response.

169

Chapter 7. QCL for Consistent-Controller Replication in SDN

1.0 e
—&— scl
0.8 1 —— passive
E 0.6 - —e— qcl
—%¥— ravana
O 041
L~ == consensus
0.2
0.0_ T T T T T T T
0 2 4 6 8 10 12 14
Response Time [ms]
1.0 A o
—&— scl n
0.8 | —— passive
E 0.6 - —e— qcl
—%¥— ravana
O 041
L~ == consensus
0.2
0.0_ T T T T T T T
0 2 4 6 8 10 12 14
Convergence Time [ms]
le—3
-0 1.30e-03
_4?1.25—
S 1,00 9.91e-04 9.71e-04
©
= 0.75 A
% 0.50 -
:C) 0.25 A
0.00 6.90e-06 9.19e-06
scl passive qcl ravana consensus

Replication Scheme

Figure 7.4 — Representative scenario (Basic): ft16 with g = 2, 4,, = 0.5 ms and parameter

setup normal

170

7.5. Performance Evaluation

100_
—&— scl
—— passive
L —o— qcl
8 1071 5 —%¥— ravaha
@) —>— consensus
1072 T T : : : : . .
0 2 4 6 8 10 12 14
Response Time [ms]
100_
—a— scl
—— passive
L —o— qcl
8 1071 4 —%¥— ravaha
@) —>— consensus
1072 : .
0 200 400 600 800 1000

Convergence Time [ms]

Figure 7.5 — CCDF of response and convergence times for the basic scenario

100_
—— scl
—+— passive
E —e— qcl
O 1071 5 —%— ravana
O —¥— consensus
1072

2(IJO 4(I)0 6(I)0 8(I)0 1OIOO
Convergence Time [ms]

o

Figure 7.6 — CCDF of convergence time for AS 1221 with parameter set normal, g = 2
and 4,, = 10 ms.

171

Chapter 7. QCL for Consistent-Controller Replication in SDN

7.6 System Implementation

We evaluate our proof-of-concept implementation of QCL against the original SCL
implementation used in [31]. We run the two systems in the same environment with
Mininet 2.2.1 [97]: 20 switches and 16 hosts are connected via 48 1Gb links (with the
default Mininet behavior) forming a 4-port fat-tree. We use a single machine with
two Intel Xeon E5-2680 (Haswell) processors with a total of 24 cores and 48 hyper-
threads running at 2.5 GHz, and 256GB of main memory. We run Ubuntu LTS 16.04.2
distribution with the Linux kernel version 4.4.0. In both QCL and SCL we run POX
controllers with shortest-path application and pair them with their corresponding
QCPs via OpenFlow 1.0 [197]. On the switch side we run unmodified Open vSwitch
[198] (version 2.5.2) that communicates with the QSP layer, also via OpenFlow 1.0.

Note that QCP (Algorithm 7.2) needs to differentiate between updates received from
controllers as a result of two successive computations, in order to label them with the
correct label. To this end, it uses the flag controller_free to check if the single-image
controller finished computing, before sending new Status messages, thereby ensuring
that the received updates correspond to the last Status messages. We implement this
mechanism by sending an OpenFlow handle_QUEUE_GET_CONFIG_REQUEST message
from the controller to the QCP, when the controller completes a computation. When
this message is received, the controller_free flagis set to True, to indicate that the
controller is now available to perform a new computation.

We analyze the response and convergence times (defined in Section 7.5) of both
QCL and SCL across 200 random single-link failures. The time between consecutive
events is one minute. This scenario is similar to the one used for the evaluation of SCL
in [31].

In Table 7.7 we show our results with two and three single-image controller replicas.
We find that the QCL and SCL are comparable in both response and convergence
times. This is due to the fact that in good network conditions, QCL does not need to
perform the collection phase of Quarts and can go straight to the voting phase after the
probing, as described in Section 7.3.4. The probing phase lasted an average of 20 ms
during which all the Status messages were received. In cases where the controllers
entered Quarts, the additional latency was 3 ms. Notice that while the response time
of QCL is slightly higher than SCL due to the probing delay, the convergence time
of QCL is slightly better than SCL due to control-plane consistency in QCL ensuring
that different controllers do not install conflicting updates. As a result, the data-plane
converges faster with QCL in our implementation.

From evaluation in [31] we know that for the same 4-port fat-tree topology ONOS is
expected to be 1.24x and 1.63x slower than SCL, for the tail response and convergence
time respectively. Similar results are expected for QCL. Note that the large latency-

172

7.7. Related Work

W 175

S

— 150

GE) B scl, g=2
= B qcl, g=2
3 @A scl, g=3
cC> w77 qcl, g=3
o

(%]

9}

o

Median Tail Median Tail

i)

E

9}

_E B scl, g=2
[J] mm qcl, g=2
g WA scl, g=3
GEJ’ w2 gcl, g=3
[

>

c

o

(@]

Median Tail Median Tail

Figure 7.7 — Median and tail (at 99" percentile) of 4-port fat-tree with 2 and 3 replicas
in ms

improved observed in Section 7.5 is not visible in this implementation study because
the high latency with Consensus (ONOS) is observed in cases of network partitions not
studied here.

7.7 Related Work

Numerous related works evaluate the trade-off between the inconsistent global view
network and latency performance of SDN controller applications [199, 200].

On the one hand there are numerous approaches that focus on ensuring control-
plane consistency, but impose high delays in responding to network events. For
instance, Hyperflow [201] that passively synchronizes network-wide views of OpenFlow
controllers. Furthermore, ONOS [191] uses Paxos, that is known to have high latency
and complicated implementations [31, 111]. Raft is designed to be easy to understand,
but it is equivalent to Paxos in terms of correctness and performance - therefore the
approaches that use Raft (e.g. ONIX) [189,202] have the same latency issues like those
that use Paxos. Ravana comes in many different flavors that offer different levels of
consistency guarantees. The strongest one offers exactly-once event processing and
exactly-once execution of commands that comes at a big latency price [190]. On the
other hand approaches like SCL chose the opposite trade-off, as we saw in Section 7.1.
The trade-offs in SCL [31], Ravana [190] and Consensus [191] have been extensively
studied in our performance evaluation study in Section 7.5.

173

Chapter 7. QCL for Consistent-Controller Replication in SDN

QCL managed to get the best of both worlds by using Quarts to perform agreement
among controller replicas only when needed.

An orthogonal problem is to control-plane consistency is the consistency of updates
under asynchronous installation of updates to the switches [193,203, 204,205, 206]. For
that purpose QCL uses packet labeling (e.g., as in [193], [206]) as described in Section
7.3.5.

7.8 Conclusion

We have presented QCL, a coordination layer for replicated single-image controllers
that guarantees control-plane consistency with low-latency. Through simulation, we
find that QCL provides a 160 x improvement in tail latency when compared to other
consistency-guaranteeing mechanisms in datacenter topologies. We have formally
proven that the QCL can be used to enforce all safety policies that are enforceable by
the underlying single-image controller. Also, it can be applied for both stateless and
reactive controller applications. Note that, in this work QCL is applied to stateless
controller applications. However, Quarts can handle state and we are planning to
adapt QCL for stateful controller applications in our future work.

174

Reliable Real-Time Communica-
tion in Unreliable Networks

Look, if you had one shot

Or one opportunity

To deliver a packet

One moment

Would you capture it,

or just let it slip? Yo

— (inspired by) Eminem, Lose Yourself.

Real-time CPSs rely on reliable communication to achieve their timely control
of the physical process. Even the reliability mechanisms presented in the previous
chapters are inutile in the absence of a good communication network. For example, in
a control round where the controller replicas issue consistency-guaranteeing setpoints
well within the validity horizon, and the network drops these setpoints, the desired
control cannot be achieved.

One example of such a time-critical CPS is the real-time streaming of phasor mea-
surements in electric grids [207]. This streaming demands extremely low PLR and
latency from the communication network [208]. The phasor measurements are used
for a wide variety of applications. Some applications such as energy metering can
tolerate a PLR of 10~3 and latencies up to 1 s [209]. But other applications such as
PMU based state-estimation and wide-area protection require a PLR of 10~° and laten-
cies < 4 ms [52]. Mission-critical PMU-streaming applications require an availability
greater than five-9’s (> 0.99999). In such cases, the software agents do not have the
time budget to repair the losses with retransmissions, as done in TCP. They only have a
short window during which the message has to be delivered to the application; if this
fails, the measurements are are rendered unusable.

175

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

8.1 Introduction

Traditionally, highly reliable communication in CPSs is achieved using wired infras-
tructure. However, wired networks are often laden with slow deployment and high-
installation costs. Consequently, wireless infrastructure, Wi-Fi (IEEE 802.11) in particu-
lar, has recently gained traction [210,211,212]. The main reserve in the use of wireless
infrastructure is the low QoS in terms of losses and latency, due to low reliability of
wireless links.

Typically, reliable communication is achieved by using TCP. TCP uses retransmis-
sions to repair packet losses on the fly. TCP also ensures in order delivery of packets.
Thus, more recent packets are only delivered to the application after older packets
have been successfully delivered. Using this approach in real-time CPSs is detrimental
as newer data in CPSs is more valuable than older data because it represents a more
recent state of the physical process. Hence, for real-time data, UDP is preferred as a
transport protocol over TCP. See Section 8.2 for more details.

As UDP does not provide reliable transport, there needs to be other mechanisms
to ensure the reliability of real-time flows. In the literature, the desired QoS target is
achieved by replication of packets over two or more fail-independent paths, for exam-
ple, using PRP at the MAC-layer [81, 145]. Parallel replication not only provides reliable
communication in cases of packet losses due to congestion or disturbance in some of
the links, it also handles network component failures. It can also serve as a method to
continue uninterrupted operation during the times of scheduled maintenance. The
purpose of PRP is to ensure that message losses, due to packet drops or component
failures in the network, are repaired instantly (“0 ms repair”). To this end, PRP repli-
cates packets over two disjoint cloned networks and appends the MAC header with a
PRP header. The PRP header contains control information such as which of the cloned
network to which a packet belongs and a sequence number. The sequence number is
used by the PRP module at the receiver to de-duplicate packets and to deliver them to
the application.

Currently, there is an increasing use of IP-based communication in CPSs [52].
PRP has a few drawbacks with regards to applicability in IP-based networks that use
routers, thereby constituting a WAN in contrast to a single LAN. Primarily, the control
information in PRP is put in the MAC header, and IP routers strip the MAC header
at each hop, thus losing this critical information. Modern CPSs [4,207] often use IP
multicast for communication, where receivers might asynchronously join or leave
an existing transmission. PRP does not natively provide reliability for IP multicast
traffic. Moreover, in PRP all traffic (including non real-time traffic such as management
traffic and software updates) between a sender a receiver is replicated. This is both
superfluous and undesirable for WANs where links are often bandwidth limited. We
further discuss these issues and review other related work in Section 8.2.

176

8.1. Introduction

Another key drawback of PRP concerns its duplicate-discard algorithm presented
in [81]. It ensures that PRP forwards at most one copy of a packet to the application as
long as the network does not reorder the messages. Although this assumption is true
in a single LAN, packets of the same flow in a WAN might be reordered due to middle-
boxes such as scrubbers and load-balancers, as discussed in [149]. In scenarios when
the messages are re-ordered, the PRP duplicate-discard algorithm [81] can forward
duplicates to the application. This property of the discard algorithm might violate
the state-safety correctness property of the CPS, especially when the CPS expects to
receive only one copy of a packet.

To address the issues with PRP and provide 0 ms repair for CPSs that communicate
over a WAN, we propose iPRP, an IP-friendly parallel-redundancy protocol. iPRP
provides 1 + n redundancy and is a software solution that only requires installation
on the end-hosts (or simply a host, used to identify senders and receivers of the data)
and no changes to the intermediate routers. It performs selective replication for time-
critical UDP flows by appending the UDP header with an iPRP header. At the receiver,
the information in this header is used to recreate the original packet and to forward
at most one copy of the packet to the application. Besides the replication and de-
duplication, iPRP uses a signaling mechanism to constantly check for the failure of a
host (to stop replication); availability of new paths (to start replication for increased
reliability) and for the joining of new receivers in multicast communication (to stream
replicated traffic to them). iPRP is transparent to the network and agnostic to the
application. Another advantage of being IP friendly is that iPRP can use a wide range
of TCP/IP diagnostic utilities such as ping and traceroute to ease the debugging of
network issues. We also have a few iPRP specific tools and present a detailed iPRP
diagnostic toolkit. We implemented iPRP! and have deployed this implementation on
a campus-wide communication network for real-time streaming of PMU data [53].

Needless to say, both PRP and iPRP rely on the existence of fail-independent paths
to reap maximum benefits from the replication. In wired networks, fail-independent
paths are obtained by using physically separated networks or by appropriate routing
rules in a larger, parent network. Hence, by ensuring that the replicas of the packets
share no common links or devices, it is easy to guarantee that the loss of one packet
does not affect the reception of its replicas.

Obtaining fail-independent paths, however, is no longer trivial in wireless networks,
as the Wi-Fi links share a common medium. Consequently, the replication of packets
over redundant Wi-Fi does not necessarily guarantee that the QoS requirements of
mission-critical PMU-streaming applications will be satisfied. Hence, to be able to
use Wi-Fi for PMU-streaming applications, the performance of parallel redundancy
protocols over Wi-Fi needs to be experimentally characterized and compared against

! Available at https://github.com/LCA2-EPFL/iprp

177

https://github.com/LCA2-EPFL/iprp

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

the desired QoS requirements.

Recently, simulation- [213, 214, 215] and measurement-based [216, 217] studies
were employed to quantify the loss and latency performance of packet replication
over redundant Wi-Fi paths. The simulation-based studies fail to capture the real
performance of redundant Wi-Fi paths. The measurement-based studies have two
shortcomings: (1) The measurements were conducted in a laboratory environment
and do not represent a real-life setting. (2) The measurement studies focus on generic
real-time applications. Thus, the traffic profiles used are quite different from those of
PMU-streaming applications, thereby rendering these studies non-representative.

We perform measurements on a test bed that is designed to closely imitate a real-life
deployment of a campus-wide active distribution-network that uses PMU-based state
estimation as described in [53]. Concretely, using commodity hardware, we designed a
test bed that uses Wi-Fi technology (IEEE 802.11b standard). The test bed consists of
nodes communicating with each other by using two spatially co-located Wi-Fi links
that use directional antennas. The traffic profile used in the test bed is the same as that
of PMUs in the distribution-network. Furthermore, the sending and receiving nodes
are placed at the same locations as the PMUs and PDC in the distribution-network.

Using the measurements, we quantify the PLR, the end-to-end latency, jitter in
latency and the availability of the effective channel, as perceived by the receiving
application after replication. Using statistical inference techniques, we verify if the two
links are truly fail-independent. From the setting we evaluated, we find that the losses
on the two links are in fact not independent. However, the effective PLR is similar to
what it would be if they were to be independent. Consequently, we conclude from the
setting we evaluated, that using replication over redundant Wi-Fi paths with PRP or
iPRP is a viable option for streaming mission-critical PMU data.

The rest of this chapter is structured as follows. We review the existing solutions for
reliable real-time communication in Section 8.2. In Section 8.3, we present the chal-
lenges in realizing a practically viable design of iPRP followed by a detailed description
of the iPRP design in Section 8.4. This is followed by the proof of correctness of the
discard algorithm in Section 8.5. We present the iPRP diagnostic toolkit in Section 8.6.
Then, we present the description of the measurement test-bed to asses the viability
of using directional Wi-Fi links for parallel redundancy protocols and the associated
results in Section 8.7. We present the statistical test for fail-independence of directional
Wi-Fi links in Section 8.8 and our concluding remarks in Section 8.9.

178

8.2. Related Work

8.2 Related Work

PRP [81, 145] is the go-to-protocol to achieve 0 ms repair of real-time CPS traffic. As
mentioned in Section 8.1, PRP is faced with several drawbacks in terms of applicability
to WANs. These drawbacks were noted by the authors of [150], where modifications
to PRP are proposed so that it can be applied to WANs. However, these modifications
are neither fully designed or implemented. The design proposed in [150] requires that
the intermediate routers in a WAN preserve the PRP trailer. This requires changes to
all the intermediate routers, which makes the solution not transparent to the network
and difficult to deploy. Moreover, the solution in [150] does not address the use of
IP multicast nor does it support a diagnostic toolkit, a key utility in IP networks. Our
transport layer solution avoids these drawbacks.

Another approach to achieving reliability through transport-layer redundancy is
MPTCP [134]. MPTCP uses multi-homed devices to setup parallel channels that are
then used to either send different packets (in case of the normal packet scheduler) or
the same packet replicated over different networks (in case of the redundant sched-
uler [218]). Losses on each path are repaired independently, through retransmissions.
However, MPTCP suffers from the same drawbacks as TCP. First, the packets are deliv-
ered in-order to the application, which causes the head-of-line blocking issue [133],
where more recent packets are queued until older packets are delivered. This is counter-
productive for traffic in CPSs because older data is subsumed by newer packets as it
represents a more recent state of the physical process. Second, packet are detected as
lost after the RTO which doubles after every loss, after which retransmissions are used
to repair losses. Although retransmissions are often unsuitable for real-time traffic,
doubling the RTO after every loss is highly undesirable as it adds more delay after
each loss. Third, TCP and MPTCP do not support IP multicast. Lastly, TCP does not
handle the case of service outage due to a component failure in the network and due to
scheduled maintenance, where sending packets on the same path does not help with
reliability. Some of these drawbacks are addressed by the upcoming QUIC transport
protocol [135,136], but support of real-time traffic and parallel redundancy is still in
its nascent stages.

Routing protocols such as RIP [141] and OSPF [140] can be used to repair losses
due to link or component failures. They rely on finding alternate paths, which can take
a few seconds to converge, during which the real-time traffic is not delivered to the
CPS application. A similar approach is used in used by MPLS-TP, where the backup
path (called the protection path) is pre-computed. However, MPLS-TP takes about
50 ms to perform a failover from the working path to the protection path. This makes
it unsuitable for time-critical CPS applications (such as teleprotection) that require
delivery of packets in under 4 ms.

When two or more network subclouds are available for replication, an alternative

179

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

to replicating all packets on all the subclouds is to selectively replicate packets only on
the networks that have a high probability of delivering it. This approach is explored
in [219], where the replication mechanism monitors the state of the network (good or
bad) and defers transmission on a network until it is in a good state. This approach is
complementary to iPRP and can reuse the key elements of iPRP design, such as the
iPRP session creation and maintenance, or de-duplication algorithm.

All these protocols rely on having a sound underlying network and solutions like
PRP and iPRP require fail-independent paths. To facilitate the wide-spread adop-
tion of Wi-Fi for mission-critical applications, several studies in the literature have
evaluated the loss and latency performance of individual Wi-Fi links through measure-
ments [220,221]. However, there exist very few measurement-based studies [216,217]
that characterize the performance of replicated Wi-Fi links in the context of real-
time applications. Both these measurement-based studies [216, 217] share similar
shortcomings that render the results non-representative of streaming applications for
mission-critical PMU data.

First, the measurements in [216,217] were conducted under a controlled, laboratory
environment that is radically different from an in-field deployment. In contrast, our
measurements were conducted using directional antennas on campus roof-tops. The
locations of the measurement sites are the same as those of the PMUs in an existing
campus-wide distribution-network that relies on the mission-critical PMU data [53].

Second, as the existing studies do not focus on validating the feasibility of using
Wi-Fi for PMU-based applications, the traffic profiles used are quite different from
those of PMU-streaming applications. Incidentally, the main finding of these papers
is that the PLR is strongly dependent on the traffic profile. In light of these results,
we employ the same traffic profile as used by the PMU-based state-estimation in [53].
Recently, traffic from streaming applications was used for measurements in a similar
study [222]. However, we perform a more formal statistical analysis on the data to test
the fail independence of the two links.

Lastly, in contrast to the short duration (of a few days) of these measurement cam-
paigns, our measurements were conducted over period of 45 days, thereby increasing
the amount of data at hand. The longer duration also captures a wider spectrum of
fading effects, electro-magnetic disturbances, cross-talk, etc.; these effects are likely to
surface in real deployments.

8.3 Technical Challenges in iPRP Design

Although the idea of replicating packets over two or more paths is straight-forward,
there are several non-trivial challenges in designing iPRP. They are as follows:

180

8.3. Technical Challenges in iPRP Design

. Obtaining a network-transparent and application-agnostic design of iPRP. This
is an important feature that determines the ease of adoption of iPRP. An ideal
solution works without any specialized network hardware and without any modi-
fications to existing CPS applications.

. As discussed earlier, the selective replication of only the real-time traffic is a
desirable feature. However, this is difficult to achieve without any modifications
to the applications.

. The communicating agents in the CPS might crash/reboot or have addition/re-
moval of network interfaces at any time. These dynamic changes in the sender or
the receiver affect the replication of the traffic. For instance, if both the end hosts
have a new interface available for replication, then the two ends must implement
a protocol to agree to perform replication on this interface. This is done through
a handshake between the sender and receiver(s).

. The application must receive at most one copy of a packet. This requires design-
ing a discard algorithm that does not forward duplicates to the applications even
in the presence of packet reordering. As the de-duplication needs to be in the
real-time path, the algorithm must have a low time-complexity. Furthermore, as
an agent might be communicating with several agents at the same time, each
requiring a different instance of the discard algorithm, it is desirable to have a
low memory footprint for each instance of the algorithm.

. As many applications in a CPS use IP-multicast, iPRP must be able to natively
support it. In order to do so, iPRP must permit asynchronous joining and leav-
ing of receivers without affecting the replication for existing receivers. This is
particularly challenging because of two contradicting requirements. On the one
hand, applications must receive exactly one copy of the packet, thereby requiring
that all packets of the real-time flow be replicated and communicated to the
de-duplication algorithm at the receiver. On the other hand, in order for newly
added receivers to be able to perform a handshake with the sender (to receive the
relevant information to process replicated data), they first have to learn about the
existence of this sender. This requires the iPRP protocol at the sender to transmit
original, non-iPRP packets, in addition to the replicated traffic. In a setup with
two parallel paths, this implies that the sender sends the original packet from the
application, unmodified on the first network and two replicated iPRP packets
on the two networks. This would lead to existing receivers receiving two copies
of the packet: one original packet and one from iPRP after the de-duplication
algorithm.

181

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

8.4 iPRP Design

iPRP provides 1+n redundancy for real-time UDP flows and does not impact TCP flows.
To this end, it replicates packets of the real-time flows at the sender and performs de-
duplication at the receiver. In order to ensure that the replicated packets are isolated
from other traffic, all replicated traffic is sent to a pre-determined iPRP data port D.
Once a sender and receiver start exchanging replicated traffic, they are said to be
connected via an iPRP session. An iPRP session is uni-directional, from one sender to
one or more receivers, for unicast or multicast traffic, respectively. All control traffic for
initiating and maintaining an iPRP session is exchanged over a another pre-determined
port called the iPRP control port C (# D). We require that the two ports C and D, be
reserved in the operating system of the communicating hosts, exclusively for iPRP
related traffic.

Application Receiver
Layer

iPRP
Control Intercepted Lciive
Plane Packets De-duplicated
Packets
iPRP_CAP
ICB [
1PRP_ACK
Port C
----------------------------- iPRP Session Initiated By
iPRP
Data ISB 3 :
Plane @ Replicated Packets Port D Duphcate
Discard

with headers

Figure 8.1 — Overview of the iPRP design indicating the flow of a packet

Figure 8.1 gives an overview of the iPRP design. It consists of four functional blocks:
the iPRP monitoring block (IMB), the iPRP control block (ICB), the iPRP sending block
(ISB) and the iPRP receiving block (IRB). The design of these functional blocks is
given by Algorithms 8.1, 8.2, 8.3 and 8.4, respectively. The operation of iPRP can be
divided into the control plane and the data plane. The control plane is responsible for
monitoring new flows that need replication using the IMB at the receiver, and initiating
and maintaining an iPRP session using the ICB at the sender and the receivers. The
data plane is responsible for the replication of traffic using the ISB at the sender and
the de-duplication of traffic using the IRB at the receiver. Note that the control plane is
for non real-time iPRP control traffic, whereas the data plane is for the real-time CPS
traffic.

182

8.4. iPRP Design

We will explain the design of iPRP by first giving a walk-through of the normal
operation of iPRP in Section 8.4.1. Then, we highlight the key elements of the design in
Sections 8.4.2-8.4.6.

As mentioned earlier, we implemented iPRP and make the open-source imple-
mentation publicly available. The implementation uses the NF_QUEUE framework
from the Linux iptables project because it enables filtering packets through iptables
rules, and modifying them in user-space. This is the same framework used in packet
mangling with Axo, in Chapter 6. This implementation is deployed on a campus-wide
network for real-time streaming of PMU traffic at EPFL.

8.4.1 Protocol Walk-Through

Consider a PMU with an IP address S on one of its interfaces, streaming phasor data
to the destination port p of the PDC using a UDP-based application. Sending and
receiving hosts, such as PMUs and PDCs, can have any number of network interfaces.
However, for the hosts to be able to use replication, it is desirable to have more than one
network interface each. Moreover, in order to reap maximum-benefit from replication,
it is desirable to have fail-independent paths through link- and edge-disjoint network
subclouds. This is often difficult in WANSs, as the users of the CPS do not have full
control of the network, because a slice of the network might be a part of the public
infrastructure. Additionally, most WANs have connected subclouds for the ease of
management. Figure 8.2 shows an example of such a network where the PMU is
connected to two network subclouds A and B, and the PDC is connected to A, B and
C. Subclouds A and B use wired communication and are connected to a common
maintenance server, whereas sub-cloud C uses Wi-Fi based communication. One
key difference of iPRP with respect to PRP is that it is network independent and can
function without cloned disjoint networks.

To start iPRP, the hosts have to initialize the ICB (Algorithm 8.2). At this point,
no visible change is noticeable at the senders and receivers, and the data transfer
continues unaffected. To trigger iPRP, the receiver has to mark the UDP port p as a
monitored port. This is done by locally configuring it in the set of monitored ports P,
at @ in Figure 8.1. At this juncture, the ICB instantiates an IMB (Algorithm 8.1) that
listens for incoming traffic on port p. The IMB maintains two lists (1) the list of active
senders (L,.c) that keeps track of which senders are sending traffic to the ports in P,
and (2) the list of established sessions (L.;) that keeps track of the flows for which an
iPRP session has already been established.

When a packet on port p is received by the IMB (at Algorithm 8.1 line 3), as the
source IP address of this packet is not in the currently empty Lctive, it is added to
Lactive with a timestamp called the last-seen timer. This timestamp is updated every

183

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

Maintenance Server

Network
Subcloud A

Network
Subcloud B

Network
Subcloud C

Figure 8.2 — Example of a network with two connected subclouds performing iPRP

time a packet is received (at line 7) and is used by the IMB to remove aged entries
corresponding to inactive senders. An entry is considered aged if its timestamp is older
than T’inactim'ty-

In Figure 8.1, a new entry added to L. at @) triggers sending of iPRP_CAP mes-
sages by the ICB at the receiver at @) to the ICB at the sender. The routine for sending
these messages is given by Algorithm 8.2 lines 15-18. The iPRP_CAP messages are non
real-time control messages used to advertise to the host that is sending real-time traffic,
the networks currently available for replication at a host receiving the real-time traffic.
In this case, the iPRP_CAP messages contain the three networks A, B and C, encoded
using their pre-configured 4-bit iPRP network discriminators (INDs). The iPRP_CAP
messages also include the port number p that triggered its sending. The IP address
of the PDC and the port number p are used to uniquely determine an iPRP session at
the PMU. The ICB also starts the IRB (Algorithm 8.4) that listens for replicated iPRP
packets on port D.

When the ICB at the PMU receives this message at (9 in Figure 8.1 and at Algorithm
8.2 line 2, it checks if there already exists an iPRP session for this flow. In this case, as
there is no iPRP session, it records the creation of a new iPRP session and sends an
acknowledgment (iPRP_ACK). In the case of multicast, to avoid a barrage of iPRP_CAP
messages from all the receivers, the iPRP_ACK are particularly useful, as discussed
further in Section 8.4.2. In order to identify the network subclouds on which the
packets must be replicated, the ICB performs IND matching by taking an intersection
of its own INDs with the ones received in the iPRP_CAP message (Algorithm 8.2 line 4),
which returns the INDs A and B in this case.

Note that iPRP_CAP messages are sent periodically as a part of a keep-alive mecha-

184

8.4. iPRP Design

nism for the iPRP session, and aged sessions are continuously deleted from the senders
record. Similarly, if a receiver does not receive iPRP messages from a sender for some
time, it marks the session as dead, and updates L, and L.s;. These messages also
serve as a mechanism to address dynamic changes in the hosts as described in Section
8.4.4. Furthermore, all control messages are exchanged on the reserved port C and are
isolated from the real-time traffic.

Algorithm 8.1: IMB: monitor for new flows at the receiver

1 Lactive < []; // List of active senders
2 Log H, /I List of established sessions
3 for each packet received on a port in P with source IP address S do
4 if S ¢ Lyctive then
5 ‘ Add S to Lctive; // To send IPRP_CAP messages
6 end
7 Update last-seen timer of S;
8 if S € L. and the packet was not received from IRB then
9 ‘ Discard the packet; /1 Already receiving replicated packets
10 else
11 | Accept the packet;
12 end

end
while true do
Add entries for new iPRP sessions to L.;
Remove aged entries from L4 and Leg;
end

P
N OO a o w

Once the iPRP session is created, the ICB at the sender starts the ISB (Algorithm
8.3) that intercepts all outgoing traffic for the flow corresponding to the iPRP session.
In this case, the ISB at the PMU intercepts all traffic directed towards the IP address of
the PDC and the port p as shown at) in Figure 8.1. The ISB replicate these packets,
creates an iPRP header for each packet, and sends the replicated packets on the two
matched network subclouds A and B, but to the iPRP data port D instead of the original
destination port p. The iPRP header is attached as a trailer to the UDP header. This
places iPRP between the UDP layer and the IP layer, making it a transport layer solution,
as show in Figure 8.3. Given that iPRP is required to be transparent to the network, i.e.,
the routers and switches in the network have to be unaware of iPRP, the header needs
to be above the IP layer. This leaves two choices: the transport layer or the application
layer. We chose the transport layer as it also satisfies the other requirement to be
transparent to the application. This enables a design that is agnostic to the application
and does not require any modifications to the existing applications.

The iPRP header contains all information required by the receiver to reconstruct
the original packet and forward it to the application. Specifically, it comprises:
e SNSID that is used to uniquely identify an iPRP session. It is formed from the desti-

185

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

Algorithm 8.2: ICB: Initiate and maintain iPRP session

1 // At the sender
2 for each iPRP_CAP message received for port p from a source IP address S do

3 if no iPRP session is established for (S, p) then

4 if IND matching is successful then

5 Record creation of an iPRP session for (S, p);

6 send iPRP_ACK message;

7 end

8 else

9 \ Update the keep-alive timer for the iPRP session (S, p) ;
10 end

11 end

13 // At the receiver

14 while true do

15 compute Ty, (Section 8.4.2) ;

16 listen for iPRP_ACKs until Tj,c10f f €Xpires;

17 send iPRP_CAP messages to all hosts in L, from which no iPRP_ACKs are
received;

18 sleep Tcap — Thackof f;

19 end

nation IP address of the PDC and the port p (160-bit)
¢ Sequence number of the packet (32-bit)

¢ Original destination port p (16-bit)

¢ IND of the network subcloud (4-bit)

e HMAC for authentication (160-bit)

When the replicated packets are received by the IRB at the PDC, they are checked
to verify whether they they are new or duplicates by using the isFreshPacket function
described in Algorithm 8.5. This function is the de-duplication or discard algorithm
of iPRP. If the packet is indeed the first received copy, the payload is extracted, the
original packet is reconstructed using the original destination port and IP address in
the iPRP header. Then, the original packet is forwarded to the IMB, which uses it to
update the last-seen timer, and forwards it to the application. More details on the
discard algorithm are presented in Section 8.4.5.

Notice that by filtering packets based on the destination IP address and destination
port p, iPRP achieves selective replication of only the real-time flows.

186

8.4. iPRP Design

Realtime || Realtime

App 1 App 2 Other Apps

UDP Layer

iPRP

IP Layer

Figure 8.3 — Placement of iPRP in the networking stack

Algorithm 8.3: ISB: Replicate packets

1 for each intercepted packet for IP address S and portp do
2 if there exists an iPRP session for (S, p) then

3 Replicate the payload;

4 Append iPRP headers;

5 Discard original packet;

6 Send replicated packets to the matched INDs;

7 else

8 \ Forward the packet unchanged;

9 end

10 end

8.4.2 [P Multicast

As noted earlier (Section 8.1), natively supporting IP multicast is one of the key require-
ments for CPSs. At the outset, we note that as iPRP performs selective replication of
only the real-time traffic, it does not affect protocols such as IGMP [223] and MLD [224],
which are used to form multicast forwarding trees. Therefore, the network-layer opera-
tion of IP multicast and iPRP are independent.

One of the challenges in supporting multicast is to permit newly joined receivers
to benefit from replicated traffic, as discussed in Section 8.3. The issue here is to
ensure that the application layer on all receivers is presented with at most one copy
of the packet, despite sending both: the replicated traffic to port D for receivers that
have already established an iPRP session, and non-replicated traffic to port p for new
receivers to establish an iPRP session. This is achieved as follows.

When using multicast, by selectively executing Algorithm 8.3 line 5, the ISB peri-
odically lets an original unmodified packet through, on port p. Thus, once in a while,
multicast receivers that have already established an iPRP session receive a packet on
the receiving application’s port p, thereby triggering Algorithm 8.1 line 3 at the IMB.
However, as this source is already in L., the packet is discarded. Only the packets

187

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

Algorithm 8.4: IRB: Discard duplicate and forward packets to the application

1 for every packet received on iPRP data port do
2 get sequence number space ID (SNSID);

3 get sequence number (SN);

4 if it is the first packet from this SNSID then

5 SNSID.HighSN<— SN; /1 Bootstrap
6 remove iPRP header;
7 reconstruct original packet;
8

9

forward to IMB;

else
10 if isFreshPacket (SN, SNSID) then
11 remove iPRP header;
12 reconstruct original packet;
13 forward to IMB;
14 else
15 | silently discard the packet;
16 end
17 end
18 end

received from IRB that have already been cleared by the discard algorithm are for-
warded to the application. Alternatively, on new receivers, the reception of a packet on
port p triggers a session established by the IMB. Thus, they can shortly start receiving
replicated packets on port D.

Recall that all the receivers that have established an iPRP session, periodically
advertise their capabilities through the iPRP_CAP messages. This periodic timer is
reset to the same value at all the receivers in the multicast group when an iPRP_ACK
is received. Thus, the timers on all receivers fire close to each other, causing all the
receivers to simultaneously send iPRP_CAP messages. This can cause a “message
implosion” at the source, as the size of the multicast groups can vary from a few tens to
several millions. This problem is avoided by waiting at the receivers for a time Tyqckof f
after the timer fires and before sending the messages. If during this time, an iPRP_ACK
message is received from the sender, then the sending of iPRP_CAP at this receiver is
suppressed in this round. Ty,c10¢ ¢ is computed using the approach in [225], where a
similar problem was studied in the context of reliable multicast for video streaming.
In this approach, the waiting time is drawn from a modified exponential distribution,
such that with a very high probability, all but one or two hosts receive the iPRP_ACK
messages before sending out their iPRP_CAP messages.

188

8.4. iPRP Design

Algorithm 8.5: isFreshPacket (CurrSN, SNSID): Function to determine whether
a packet with sequence number CurrSN corresponds to a fresh packet in the
sequence number space ID SNSID. The test “x follows y” is performed for 32-bit
unsigned integers using subtraction without borrowing as “(x-y)>>31==0".

1 if CurrSN==SNSID.HighSN then

2 ‘ return false; /1 Duplicate packet

3 else if CurrSy follows SNSID.HighSN then

4 put SNs [SNSID.HighSN+1, CurrSN-1] in SNSID.ListSN;

5 remove the smallest SNs until SNSID.ListSN has MaxLost entries;
6

7

8

9

SNSID.HighSN < CurrSN; /1 Fresh packet
return true;
else
if CurrSNisin SNSID.ListSN then
10 remove CurrSN from SNSID.ListSN;
11 return true; /1 Delayed packet
12 else
13 ‘ return false; /1 Already seen or very late
14 end
15 end

8.4.3 Crash of a Host

A challenge in designing a replication protocol (such as iPRP) is to cause minimal
disruption to the real-time traffic, either when one of the host or iPRP on one of the
host crashes.

When the receiver with an established iPRP session crashes, it can no longer send
iPRP_CAP messages. Thus, the keep-alive timer at the sender is no longer updated
(Algorithm 8.2 line 9). This forces the deletion of the session after 7T}, qctivity, thereby
causing the replication to end. Alternatively, if the sender crashes, the receiver no
longer receives data. Consequently, it does not update the last-seen timer for that flow,
thereby eventually resulting in removal of this flow from the lists Lyt and L.

Note that when we say a receiver crashes, either the host can crash (in which
case the application is no longer able to send or receive data) or only iPRP can crash
(in which case, the session is automatically deleted and normal communication is
restored). A similar behavior is observed at the time of session establishment, when
only one of the hosts is iPRP capable.

8.4.4 Addition or Removal of Network Interfaces

CPSs that are deployed in the field often undergo network maintenance, when new net-
work subclouds are added or existing network subclouds are removed. This amounts
to network interfaces being modified at one or more of the communicating hosts.

189

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

When a new network interface is added or an existing network interface is removed
on one of the end hosts, the subsequent iPRP_CAP messages are changed to reflect this
information. This in turn causes a new IND matching, and the newly added network
subcloud is accepted for replication or a previously removed network subcloud is no
longer chosen for replication.

In multicast operation, due the random Tjyqc10 ¢ in sending the i PRP_C AP mes-
sages, the sender might receive different INDs each time, as different receivers might
be connected to different sets of network subclouds. It is undesirable that the a net-
work subcloud that is connected to a vast majority of the receivers, but not connected
to a handful is not used for replication. Therefore, we take a conservative approach
in removing a network subcloud by waiting for confirmation from several receivers,
whereas the addition is instantaneous.

8.4.5 Duplicate Discard Algorithm

The duplicate discard algorithm (Algorithm 8.5 forwards the first copy of a replicated
packet to the IMB and discards all subsequent packets. It is used by the IRB (Algorithm
8.4) in the form of the function isFreshPacket that returns a decision, whether to
accept or reject a packet.

Note that, the discard algorithm proposed for PRP [81] fails are preventing du-
plicates from being forwarded to the application when packets are received out of
ordered. As discussed earlier, packet reordering cannot be excluded in IP networks
due to middle-boxes such as load-balancers and scrubbers.

In order to accept at most one packet, the isFreshPacket function makes use of
the variable HighSN that represents the highest sequence number of a packet received
before the current packet, and the list ListSN that is the list of sequence numbers of
delayed packets. A packet with sequence number i is counted as delayed if no replicate
of this packet has been seen and if a packet with sequence number j > i has been
seen.

To better appreciate the workings of the function isFreshPacket, we explain through
examples. A received packet with sequence number CurrSN falls in one of the three
categories as discussed below.

Case 1: Close duplicate (line 1) In networks with symmetric delays on all network
subclouds, this is the most common case. It occurs when the packet from the other net-
work subcloud was just processed. For instance, HighSN = 10 and CurrSN = 10. Clearly,
it must be discarded.

Case 2: Fresh packet (line 3) When CurrSN is higher than HighSN, the packet is new
and must be accepted. However, this packet might have been received out of order.
For example, HighSN = 10 and CurrSN = 15. In this case, the sequence numbers 11-14

190

8.5. Correctness of the Discard Algorithm

are added to ListSN, as packets that are delayed and expected to arrive. Note that the
size of ListSN is limited to MaxLost.

Case 3: Delayed packet When CurrSN is older than HighSN two possible sub-cases
arise. Either the packet has been is very late (older than MaxLost) or it has already been
delivered (line 13). Then, it is discarded. Alternatively, if the delayed packet has never
been seen before, it is a valid packet and is accepted (line 9) and the sequence number
is removed from ListSN.

Note that we use 32-bit arithmetic to compare sequence numbers despite wrap-
around. This is captured by the related “x follows y”, as described in Algorithm 8.5.

The IRB uses one instance of isFreshPacket per iPRP session. This ensures isola-
tion among packets from different flows. Moreover, in order to ensure that the correct
ordering is maintained across reboots of the senders and receivers, we exploit the fact
that there is a single sender of packet. To this end, we use generation numbers to
differentiate the sequence numbers spaces across reboots.

The function isFreshPacket uses one variable HighSN and one list ListSN whose
size is upper bounded by MaxLost. Thus, the maximum memory footprint per session
is 4 x MaxLost bytes (due to 32-bit sequence numbers). With a typical value of MaxLost
= 1024, this amounts to 4 K B. Moreover, the most expensive time operation in this
function is the searching of ListSN at line 9, which is quite low due to the small size
of MaxLost. This can be further lowered to a constant time by using a hash table
implementation, at the expense of higher memory footprint.

8.4.6 Security Considerations

Network security is critical for CPSs. We design iPRP such that it does not introduce any
security vulnerabilities in the communication network. To this end, all iPRP control
messages are encrypted and authenticated. In the unicast mode, a secure session is
created using DTLS [226]. In multicast, iPRP relies on any primitive that establishes a
secure channel with the multicast group.

In addition to the control traffic, in order to avoid replay attacks pertaining to
sequence numbers, the iPRP header inserted in each message is authenticated using
symmetric keys.

8.5 Correctness of the Discard Algorithm

Before stating the correctness of the algorithm, we need to introduce some definitions.
We say that a received packet is valid if it arrives in order or if it is out-of-order, but not
later than 7},.. Formally, this means that a packet received at time ¢ with SN = « is not

191

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

valid if some packet with SN = 3 > « + MaxLost was received before ¢.

Furthermore, let A be an upper bound on the delay jitter across all network sub-
clouds. Formally, for any two packets i, j sent over any two network subclouds %, I
A > (55 — 5;) , where ¢ denotes the one-way network delay. Also, recall from Section
8.4.1 that T},,civity 1S the time after which inactive sessions are considered aged, hence
terminated.

Theorem 8.5.1 (Correctness of the discard algorithm). If R x A < 23! and R x
(Tinactivity + A) < 231, then Algorithm 8.5 guarantees that: (1) no duplicates are for-
warded to the application and (2) the first received valid copy of any original packet is
forwarded to the application.

Proof. To prove the statement of Theorem 8.5.1, we need the following lemmas.

Lemma 8.5.1. IfR x A < 23! and R x (Tinactivity + A) < 23, then the wrap-around
problem does not exist.

Proof. The wrap-around problem can arise in two cases.

Case 1: A late packet arrives with CurrSN < HighSN — 231, As R x A < 23!, the time
required by the source to emit 23! packets is longer than A. Hence, HighSN cannot
precede CurrsSN for more than 23! and this scenario is not possible.

Case 2: A fresh packet is received with CurrSN > HighSN + 23!, This means that
from the point of view of the receiver, there were more than 23! iPRP packets lost in
succession. As Rx (Tinqctivity+4) < 231, the time for more than 23! consecutive packets
to be sent is greater than (Tjyqcivity + A). Hence, the time between reception of any
two packets differing by SNs more than 23! is greater than (Tinactivity)- Therefore, during
this time the iPRP session would be terminated and a new session will be initiated
when the fresh packet is received. As a result, this scenario is also not possible. O

Therefore, in the rest of the proof, we can ignore the wrap-around problem and
proceed as if SNs of received packets were integers of infinite precision. Also, the
notation HighSN, [resp. HighSN,.] denotes the value of HighSN just before [resp. after]
time ¢.

Lemma 8.5.2 (Monotonicity of HighSN). Ifat timet, a packet with SN = « is received,
then HighSN,y = max(HighSN,—,«). Therefore, HighSN increases monotonically with
time.

Proof. From Algorithm 8.5, when o > HighSN, (line 3) then the value of HighSN is
changed to a (line 6). Otherwise, when HighSN,~ > « (lines 1 and 8), HighSN is

192

8.5. Correctness of the Discard Algorithm

unchanged, i.e., HighSN,; = HighSN, . Combined, the two cases give HighSN,, =
max(HighSN, , o). O

Lemma 8.5.3 (Fresh packet is never put in ListSN). Ifat timet, a packet with SN = « is
forwarded to the application then o ¢ ListSNy+Vt' > t.

Proof. Let us prove by contradiction. Assume that 3¢ > ¢ such that o € ListSNy.
Hence, 3 ¢; € (t,t'] when « was added to ListSN. As t; > ¢, from Lemma 8.5.2, we
conclude that HighSN, - > HighSN;;+ > a. Now, from Algorithm 8.5, we know that only
SNs > HighSN, - can be added to ListSN. Hence, o cannot be added to ListSN at time
t1. Therefore, we have a contradiction. O

Lemma 8.5.4. Atany timet, HighSN,_ is equal to SN of a packet received at some time
to < t, or no packet has been received yet.

Proof. HighSN is modified only at line 6, where it takes the value of the SN received.
Hence, HighSN cannot have a value of a SN that has not been seen yet. O

Now, we proceed with the proof of the theorem. First, we prove statement (1).
Assume we receive a duplicate packet with SN = « at time ¢. This means that a packet
with SN = « was already seen at time ¢ty < ¢. Then, from Lemma 8.5.2 it follows that
a < HighSN, . Then, either « = HighSN, (line 1) or & < HighSN, (line 9).

Case 1: When o = HighSN,, the packet is discarded according to line 2.

Case 2: When o < HighSN,, line 9 is evaluated as false due to Lemma 8.5.3. Hence, the
packet is discarded by line 13.

Next, we prove statement (2) by contradiction. Assume we receive a first copy of a
valid packet with SN = « at time ¢ but we do not forward it. This can happen either due
to line 2 (case 1) or due to line 13 (case 2).

Case 1: Statement from line 1 was evaluated as true, which means that & = HighSN, .
As SN = « is seen for the first time, Lemma 8.5.4 is contradicted. Hence, this case is not
possible.

Case 2: Statement from line 9 was evaluated as false, which means that & < HighSN, -
and o ¢ ListSN,-. We show by contradiction that this is not possible, i.e., we now
assume that @ < HighSN, and o ¢ ListSN;-. Now, there are three cases when o ¢
ListSN;- can be true:

(i) SN = o was added to and removed from ListSN before time ¢ because it was seen
(line 11). This case is not possible as the packet is fresh.

193

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

(ii) SN = v was added to ListSN and later removed at time ¢ty < ¢ because the size
of ListSN is limited to MaxLost entries (line 6). This means that at time ¢y < t a packet
with SN = 3 was forwarded, and 8 — « > MaxLost (line 6). However, this means that the
packet with SN = « was not valid at time ¢y. Therefore, it is also not valid at time ¢ > .

(iii) SN = a was never added to ListSN. Consider thesetT = {7 > 0 : HighSN_; > a}.
T is non-empty because ¢ € T, by hypothesis of our contradiction. Let ¢y = inf T. Then,
necessarily HighSN, - < o < HighSN, . (say, =). 3 is the SN of a packet received at
time ¢y. Since « is valid, 8 — a < MaxLost. Otherwise, o would be invalid at time ¢,
therefore at time ¢, which is excluded. Then we have two subcases possible:

a) HighSN, - < a. Then, by line 4, « is added to ListSN, which is a contradiction.

b) HighSN, - = a. But, by Lemma 8.5.4 a packet with SN = a must have been
received before ¢y, which is a contradiction because « is a fresh packet at ¢ > t. O

To understand the practicality of the conditions in the theorem, note that Tj,qctivity
is in the order of seconds and is much larger than A. Therefore, the only condition
to verify is R x (Tinactivity + A) < 231, which for, say Tinactivity = 10s and A = 100ms,
requires R < 2 x 10® packets per second - a rate much higher than ever expected.

8.6 iPRP Diagnostic Toolkit

One of the main advantages of iPRP being IP friendly is its ability to exploit the rich set
of IP layer diagnostic utilities associated with TCP/IP. Such utilities are unavailable to
MAC-layer redundancy solutions such as PRP. The basic tools include connectivity and
path checking tools such as ping and traceroute. The more advanced iPRP specific
tools enable the collection of statistics and checking for the existence of parallel paths.

The toolkit comprises the following tools:
iPRPtest <Remote IP Address> <Port> <Number of packets> <Time period>
iPRPping <Remote IP Address>
iPRPtracert <Remote IP Address>
iPRPsenderStats <IP Address>
iPRPreceiverStats <IP Address>.

Next, we describe the functioning of each tool:

¢ iPRPtest tests the unicast iPRP operation between the local and remote hosts. Firstly,
it checks for the presence of an iPRP session between the two machines by querying the
local peer-base and returning the peer-base entry corresponding to the iPRP session
identified by the inputted IP address. This entry consists of a list of the interfaces (and
their IP addresses) of the remote host connected to the networks identified by the INDs.
Here is an example output if an iPRP session exists:

194

8.6. iPRP Diagnostic Toolkit

$ iPRPtest aa::1 1234 10 5
Interface Remote IP address IND

ethO aa::1 Oxa
eth3 cc::1 Oxc

If it does not exist, iPRPtest tries to establish one. It communicates the UDP port
number to the iPRP-session-maintenance functional block on the remote machine.
This port is then added temporarily to the set P. After the temporary-iPRP-session es-
tablishment, iPRPtest sends periodic probe packets to the remote host along multiple
paths, depending on the parameters number of packets and time period. Finally, the
iPRP session is closed and the corresponding UDP port is removed from set P on the
remote machine. If an iPRP session could not be established, an appropriate message
is generated.

¢ iPRPping evaluates the end-to-end connectivity over multiple paths, to a remote
host with an iPRP session with the local host. It exploits the ICMP ping and does
not exercise iPRP that operates on UDP. iPRPping queries the local peer-base for the
remote [P addresses associated with the the input IP address and uses the native ping
to check connectivity over multiple paths in a round-robin fashion. iPRPping can also
be used to obtain the path MTUs along all paths to a host by varying the size of the
ICMP echo request packets. Finally, it reports the packet loss and RTT statistics for all
the available paths. In the case of absence of an iPRP session, an appropriate message
is generated.

e iPRPtracert enlists the routes taken by IP packets over all the paths to the remote
host with the inputted IP address. It queries the local peer-base for the remote IP
addresses used during an iPRP session. Then, it uses the traceroute from the TCP/IP
suite to trace the routes over multiple paths in a sequential manner. If the remote host
does not have any iPRP session with the local host, iPRPtracert does not attempt to
establish an iPRP session and generates an appropriate message.

e iPRPsenderStats queries the remote IP address for packet delivery statistics

associated with its iPRP session. For unicast, the argument is the IP address of the
remote host with an iPRP session. In multicast, the argument is a multicast group IP
address. iPRPsenderStats queries the remote IP address of one of the subscribers of
the multicast group, for its statistics. If iPRP session does not exist, an appropriate
message is generated. The reported statistics are — PktCtrX: Total number of packets
successfully received over the network with IND X.
— LastTimeSeenX: UTC time stamp of last received packet over the network with IND X.
— WrongINDX: Number of non-IND X packets received over the IND X network. This
can happen due to a common link between multiple networks or faulty cabling at
the hosts. The iPRP self-configuring property makes it immune to such faults, thus
enabling detection without disrupting the normal data delivery.

195

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

— AccINDX: Number of packets received over the IND X network and forwarded to the
application. The highest AccINDX corresponds to the fastest network.

e iPRPreceiverStats: This tool is used to locally obtain the statistics PktCtrX, Last-
TimeSeenX, WrongINDX and AccINDX at the receiver. In a unicast operation, the argu-
ment is the IP address used by the sender to establish the iPRP session with local ma-
chine. In multicast operation, it is the used multicast IP address. iPRPreceiverStats
queries the locally stored statistics table to report the above mentioned fields.

8.7 Measurements with Directional Wi-Fi Links

The ease of deploying Wi-Fi networks in comparison with wired network has led
to CPSs using end-to-end Wi-Fi communication or Wi-Fi links in one of the hops.
However, off-the-shelf Wi-Fi links are known to have high PLR. With the current trends,
the question arises: Are off-the-shelf directional Wi-Fi links a viable option for reliable
real-time communication? In this section, we answer this question through data
collected from a 45-day long measurement campaign conducted at the EPFL campus.

8.7.1 Description of the Test Bed

Figure 8.4 shows the map of the EPFL campus with the three roof-top measurement
sites, namely: A, B and C. The distances between sending and receiving antennas are
180 m (site B to site A) and 230 m (site C to site A) and there is a line of sight between
the sending and receiving sites. We use directional antennas (shown in Figure 8.5) for
transmission and reception, a common practice when Wi-Fi is used as a replacement
for a cable in mission-critical networks. The antennas have an 8 dBi gain. The test bed
is based on 2.4 GHz Wi-Fi-technology (802.11b standard) and we use different channels
and polarizations for the two links to minimize the mutual interference between them.

Sites B and C are used for traffic generation, and site A is used for reception and
logging. The locations of sending nodes at sites B and C are same as that of the PMUs
at locations ELL and CM in the campus smart-grid described in [53]. Also, site A is
present at the same location as the PDC in [53].

For reception, at site A, we use a ruggedized PC 2, equipped with two Wi-Fi cards
to support the two desired wireless links. For sending, at sites B and C, we have two
Alix2d2 system boards®. The ruggedized PC runs 64-bit Ubuntu operating system and
Alix2d2’s run OpenWrt 10.3 4 operating system. The machines used in the test-bed are
shown in Figure 8.5.

Zhttp:/ /www.logicsupply.com/da-1000/
Shttp://www.pcengines.ch/alix2d2.htm
*https://openwrt.org/

196

8.7. Measurements with Directional Wi-Fi Links

Wired Network for
PTP Synchronization

8 Receiving Point \ B, [T
(Site A) “\e B)/ L
i) Data Sender
(Site C)

Figure 8.4 — Map of the campus with the antenna locations.

For logging all packets exchanged over both the Wi-Fi links, we use the packet
capture tool tcpdump ° on sites A, B and C. To measure the end-to-end latency in
transmission of the packets, we have time synchronization among the machines. To
this end, we connect the machines through the wired, campus network that is used for
network time-synchronization with the PTP [164]. In this way, we can compute the
end-to-end latency with a 0.1 ms accuracy.

8.7.2 Experimental Methodology

In order to study the effect of different Wi-Fi parameters (such as raw data-rate, beacon
interval, choice of the channel number) on the recorded PLR, we carried out mea-
surements by varying different parameters. Through preliminary measurements, we
observed that the choice of the channel number and the beacon interval have practi-
cally no effect on the observed PLR and latency. Hence, we omit these factors from the
analysis that follows.

The two factors taken into account in our analysis are (1) MAC-layer retransmission
enabled/disabled, and (2) the raw data-rate. MAC-layer retransmissions are expected
to reduce the PLR because a lost packet might be repaired by the MAC-layer in subse-
quent transmissions. However, it is worth noting that each retransmission adds to the

*http:/ /www.tcpdump.org/

197

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

op 8 dBi
Directional
Antennas

Alix2d2 Boards
(Sites B and C)

Figure 8.5 — Hardware used for the test-bed.

end-to-end latency. Hence, receiving a packet as a result of MAC-layer retransmissions
is a case of trading-off latency for PLR. This trade-off is further elaborated on in Section
8.7.3.

Last, we analyze three different raw data-rates supported by the standard: 1 Mbps,
5.5 Mbps and 11 Mbps. In theory, lower raw data-rates are more robust, due to a higher
degree of redundancy from channel coding. Hence, the effect of channel fading is
expected to be lower for lower data-rates thereby resulting in a lower overall packet-loss
probability.

These factors translate to conducting experiments in six different scenarios: pres-
ence or absence of MAC-layer retransmissions, and raw data-rates of 1 Mbps, 5.5 Mbps
or 11 Mbps. We randomize these parameters in the measurement scenarios so as to
normalize the bias due to individual parameters. Each scenario lasts for nearly 30
minutes, with both the senders sending approximately 90,000 UDP packets of size 300
bytes each, with a packet every 20 ms. This traffic profile is the same as that of the
PMUs that stream mission-critical measurements used for state estimation in [53].

The measurement campaign lasted for 45 days resulting in approximately 1500
scenarios, which amounts to 300 million packets being transmitted over the two
replicated paths. Furthermore, there were 250 instances of each scenario, amounting
to nearly 50 million packets for each scenario.

The packets from both links AB and AC are independently labeled with an increas-
ing SN and a timestamp of the instant at which each packet was generated (t,). The
time at which the packet was actually sent (¢,) is recorded by tcpdump at the sender.
Note that, due to possible non-negligible delays in the processing of the packet by the
operating system, ¢, is not necessarily equal to t,. As the aim of this measurement
campaign is to characterize the latency due to Wi-Fi links, using ¢, is more apt than

198

8.7. Measurements with Directional Wi-Fi Links

using t,. Hence, the use of tcpdump in our measurement test-bed.

At the receiver, for each received packet, the time of reception (¢,) is also logged
by tcpdump. In the post-processing, the logs of links AB and AC are both analyzed for
losses and latency, as described in Section 8.7.3.

8.7.3 Measurement Results

From the measurements of each scenario i, we evaluate the PLR for link AB (Pgb) and
link AC (P!,). We compute the availability (A) as A = MTTF/(MTTR + MTTF) =
1—PLR, where MTTF and MTTR are the mean-times to failure and recovery of the link,
respectively. As a result, we obtain availability for link AB (4%,) and link AC (4¢,).

Consider two packets with SNs = and y sent over links AB and AC, respectively. If
x = y, then the two packets can be regarded as belonging to the same “generation",
i.e., they mimic replicas of each other. Consequently, packet z is said to be lost after
replication, if and only the packet is lost on both links AB and AC. As a result, for each
scenario ¢, we obtain the effective PLR as seen by the receiver after replication (P;,,)
and the corresponding availability (AZ_).

rep

Table 8.1 shows mean, 95" percentile (95" percentile) and 99" percentile (99"
percentile) values of Py, Py, Prep- We find that the mean PLRs for individual links AB
and AC are 9.69 x 10~* and 2.4 x 1073 respectively. As expected, these values are much
higher than 10—, the PLR required for mission-critical PMU-streaming applications.
However, the mean P, is 3.58 x 107¢, is well within the acceptable value for streaming
of mission-critical PMU data.

] | Mean | 95" percentile | 99" percentile |
Py | 9.69 x 1074 0.0013 0.0293
P | 24x1073 0.0191 0.0466
Prep | 358 x 1076 | 1.10 x 107° 2.22 x 107°

Table 8.1 — PLR statistics obtained from measurements

The performance improvement achieved by replication over redundant Wi-Fi paths
is more prominent when either of the individual links experiences high losses. We
observe, in Table 8.1, that the 99*" percentile values of P,;, P,. and P,y are 0.0293,
0.0466 and 2.22 x 1075, respectively. We see that even the 99" percentile value of P,
is comparable with the desired PLR of the PMU-streaming applications.

Furthermore, we find the mean availability A,., = 0.999996 and its 99" percentile
value is 0.99997, which is comparable to the five-9’s requirement of mission-critical
PMU-streaming applications. Next, we study the variation of PLR as a function of

199

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

different parameters and check if the availability can be improved by tuning the pa-
rameters of the Wi-Fi links.

Effect of MAC-Layer Retransmission

We studied the effect of MAC-layer retransmissions on loss and latency. Figure 8.6
shows the box plot of P, P, and P,,, with and without MAC-layer retransmissions.
Table 8.2 shows the 99" percentile PLR values with and without MAC-layer retransmis-
sions. Although the use of MAC-layer retransmissions provides an order of magnitude
improvement in PLRs over individual links, we find absolutely no effective losses over
the redundant Wi-Fi paths among the 50 million transmitted. This strongly asserts the
use of MAC-layer retransmissions for streaming mission-critical PMU applications.

Without MAC-layer retransmissions With MAC-layer retransmission
+
1t T 2 ¥
+
: T
= 25} | +
L.15} [. | F
O
) I 3l |
8 2} [] |
st |
o -35F
525} .]
3t | I] 41 1
35¢ + 451 ¥
4 i
+ _5 L }
45 T
5F L —-— ———— 55 . . .]
Link AB Link AC After Replication Link AB Link AC After Replication

Figure 8.6 — Box plot of the PLRs for link AB, link AC and after replication for scenarios
with and without MAC-layer retransmissions, shown in log-scale.

] | Without Retransmissions | With Retransmissions |

P15 99% 0.0402 0.0010
P, 99% 0.0610 0.0018
P, 99% 4.43 x 107° 0

Table 8.2 — 99'" percentile value of PLRs with and without MAC-layer retransmissions

Next, we quantify the end-to-end latency and verify if the latency performance
with MAC-layer retransmissions conforms to the requirements of the mission-critical
PMU-streaming applications (about 4 ms). For this purpose, let the delay due to packet
with SN z on link AB be given by d*, = {mab _qzab Similarly, d%. = ;% — t5"*“. Then,

T

the effective delay for packet x after replication is given by dy.,, = min(dg,, dz.).

Table 8.3 shows the mean and quantiles of d, d.. and d,,. For most packets, the

200

8.8. Are direction Wi-Fi links fail-independent?

] | Mean | 95" percentile | 99" percentile | 99.9" percentile | 99.99" percentile |

dgy (inms) | 0.87 2.58 3.82 4.94 6.32
dge inms) | 0.61 0.73 1.26 4.2 6.67
drep inms) | 0.58 0.59 0.92 2.69 4.3

Table 8.3 — Latency statistics with MAC-layer retransmissions

latencies of both the individual links and the latency after replication is within the
admissible latency of 4 ms, required by mission-critical PMU-streaming applications.
However, the tail latencies at 99.9"" percentile and 99.99"" percentile for individual
links exceed the 4 ms mark, indicating that although very rare, there are cases where the
real-time requirements are not respected by individual links. Additionally, replication
over redundant paths brings down the delay for most of the packets to within the
admissible range, barring a minuscule fraction of 1074

We find that the mean jitter in d, d,. is 0.455 ms and 0.055 ms, whereas the mean
jitter in d,., is 0.025 ms. Hence, although individual Wi-Fi links have a high jitter
in latency, which is undesirable for PMU-streaming applications, replication over
redundant Wi-Fi paths significantly reduces the jitter in latency.

Hence, from the setting we studied, we find that using MAC-layer retransmissions
satisfies the loss- and latency-requirements of mission-critical PMU-streaming appli-
cations. Thus, we conclude that replicating packets over directional Wi-Fi links is a
viable option for streaming PMU measurements.

Effect of Raw Data-Rate

To study the effect of raw data-rate on the PLR over directional Wi-Fi links, we per-
formed experiments with three data-rates: 1 Mpbs, 5.5 Mpbs and 11 Mbps. As lower
data-rates have a higher degree of redundancy due to channel-coding, the PLR for a
lower data-rate is expected to be lower than that of higher data-rates.

We found that the mean P, for scenarios with raw data-rate of 1 Mbps, 5.5 Mbps
and 11 Mbps are 2.21 x 1076, 1.77x 107 and 6.52 x 10~ respectively. The 99" percentile
values of the same were 2.04 x 107°, 1.11 x 107> and 3.60 x 10~° respectively. We find
that the PLR for 1 Mbps and 5.5 Mbps are quite close to each other, whereas the ones
for 11 Mbps are slightly worse. As expected, we suggest the use of a lower raw data-rate.

8.8 Are direction Wi-Fi links fail-independent?

In this section, we characterize the correlation between losses on the two wireless
links AB and AC in order to verify whether the directional Wi-Fi links are truly fail-

201

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

independent.

As a first step towards verifying whether the losses on both the links are statistically
correlated, we evaluate the cross-correlation co-efficient of losses on both links. We
find the cross-correlation co-efficient to be -0.0005 with a standard deviation of 0.0504.
The coefficient of variation is 1.117 x 103, indicating that this first-order statistic cannot
be used for a conclusive answer and a formal statistical test, such as the likelihood-ratio
test [178] needs to be applied.

The prerequisite for the application of the likelihood-ratio test is the knowledge
of the distribution of losses. Furthermore, to be able to apply the test, the distribu-
tions of losses on the links AB and AC need to be stationary. The estimation of these
distributions for link AB and link AC, and their stationarity is discussed below.

8.8.1 Estimating the Distribution of Losses

We know from the literature that packet losses over wireless links are bursty, i.e., losses
are correlated in time. We consider the two-state Gilbert model [227] for representing
the observed losses over individual wireless links. Figure 8.7 shows the two-state
Markov chain representing the Gilbert model. It consists of the Good state (1) where no
packets are lost and the Bad state (0) where the link drops all packets. The transition
probabilities from Good state to Bad state, and from Bad state to Good state, are g and
p, respectively. Then, the average PLR is given by ¢/(p + q).

q

Bad
0
b

Figure 8.7 — Two-state Gilbert model for bursty losses

From the measurement, for each scenario i, we obtain the parameters of the two-
state Gilbert model for link AB and AC: p',, ¢, , pl,., ¢’ For link AB, we find that the
mean p,p, (Pep) is 0.4217 and mean q,p, (Gp) is 6.99 x 10~°. For link AC, we find that the
mean pu. (Pac) is 0.2962 and mean qq. (Gqp) is 3.27 x 107°. Figure 8.8 shows the boxplots
of parameters for links AB and AC respectively. As seen from the plots, the variance in
the parameters of the model is quite high.

Furthermore, from the QQ-plots in Figure 8.9, we see that the distribution of the
observed number of losses in the n scenarios differs significantly from the distribution
of number of losses if the losses on the links AB and AC were to follow Gilbert(p,, ¢up)
and Gilbert(p,., d..), respectively . We conclude that the distribution of losses across

202

8.8. Are direction Wi-Fi links fail-independent?

of :
3 iR
) + @ L |
< .05 : . g 2 |
E)D + | g> l
= 4l = 25} % |
— — |
% ? % -3 I i |
g -1.5¢ + + g l
@ + c -35¢ I
o o |
2t % + AT
+ + 451
. + 5l L :
Link AB Link AC Link AB Link AC

Figure 8.8 — Box plot of parameters of the two-state Gilbert model for links AB and AC,
Pl Aopr Pl 4.er shown in log scale

scenarios is non-stationary and a standard statistical test, such as the likelihood ratio
test, cannot be applied. Therefore, we develop an information-theoretic test, based on
normalized mutual-information between the losses on the link AB and AC; it uses the
bootstrap technique for statistical inference [228]. This information-theoretic test is
described below.

Link AB Link AC
0.12 . . . 0.08 .
*
0.07 } %
0.1
n (%]
3 B 008}
= 0.08 =
c C L
S S 0.05
> >
J 0.06 * J 0.04 *;
Q2 o *
o * O 0.03}
£ 0.04 1 c *
@© ©
o] M o 002 *
0.02 |
* 0.01 ¥
0
2 2.1 22 23 24 25 26 0.8 0.9 1 1.1 1.2

Theoretical Quantiles x10 Theoretical Quantiles x10°

Figure 8.9 — QQ-plot of the number of losses on each link showing the non-stationary
of distribution of losses across scenarios

8.8.2 Information-Theoretic Test of Independence

If the losses on the two channels were to be independent, then the Wi-Fi links AB and
AC can be represented as two-state Markov chains with transition matrices given by
a = Gilbert(pg, ¢45) and 8 = Gilbert(pg, ¢.c), respectively. Then, the joint channel is
obtained by the product of the Markov chains given by ©, = o ® 3, where ® represents
the tensor product. Alternatively, if the losses on the two links are dependent, then the
joint channel of the two wireless links AB and AC is represented by a 4-state Markov

203

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

chain with states: 1) (Good, Good) 2) (Good, Bad) 3) (Bad, Good) and 4) (Bad, Bad). Let
its transition matrix be ©.

Then, the test of independence is
Hy: “a~ Fgp, B ~ Fue and the losses follow ©, = o ® 3" over H; : “The losses follow
O # 0,, 0 ~ G", where F,, F,c, G are arbitrary distributions.

The test statistic is mean normalized mutual-information J = #, where (J*)
is the normalized mutual-information between the losses on both the links in the
it" scenario and is given as follows. Recall that the PLRs for link AB and AC in the
it" scenario are P, and P!, respectively. Then, the entropies of the links in the "
scenario are given by

)) 1) 1
H'(AB) = P}, 1 . 1—-P4)1 —_
(4B) = Piylog (5)+ (1~ Pitos (=57)

1) 1
. 1-P')1 .
Pc%c) +(ac) Og<1_P¢§c>

H'(AC) = P! log <

Let ng, where z = {0,1} and y = {0, 1}, represent the empirical probability of
packet loss (0) and reception (1) on the both the links AB and AC in the i*" scenario.
Then, the mutual information and the normalized mutual-information in the "

scenario is given by

, A P!
) . _ 7 Yy
I'(AB;AC)= Y > Pj,log (PZ, - Pi)
z={0,1} y={0,1} z Y
B I'(AB; AC)
VH{(AB) x H{(AC)

)

It is worth noting that normalized mutual-information, consequently J, is the
information-theoretic analogue to covariance. In the ideal case, i.e., in the absence of
measurement noise, if the losses were independent, then J = 0. Hence, if Hy is true,
we expect J to be small. Furthermore, J] > 0. Therefore, the test’s rejection region is
J > n, where 7 is needed to be computed as a function of the confidence level.

For a confidence level 0of 99%, we have to evaluate 7 1 such that, under Hy, P, (J >
no.01) < 0.01. However, Py, (J > no.01) = P(J > n0.01|Fap, Fac). From the theory of
bootstrapping [228], this can be approximated as P(J > 7.0 |]:"ab, fac), where F,;, and
Fac are the empirical distributions of the parameters of the Gilbert model for link AB
and link AC, respectively.

To evaluate 71, we perform a generation of losses on the two links under Hy,
according to the bootstrap method shown in Algorithm 8.6. In each run, we randomly

204

8.9. Conclusion

Algorithm 8.6: Bootstrapping the generation of losses

1 currentRun < 0;
2 Fop = {1, 00,...,an};

3 Foe = {51, 52, -, Bn};

4 while currentRun < numRuns do

5 i,j « random_integer(1,n);

6 Osim = a; @ Bj;

7 Pktsgp, Pkts,. < generate_packets(Oginm);
8 currentRun++;

9 end

select (with replacement) one set of parameters of the Gilbert model for link AB and
link AC, from among the parameters observed from real measurements. From these
parameters, under Hy, we obtain Oy;,,, the distribution of the losses on the two chan-
nels in the current simulation run. Oy, is used to generate a large number of packets
(105) on the two links (Pkts,;, Pkts,.). From the generated packets, J;,, is evaluated.
This process is repeated numRuns times to obtain several independent values of J;y,.
Then, 79,01 is the 99" percentile value of J;,,.

Using numRuns = 10°%, we obtain 19 o1 = 3.82 x 107° 4+ 1.4 x 1075 at a 99% confidence
level. From the measurements, we have J] = 8.91 x 10~* > 19.0;. Hence, we reject Hy
with 99% confidence level and conclude that the two links are not fail-independent.

8.8.3 Impact of Dependent Losses on F,.,

In Section 8.8.2, we found that losses on the two Wi-Fi links AB and AC are not indepen-
dent. The mean normalized mutual-information calculated from the measurements
(J = 8.91 x 10~%) is a measure of mutual information between the two channels. Its low
value indicates that, although the losses are not independent, the dependence is low.

The low degree of dependence is also noticeable from the PLRs. From the mea-
surements, we have P,;, = 9.69 x 1074, P,. = 2.4 x 10~3. Hence, if the losses were
independent, the effective PLR would be Pi,gep = Pap X Py = 2.32 x 1075, From the
measurements we have P,., = 3.58 x 1075, which is close to P,,4,. Therefore, we
conclude that although the two Wi-Fi links are not fail independent, the effective loss
performance, as observed after replication, is close to what it would have been if they
were to be fail-independent.

8.9 Conclusion

In this chapter, we addressed the issue of reliability for real-time CPS traffic with the
focus on 0 ms repair for packets exchanged in WANs. We proposed iPRP, an IP-friendly

205

Chapter 8. Reliable Real-Time Communication in Unreliable Networks

parallel-redundancy protocol. iPRP is a transport-layer protocol that selectively repli-
cates UDP traffic over two or more fail-independent paths. It is designed to be network
transparent and only requires a software installation on the end hosts. It is also de-
signed to be application agnostic and can replicate packets, without any modifications
to the existing applications.

We presented the design of iPRP and showed how it handles the support of IP
multicast where several receivers can benefit from reliable communication through
replicated traffic. We also designed a new de-duplication algorithm that ensures that
at most one copy of a packet is forwarded to the application even in the presence of
network losses, delays or packet re-orderings. We formally proved this guarantee of
the discard algorithm. We also described the iPRP diagnostic toolkit that can be used
to debug network issues in networks with one or more network subclouds, to collect
statistics on the performance of the network subclouds, and to identify the existence
of parallel fail-independent paths. We also made an implementation of iPRP publicly
available.

We experimentally validated the feasibility of using Wi-Fi measurements over
redundant paths for streaming mission-critical PMU data. In the measurement test-
bed we used, the location of the measurement sites and the traffic profile are the
same as those used in the PMU-based state estimation in the campus-wide active
distribution-network described in [53]. Such a setting is also commonly encountered
when the last hop of a WAN is realized using Wi-Fi, where directional antennas are
used to boost the reliability of individual links.

In the setting we evaluated, we conclude that although the PLRs of individual
Wi-Fi links were far from admissible for streaming mission-critical PMU data, packet
replication over the two Wi-Fi paths provided the desired level of reliability (PLR
~ 107°). The effective PLR and availability can be further improved by enabling MAC-
layer retransmissions on each Wi-Fi link. The end-to-end latency was observed to be
within 4 ms, the required latency by mission-critical PMU-streaming applications. The
mean jitter in the latency was measured to be very low (0.02 ms), further bolstering the
usability of Wi-Fi over redundant paths.

From the measurements, we observe that although the two links were found to not
be fail-independent, the effective PLR as observed after replication was very close to
the product of the two PLRs. Thus, for all practical purposes, the losses on the two
links can be thought of as being independent.

We concluded, based on these results, that replication over redundant Wi-Fi links,
formed from off-the-shelf components, is a viable option for achieving the loss and
latency performance required for streaming mission-critical PMU data.

The requirement of reliable delivery of real-time traffic is not unique to CPS. Several

206

8.9. Conclusion

other fields such as high-frequency trading and multiplayer online gaming require
low-latency traffic and can benefit from parallel redundancy. As iPRP is designed to
be application independent, it can be used in these fields without any modifications.
Moreover, our open-source implementation can also be used to develop proof-of-
concepts for these fields, paving the way for easy adoption.

207

Conclusion and Open Questions

The questions are always
more important than the answers.
— Randy Pausch, The Last Lecture

We have studied the problem of providing reliability for real-time CPSs in the
presence of delay and crash faults due to unreliable software, and in the presence of
delay and losses due to unreliable communication network. Specifically, to address the
issue of delay and crash faults in the central controller in the CPS due to the use of COTS
hardware and software components, we have proposed a fault-tolerance architecture
(Axo) that uses active replication and ensures linearizability by using intentionality
clocks for ordering messages and Quarts for ensuring replica-consistency. To address
the problem of packet losses, which is exacerbated due to communication in WANs or
using unreliable communication technologies such as Wi-Fi or LTE, we design iPRP,
an IP-friendly parallel redundancy protocol. We also study the viability of replicating
packets over directional Wi-Fi links for achieving high-reliability.

The central elements of all the reliability mechanisms developed in this thesis
are the abstract models of the software agents in the CPS, namely a controller and a
PA. These models have been presented in Chapter 3. These models have been devel-
oped by studying a wide-range of real-world CPSs, such as CPS for real-time control
of electric grids [1, 4, 5, 6], those used in manufacturing processes [13], and in au-
tonomous vehicles [8,9]. The key distinguishing features of our proposed controller
model is the splitting of the computation performed by the controller into two func-
tions: the ready_to_compute function that decides whether the controller has enough
information about the physical process to execute the compute function for computing
setpoints. This finer view of the controller makes our model more expressive and
enables us to design more efficiently reliability mechanisms.

In Chapter 3, we have also abstracted the execution trace of CPS in terms of the

209

Chapter 9. Conclusion and Open Questions

sending, reception and timeout events that occur at its software agents, and the net-
work and computation relations that cause those events. We use these relations to
introduce the intentionality relation that uses the events in a CPS to capture the state
of the physical process. To this end, the intentionality relation views the CPS as a
sequence of events, each event intending to cause a particular change in the physical
process, which either succeeds or fails in causing the change due to other competing
events or network losses. The intentionality relation is defined only for CPSs with con-
trollers and PAs and no asynchronous sensors that directly communicate with the PAs.
A possible avenue for future work is to extend the intentionality relation to CPSs with
such sensors. The secret lies in answering the question, What change in the physical
process does an asynchronous sensor intend to cause? Reasoning about the controller
and the PAs in the light of the proposed models and the intentionality relation enables
us to identify and prove the correctness properties of CPSs. The properties, for delay
and crash fault-tolerance, considered in this thesis, are state safety, optimal selection,
consistency and timeliness. For a different fault-model such as Byzantine faults, the
question “What are the properties of the CPS that ensure correct control of the physical
process despite malicious software agents?" remains to be explored.

In Chapter 4, we have presented intentionality clocks, a labeling mechanism that
provides the strong clock-consistency property under the intentionality relation, for
CPSs with one or more replicated controllers. We used intentionality clocks to design a
controller and a PA that ensures the state safety and optimal selection properties. We
proved these guarantees and illustrated their importance through an example of CPS
for charging of electric vehicles. In this CPS, when intentionality clocks are not used,
we show that the optimal selection property is violated and a deadlock state is reached.
We also shown through another example that a mechanism that uses timestamps
obtained from physical clocks can violate the strong clock-consistency property under
the intentionality relation. As timestamps are often used in the messages exchanged
by real-time CPSs, it is desirable to reuse the same timestamps for ordering, without
any extra bandwidth overhead. However, there is an open question Does there exist
a mechanism using physical clocks that provides strong clock-consistency under the
intentionality relation?

In Chapter 5, we have used the intentionality clocks to design Quarts, an agreement
protocol for replicated controllers that guarantees the consistency correctness property
and adds a bounded-latency overhead. Quarts applies to CPSs with only controllers
and PAs. We have proposed an extension, Quarts+ that ensures the same guarantees as
Quarts, in CPS with PAs and sensors. Both Quarts and Quarts+, perform agreement on
input to the controller replicas. For this, they use a deterministic voting mechanism
that uses a predetermined priority among the sets of inputs to rank the inputs. In some
cases, this enables a controller replica performing Quarts (or Quarts+), to decide on
the chosen inputs, without communicating with other replicas. Through extensive
simulation for different scenarios, we have shown that out proposed mechanisms

210

increase the chances of reaching agreement by over an order of magnitude, when
compared to the conventional approach, i.e., consensus. In the current design of the
predetermined priority list for the sets of inputs, we have considered a set with more
inputs to have a higher priority. This, however, discounts the importance of some
PAs and sensors that are more important for the control of the physical process at a
given time. A question worth exploring, How can the predetermined priority function
be modified such that it maximizes the quality of control of the physical process?

In Chapter 6, we have proposed Axo, a fault-tolerance architecture for delay and
crash faults. Axo uses active replication, and relies on intentionality clocks and Quarts
for providing linearizability, a correctness requirement for active replication. Axo adds
another mechanism to provide the timeliness correctness property. It also quickly
detects delay and crash faulty replicas and reboots them to maximize the number of
non-faulty replicas at all times, thereby increasing availability. We have proved the
timeliness guarantees of Axo and derive and validate bounds on the time Axo to detect
and recover faulty replicas. Axo uses exponential averaging to keep track of the health
of delay faulty replicas; and it penalizes a replica when its health falls below a threshold.
Although this approach is effective in addressing some patterns with a higher rate
of delay faults, it fails to catch patterns with alternating faults such as 10101010 and
110011001100, where 1 represents no fault in a round and 0 represents a fault. If such
faults are left undetected, then the faults on different replicas might occur in the same
rounds, and result in reduced availability. An interesting question to address would be,
How can recurring patterns in delay faults be detected to ensure that faults on different
replicas do not happen in the same round?

In Chapter 6, we have also evaluated the fault-tolerance properties of Axo, Quarts
and intentionality clocks with COMMELEC and with an inverted-pendulum CPS. In
each of these case-studies, we have shown that the fault detection and recovery by
Axo improve the control performance, such as MTTI of the inverted-pendulum. Axo
also relies on the knowledge of the validity horizon of the setpoints in a CPS. Whereas
in some CPSs such as COMMELEC, the validity horizon is easy to obtain from the
validity of the short-term predictions uses in the measurements, obtaining a good
estimate on the validity horizon in other CPSs is non-trivial. An open question for CPSs
in general is How to estimate the validity horizon of setpoints in a CPS? We have also
shown that using Quarts to prevent inconsistency improves the ability of COMMELEC
to implement an auxiliary service, such as provide autonomy in a microgrid, i.e.,
minimize the total power imported or exported by the microgrid. Quarts prevents
inconsistency at the expense of availability, inconsistent setpoints in some CPSs might
be tolerable due to the nature of the physical process. In such cases, it is worth
exploring whether the consistency property of Quarts can be relaxed to further improve
availability without jeopardizing the control of the physical process?

In Chapter 7, we have proposed QCL that uses our proposed reliability mecha-

211

Chapter 9. Conclusion and Open Questions

nisms (intentionality clocks and Quarts) to improve the latency performance of SDN
controllers. Existing replication mechanisms in SDN, which are designed for low-
latency, only provide eventual-consistency guarantees. As a result, they limit the types
of enforceable policies and do not permit reactive controller applications (such as
NATs and firewalls) to be implemented by the SDN controllers. We show that QCL
can provide strong consistency and can support reactive controller applications, and
greatly reduce the latency of issuing updates, when compared to other such schemes.
Enterprise systems such as datacenters also use other architectures similar to SDN,
such as NFV [29] and OpenStack Neutron [229]; they separate the control plane from
the data plane. As low-latency is highly desirable for such systems, an interesting
exercise is to explore what other applications in enterprise systems could benefit from
control-plane replication using Quarts?

In Chapter 8, we have addressed the problem of reliable real-time communication
in CPSs that communicate over WANSs. To this end, we have designed iPRP for replicat-
ing packets on two or more parallel paths, to ensure 0 ms repair of packets lost either
due to congestion or due to component failures. We have provided an implementa-
tion of iPRP: It is plug-and-play, and only requires installation on the communicating
end hosts, without any modification to the CPS applications or the interconnecting
network. As iPRP and other such solutions rely on the existence of fail-independent
paths and as CPSs are increasingly using Wi-Fi based communication, we have ex-
perimentally validated the fail-independence of directional Wi-Fi links, through a
45-day measurement campaign on the rooftops of the EPFL campus. We find that,
although the links are not fail independent, the correlation of losses is so low that the
effective PLR and delay is close to what it would have been if the links were indeed
fail independent. This paves way for using directional Wi-Fi links for mission-critical
real-time CPS applications.

A drawback of iPRP is that it applies only to UDP flows, which are not congestion-
aware, thereby making iPRP not TCP-friendly [230]. In order for a communication
protocol to be used by CPSs to communicate over a public network with TCP flows,
it is desirable to have TCP-friendliness. QUIC is a UDP-based transport protocol that
performs congestion-control, thus is TCP-friendly. Therefore, it is a good candidate for
supporting parallel redundancy. Such a solution requires that all packets be forwarded
on all network subclouds which in turn requires that the data-rates and delays on the
subclouds be symmetric. However, asymmetric congestion on the paths results in
different data-rates, thereby making true redundancy challenging. The question to be
addressed here is, How do we schedule packets on different network subclouds while
being congestion-aware and minimizing the PLR?

The reliability mechanisms developed in this thesis are designed to tolerate only
delay and crash faults. They do not address Byzantine faults. An open question is,
Can Quarts be used to lower the latency-overhead of BFT solutions so that they can be

212

applied to real-time CPSs?

We note that the reliability mechanisms proposed in this thesis do not directly
apply to CPSs with distributed controllers, rather only those with one centralized
controller. However, an easy extension of this work could be in the context of CPSs with
hierarchical controllers such as the composable versions of COMMELEC [4] and [13].
Quarts and Quarts+ are concerned with only one layer of control. Thus, they are
agnostic to hierarchy. However, the correctness properties of Axo and intentionality
clocks depend on the setpoints received from the parent controller. We hope that with
some minor modifications the additional information from the parent controller can
be incorporated into the design. The open question is, What changes would be required
to Axo and intentionality clocks to prove their composability?

Lastly, we realize that although Axo and iPRP are designed to be controller-agnostic,
the reliability mechanisms that provide linearizability, namely, intentionality clocks
and Quarts are not controller-agnostic. However, in Chapter 7, we were able to use
intentionality clocks and Quarts without any modifications to the SDN controller.
The important property of the SDN controller, which enabled us to do so is that, the
ready_to_compute function decides based only on the measurements and not on the
time since the last setpoint issued (as done by COMMELEC [4]). Moreover, when
the controller finishes computation, it notifies QCP of the completion. It is indeed
desirable to achieve linearizability in a controller-agnostic fashion, as this would make
the fault-tolerance protocol minimally intrusive. Thus, the following question arises:
What are the necessary and sufficient properties of a CPS that enable the design of a
CPS-agnostic fault-tolerance scheme?

213

)X Discussion on Theorems in Section
3.6

Here, we derive the results of the theorems in Section 3.6. As noted earlier, we prove
these theorems for CPSs that implement Algorithms 4.1, 4.2, and 4.3. For this, we use
the result of Theorem 4.5.1, which follows from Lemmas 4.5.1, 4.5.2, 4.5.3 and 4.5.4.
For readability, the theorem and lemmas are re-stated here.

Theorem (2.8.1). In a CPS that implements Algorithms 4.1, 4.2, 4.3: for any two events
a andb,
Cla)<C(b) <= a—b

C(a)=C(b) anda.pa =bpa < a=b
The following lemmas hold for CPSs that implement intentionality clocks using
Algorithms 4.1, 4.2, and 4.3.
Lemma (2.8.1). a=b = C(a) = C (b) anda.pa = b.pa.
Lemma (2.8.2). C (a) = C (b) anda.pa = b.pa — a = b.
Lemma (2.8.3). a - b = C(a) < C (b).

Lemma (2.8.4). C'(a) < C (b)) = a —b.

A.1 Proofof Theorem 3.6.1

Theorem. “Intentional equivalence” is reflexive, symmetric, transitive.

Proof. Properties (1)-(5) of the intentional equivalence relation (Definition 3.6.1) can
be observed to be reflexive, symmetric, and transitive. Rather than enumerate the
several cases in order to prove this, we use the results obtained in Lemmas 4.5.1, 4.5.2
to provide a much more concise proof.

215

Appendix A. Discussion on Theorems in Section 3.6

Reflexive: Consider event a.
We have C (a) = C (a).
Therefore, by Lemma 4.5.2: C (a) = C (a) = a = a.

Symmetric: Consider events a and b, such that a = b.
ByLemma4.5.1:a=b = C (a) = C (b).

Then, C (b) = C (a).

Therefore, by Lemma 4.5.2: C (b) = C' (a) = b = a.

Transitive: Consider events a, b, ¢, such thata = b, b = c.
ByLemma4.5.1:a=b = C (a) = C (b).
ByLemma4.5.1: b=c = C (b) = C (¢).

Then, C (a) = C (c).

Therefore, by Lemma 4.5.2: C' (a) = C (¢) = a=c.

A.2 Proof of Theorem 3.6.2

Theorem. Forany two eventsa,b:a —b — b/ a.

Proof. We prove this by contradiction.

Leta — band b — a.

From Lemma4.54,a - b = C(a) < C (b).
From Lemma4.5.4,b - a — C (b) < C(a).
Contradiction.

Therefore, b 4 a.

A.3 Proofof Theorem 3.6.3

Theorem. For any two events a, b, such that a.pa = b.pa:
(@AbANbAa) < a=b.

Proof. The statement has two parts.

Part 1: (a.pa = b.pa,a A b)andb A a = a=b

From the converse of Lemma4.5.4:a A b = C(a) £
From the converse of Lemma 4.5.4:b A a — C(b) £
IfC(a) £ C(b)and C (b) £ C (a), then C (a) = C (b).
By Lemma 4.5.2: (C' (a) = C' (b) Aa.pa = b.pa) = a =b.

Part2: (a.pa = bpaanda =b) = (a A bandb 4 a)
From Lemma4.5.1:a =b = C(a) = C (b).
Thus, C'(a) £ C (b) and C (b) £ C (a).

216

C
C

(b).
(a).

A.3. Proof of Theorem 3.6.3

From the converse of Lemma 4.5.3: C'(a) £ C (b) = a /4 b.
From the converse of Lemma 4.5.3: C' (b) £ C' (a) = b/ a.

217

Bibliography

(1]

(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

(10]

J. Lin, K.-C. Leung, and V. O. Li, “Optimal Scheduling with Vehicle-to-Grid Regu-
lation Service,” IEEE Internet of Things Journal, vol. 1, no. 6, pp. 556-569, 2014.

O. E. Dictionary, “Oxford english dictionary online,” Mount Royal College Lib.,
Calgary, vol. 14, 2004.

I. Dumitrache, “The next generation of cyber-physical systems,” Journal of Con-
trol Engineering and Applied Informatics, vol. 12, no. 2, pp. 3-4, 2010.

A. Bernstein, L. Reyes-Chamorro, J.-Y. Le Boudec, and M. Paolone, “A Compos-
able Method for Real-Time Control of Active Distribution Networks with Explicit
Power Setpoints. Part I: Framework,” Electric Power Systems Research, vol. 125,
pp. 254-264, 2015.

K. Christakou, D.-C. Tomozei, J.-Y. Le Boudec, and M. Paolone, “GECN: Pri-
mary Voltage Control for Active Distribution Networks Via Real-Time Demand-
Response,” Smart Grid, IEEE Transactions on, vol. 5, no. 2, pp. 622-631, 2014.

Z.Xiao, T. Li, M. Huang, J. Shi, J. Yang, J. Yu, and W. Wu, “Hierarchical MAS Based
Control Strategy for Microgrid,” Energies, vol. 3, no. 9, pp. 1622-1638, 2010.

A. Bernstein, N. Bouman, and J.-Y. Le Boudec, “Real-Time Control of an Ensem-
ble of Heterogeneous Resources,” in Proceedings of the 56th IEEE Conference on
Decision and Control. 1EEE, 2017.

C. Urmson, J. A. Bagnell, C. R. Baker, M. Hebert, A. Kelly, R. Rajkumar, P. E. Rybski,
S. Scherer, R. Simmons, S. Singh et al., “Tartan Racing: A Multi-Modal Approach
to the Darpa Urban Challenge,” 2007.

T. Y. Teck, M. Chitre, and P. Vadakkepat, “Hierarchical Agent-Based Command
and Control System for Autonomous Underwater Vehicles,” in Autonomous and
Intelligent Systems (AIS), 2010 International Conference on. 1EEE, 2010, pp. 1-6.

G. N. Roberts and R. Sutton, Advances in unmanned marine vehicles. Iet, 2006,
vol. 69.

219

Bibliography

[11]

[12]

[19]

220

D. Floreano and R. J. Wood, “Science, technology and the future of small au-
tonomous drones,” Nature, vol. 521, no. 7553, p. 460, 2015.

C. Urmson, C. Baker, J. Dolan, P. Rybski, B. Salesky, W. Whittaker, D. Ferguson,
and M. Darms, “Autonomous driving in traffic: Boss and the urban challenge,”
Al magazine, vol. 30, no. 2, p. 17, 2009.

P Leitao, “Agent-Based Distributed Manufacturing Control: A State-of-the-Art
Survey,” Engineering Applications of Artificial Intelligence, vol. 22, no. 7, pp.
979-991, 2009.

J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems architecture for
industry 4.0-based manufacturing systems,” Manufacturing Letters, vol. 3, pp.
18-23, 2015.

L. Wang, M. Toérngren, and M. Onori, “Current status and advancement of cyber-
physical systems in manufacturing,” Journal of Manufacturing Systems, vol. 37,
pp. 517-527, 2015.

“Cyber-physical system,” https://en.wikipedia.org/wiki/Cyber-physical_system,
accessed: 2018-06-28.

A. Oudalov, D. Chartouni, and C. Ohler, “Optimizing a battery energy storage
system for primary frequency control,” IEEE Transactions on Power Systems,
vol. 22, no. 3, pp. 1259-1266, 2007.

H. Saboori, M. Mohammadi, and R. Taghe, “Virtual power plant (VPP), definition,
concept, components and types,” in Power and Energy Engineering Conference
(APPEEC), 2011 Asia-Pacific. 1EEE, 2011, pp. 1-4.

P. Romano and M. Paolone, “Enhanced interpolated-DFT for synchrophasor
estimation in fpgas: Theory, implementation, and validation of a pmu prototype,”
IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 12, pp. 2824—
2836, 2014.

A. G. Phadke, “Synchronized phasor measurements in power systems,” I[EEE
Computer Applications in power, vol. 6, no. 2, pp. 10-15, 1993.

G. Lipari, P. Gai, M. Trimarchi, G. Guidi, and P. Ancilotti, “A hierarchical frame-
work for component-based real-time systems,” in International Symposium on
Component-Based Software Engineering. Springer, 2004, pp. 209-216.

K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, “A distributed control strategy
based on dc bus signaling for modular photovoltaic generation systems with
battery energy storage,” IEEE Transactions on Power Electronics, vol. 26, no. 10,
pp. 3032-3045, 2011.

https://en.wikipedia.org/wiki/Cyber-physical_system

Bibliography

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

V. Musolino, P-J. Alet, L.-E. Perret-Aebi, C. Ballif, and L. Piegari, “Alleviating power
quality issues when integrating PV into built areas: Design and control of dc
microgrids,” in DC Microgrids (ICDCM), 2015 IEEE First International Conference
on. IEEE, 2015, pp. 102-107.

E-L.Lian, J. Moyne, and D. Tilbury, “Network design consideration for distributed
control systems,” IEEE Transactions on Control Systems Technology, vol. 10, no. 2,
pp- 297-307, 2002.

Y. Xia, M. Fu, and G.-P. Liu, Analysis and synthesis of networked control systems.
Springer Science & Business Media, 2011, vol. 409.

X. Ge, E Yang, and Q.-L. Han, “Distributed networked control systems: A brief
overview,” Information Sciences, vol. 380, pp. 117-131, 2017.

N. McKeown, “Software-defined networking,” INFOCOM keynote talk, vol. 17,
no. 2, pp.- 30-32, 2009.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus
Networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69-74, Mar.
2008. [Online]. Available: http://doi.acm.org/10.1145/1355734.1355746

K. Joshi and T. Benson, “Network function virtualization,” IEEE Internet Comput-
ing, vol. 20, no. 6, pp. 7-9, 2016.

B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization:
Challenges and opportunities for innovations,” IEEE Communications Magazine,
vol. 53, no. 2, pp. 90-97, 2015.

A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, and S. Shenker, “SCL: Simplifying
Distributed SDN Control Planes.” in NSDI, 2017, pp. 329-345.

E. A. Lee, “Cyber physical systems: Design challenges,” in Object oriented real-
time distributed computing (isorc), 2008 11th ieee international symposium on.
IEEE, 2008, pp. 363-369.

J. A. Stankovic, “Misconceptions about real-time computing: A serious problem
for next-generation systems,” Computer, vol. 21, no. 10, pp. 10-19, 1988.

P. Palensky and D. Dietrich, “Demand side management: Demand response,
intelligent energy systems, and smart loads,” IEEE transactions on industrial
informatics, vol. 7, no. 3, pp. 381-388, 2011.

L. Reyes-Chamorro, W. Saab, R. Rudnik, A. M. Kettner, M. Paolone, and J.-Y.
Le Boudec, “Slack selection for unintentional islanding: Practical validation in a
benchmark microgrid,” in 20th Power Systems Computation Conference (PSCC
2018), no. CONE 2018.

221

http://doi.acm.org/10.1145/1355734.1355746

Bibliography

[36]

[37]

[38]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

222

H. Farhangi, “The Path of the Smart Grid,” Power and Energy Magazine, IEEE,
vol. 8, no. 1, pp. 18-28, 2010.

D. M. Stavens, Learning to drive: Perception for autonomous cars. Stanford
University, 2011.

O. Alsac and B. Stott, “Optimal load flow with steady-state security,” IEEE trans-
actions on power apparatus and systems, no. 3, pp. 745-751, 1974.

C. Wang, A. Bernstein, J.-Y. Le Boudec, and M. Paolone, “Explicit conditions on
existence and uniqueness of load-flow solutions in distribution networks,” IEEE
Transactions on Smart Grid, 2016.

J. Nilsson et al., “Real-time control systems with delays,” 1998.

R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”
Journal of basic Engineering, vol. 82, no. 1, pp. 35-45, 1960.

S. H. Fuller and L. I. Millett, “Computing performance: Game over or next level?”
Computer, vol. 44, no. 1, pp. 31-38, 2011.

D. J. Reifer, V. R. Basili, B. W. Boehm, and B. Clark, “COTS-Based Systems—
Twelve Lessons Learned about Maintenance,” in COTS-Based Software Systems.
Springer, 2004, pp. 137-145.

N. Instruments, “ NI Compactrio,” http://www.ni.com/compactrio/, accessed:
2015-02-15.

«

Alstom, Digital Automation Platform Server,” http://www.alstom.
com/grid/products-and-services/Substation-automation-system/
dap-substation-server/, accessed: 2015-02-15.

ABB, “MGC600,” https://new.abb.com/docs/default-source/ewea-doc/
microgrid-controller-600_en_Ir(dic2013).pdf, accessed: 2015-02-15.

B. Automation, “Automation PC 910,” https://www.br-automation.com/en/
products/industrial-pcs/automation-pc-910/, accessed: 2015-02-15.

W. Bolton, Programmable logic controllers. Newnes, 2015.

M. Barabanov and V. Yodaiken, “Real-time linux,” Linux journal, vol. 23, no. 4.2,
p. 1, 1996.

I. Tesla Motors, “Git hub Tesla motors,” https://github.com/teslamotors, ac-
cessed: 2016-06-06.

K. G. Shin and P. Ramanathan, “Real-time computing: A new discipline of com-
puter science and engineering,” Proceedings of the IEEE, vol. 82, no. 1, pp. 6-24,
1994.

http://www.ni.com/compactrio/
http://www.alstom.com/grid/products-and-services/Substation-automation-system/dap-substation-server/
http://www.alstom.com/grid/products-and-services/Substation-automation-system/dap-substation-server/
http://www.alstom.com/grid/products-and-services/Substation-automation-system/dap-substation-server/
https://new.abb.com/docs/default-source/ewea-doc/microgrid-controller-600_en_lr(dic2013).pdf
https://new.abb.com/docs/default-source/ewea-doc/microgrid-controller-600_en_lr(dic2013).pdf
https://www.br-automation.com/en/products/industrial-pcs/automation-pc-910/
https://www.br-automation.com/en/products/industrial-pcs/automation-pc-910/
https://github.com/teslamotors

Bibliography

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

(61]

(62]

(63]

K. C. Budka, J. G. Deshpande, and M. Thottan, “Communication Networks for
Smart Grids,” in Computer Communications and Networks. Springer, 2014.

M. Pignati, M. Popovic, S. Barreto, R. Cherkaoui, G. D. Flores, J.-Y. Le Boudec,
M. Mohiuddin, M. Paolone, P. Romano, S. Sarri et al., “Real-time state estimation
of the EPFL-campus medium-voltage grid by using PMUs,” in Innovative Smart
Grid Technologies Conference (ISGT), 2015 IEEE Power & Energy Society. 1EEE,
2015, pp. 1-5.

M. Farsi, K. Ratcliff, and M. Barbosa, “An overview of controller area network,”
Computing & Control Engineering Journal, vol. 10, no. 3, pp. 113-120, 1999.

E Consortium et al., “Flexray communications system-protocol specification,”
Version, vol. 2, no. 1, pp. 198-207, 2005.

H. Charara, J.-L. Scharbarg, J. Ermont, and C. Fraboul, “Methods for bound-
ing end-to-end delays on an AFDX network,” in Real-Time Systems, 2006. 18th
Euromicro Conference on. 1EEE, 2006, pp. 10—pp.

H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, The time-triggered
ethernet (TTE) design. 1EEE, 2005.

D. Dzung, R. Guerraoui, D. Kozhaya, and Y.-A. Pignolet, “Never Say Never—
Probabilistic and Temporal Failure Detectors,” in Parallel and Distributed Pro-
cessing Symposium, 2016 IEEE International. 1EEE, 2016, pp. 679-688.

H. Kopetz and G. Grunsteidl, “TTP-a time-triggered protocol for fault-tolerant
real-time systems,” in Fault-Tolerant Computing, 1993. FTCS-23. Digest of Pa-
pers., The Twenty-Third International Symposium on. 1EEE, 1993, pp. 524-533.

A. Sheth, S. Nedevschi, R. Patra, S. Surana, E. Brewer, and L. Subramanian,
“Packet loss characterization in WiFi-based long distance networks,” in INFO-
COM 2007. 26th IEEE International Conference on Computer Communications.
IEEE. 1EEE, 2007, pp. 312-320.

J. Achara, M. Mohiuddin, W. Saab, R. Rudnik, and J.-Y. Le Boudec, “T-RECS: A
Software Testbed for Multi-Agent Real-Time Control of Electric Grids,” in 22nd
IEEE International Conference on Emerging Technologies And Factory Automa-
tion. IEEE, 2017.

W. K. Chai, N. Wang, K. V. Katsaros, G. Kamel, G. Pavlou, S. Melis, M. Hoefling,
B. Vieira, P. Romano, S. Sarri et al., “An information-centric communication
infrastructure for real-time state estimation of active distribution networks,”
IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 2134-2146, 2015.

J. Wan, H. Yan, D. Li, K. Zhou, and L. Zeng, “Cyber-physical systems for optimal
energy management scheme of autonomous electric vehicle,” The Computer
Journal, vol. 56, no. 8, pp. 947-956, 2013.

223

Bibliography

[64]

[67]

[68]

224

M. Elattar and J. Jasperneite, “Using LTE as an access network for internet-based
cyber-physical systems,” in Factory Communication Systems (WFCS), 2015 IEEE
World Conference on. 1EEE, 2015, pp. 1-7.

“Northeast blackout of 2003,” https://en.wikipedia.org/wiki/Northeast_
blackout_of 2003, accessed: 2018-06-28.

G. Andersson, P. Donalek, R. Farmer, N. Hatziargyriou et al., “Causes of the 2003
Major Grid Blackouts in North America and Europe and Recommended Means
to Improve System Dynamic Performance ,” Power Systems, IEEE Transactions
on, vol. 20, no. 4, pp. 1922-1928, Nov 2005.

J. Jacinto, “Automation services reduce downtime for manufac-
turers,” https://www.totallyintegratedautomation.com/2009/10/
automation-services-reduce-downtime-for-manufacturers/, accessed:
2016-06-06.

R. 1. Association, “Industrie 4.0 reducing downtime in auto-
motive industry,” https://www.controleng.com/single-article/
industrie-40-reducing-downtime-in-automotive-industry/
c8le25bc19ea692b235431f4007996d2.html, accessed: 2018-06-06.

S. Kane, E. Liberman, T. DiViesti, and E Click, “Toyota Sudden Unintended
Acceleration has Killed 89,” Safety Research & Strategies, 2010.

A. Klein, “Tesla driver dies in first fatal autonomous car crash in US,” New Scien-
tist, 2016.

E. Ackerman, “Fatal tesla self-driving car crash reminds us that robots aren’t
perfect,” IEEE-Spectrum, vol. 1, 2016.

H. Kirrmann, “§2.5 Dependable Automation,” Collaborative Process Automation
Systems, p. 100, 2010.

“Split-Brain ~ (Computing),” https://en.wikipedia.org/wiki/Split-brain_
(computing), accessed: 2018-06-28.

A. Avizienis and J. P. Kelly, “Fault Tolerance by Design Diversity: Concepts and
Experiments,” Computer, vol. 17, no. 8, pp. 67-80, 1984.

A. Avizienis, J.-C. Laprie, B. Randell et al., Fundamental Concepts of Dependabil-
ity. University of Newcastle upon Tyne, Computing Science, 2001.

A. L. Hopkins, T. B. Smith, and J. H. Lala, “FTMP—a highly reliable fault-tolerant
multiprocess for aircraft,” Proceedings of the IEEE, vol. 66, no. 10, pp. 1221-1239,
1978.

https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://www.totallyintegratedautomation.com/2009/10/automation-services-reduce-downtime-for-manufacturers/
https://www.totallyintegratedautomation.com/2009/10/automation-services-reduce-downtime-for-manufacturers/
https://www.controleng.com/single-article/industrie-40-reducing-downtime-in-automotive-industry/c81e25bc19ea692b235431f4007996d2.html
https://www.controleng.com/single-article/industrie-40-reducing-downtime-in-automotive-industry/c81e25bc19ea692b235431f4007996d2.html
https://www.controleng.com/single-article/industrie-40-reducing-downtime-in-automotive-industry/c81e25bc19ea692b235431f4007996d2.html
https://en.wikipedia.org/wiki/Split-brain_(computing)
https://en.wikipedia.org/wiki/Split-brain_(computing)

Bibliography

[77]

(78]

[79]

(80]

(81]
(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

(90]

(91]

Y. C. Yeh, “Triple-triple redundant 777 primary flight computer,” in Aerospace
Applications Conference, 1996. Proceedings., 1996 IEEE, vol. 1. IEEE, 1996, pp.
293-307.

T. E. Oliphant, “Python for scientific computing,” Computing in Science & Engi-
neering, vol. 9, no. 3, 2007.

M. Castro, B. Liskov et al., “Practical Byzantine Fault Tolerance,” in OSDI, vol. 99,
1999, pp. 173-186.

H. Khurana, M. Hadley, N. Lu, and D. Frincke, “Smart-grid security issues,”
Security Privacy, IEEE, vol. 8, no. 1, pp. 81-85, Jan 2010.

H. Weibel, “Tutorial on Parallel Redundancy Protocol (PRP),” 2003.
J. Gray, “Why do Computers Stop and what can be Done about It?” 1986.

C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable and secure
distributed programming. Springer Science & Business Media, 2011.

L. Lamport, “The Part-Time Parliament,” ACM Transactions on Computer Systems
(TOCS), vol. 16, no. 2, pp. 133-169, 1998.

——, “Time Clocks and the Ordering of Events in a Distributed System,” Com-
munications of the ACM, vol. 21, no. 7, pp. 558-565, 1978.

B. M. Oki and B. H. Liskov, “Viewstamped Replication: A New Primary Copy
Method to Support Highly-Available Distributed Systems,” in Proceedings of the
seventh annual ACM Symposium on Principles of distributed computing. ACM,
1988, pp. 8-17.

P. Mahajan, L. Alvisi, and M. Dahlin, “Consistency, Availability, and Convergence,”
University of Texas at Austin Tech Report, vol. 11, 2011.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of Distributed
Consensus with One Faulty Process,” Journal of the ACM (JACM), vol. 32, no. 2,
pp. 374-382, 1985.

W. Vogels, “Eventually consistent,” Communications of the ACM, vol. 52, no. 1,
pp. 40-44, 2009.

D. Bermbach and S. Tai, “Eventual consistency: How soon is eventual? an evalu-
ation of amazon s3’s consistency behavior,” in Proceedings of the 6th Workshop
on Middleware for Service Oriented Computing. ACM, 2011, p. 1.

P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations, extensions,
and beyond,” Queue, vol. 11, no. 3, p. 20, 2013.

225

Bibliography

[92]

[100]

[101]

[102]

[103]

[104]

[105]

226

L. Reyes-Chamorro, A. Bernstein, N. J. Bouman, E. Scolari, A. Kettner, B. Cathiard,
].-Y. Le Boudec, and M. Paolone, “Experimental Validation of an Explicit Power-
Flow Primary Control in Microgrid,” in EEE Transactions on Industrial Informat-
ics, no. EPFL-ARTICLE-234511, 2018.

J. McCauley, “The POX network software platform,” last accessed: 2018-06-10.
[Online]. Available: https://noxrepo.github.io/pox-doc/html/

Ryu, “Component-based SDN framework,” 2018. [Online]. Available: https:
//osrg.github.io/ryu/index.html

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56, no. 2, pp.
74-80, 2013. [Online]. Available: http://doi.acm.org/10.1145/2408776.2408794

C. G.Requena, E G. Villamén, M. E. G. Requena, P.J. L. Rodriguez, and J. D. Marin,
“Ruft: Simplifying the fat-tree topology,” in Parallel and Distributed Systems, 2008.
ICPADS’08. 14th IEEE International Conference on. 1EEE, 2008, pp. 153-160.

Mininet, “An Instant Virtual Network on your Laptop (or other PC),” 2018.
[Online]. Available: http://mininet.org/

E. D. Sontag, Mathematical control theory: deterministic finite dimensional sys-
tems. Springer Science & Business Media, 2013, vol. 6.

N. Budhiraja, K. Marzullo, E B. Schneider, and S. Toueg, “The Primary-Backup
Approach,” Distributed systems, vol. 2, pp. 199-216, 1993.

E B. Schneider, “The state machine approach: A tutorial,” in Fault-tolerant
distributed computing. Springer, 1990, pp. 18-41.

R. Guerraoui and A. Schiper, “Software-based replication for fault tolerance,”
Computer, vol. 30, no. 4, pp. 68-74, 1997.

M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for con-
current objects,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 12, no. 3, pp. 463-492, 1990.

E P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance broadcast
for primary-backup systems,” in Dependable Systems & Networks (DSN), 2011
IEEE/IFIP 41st International Conference on. 1EEE, 2011, pp. 245-256.

H. Zou and E Jahanian, “Real-time primary-backup (rtpb) replication with tem-
poral consistency guarantees,” in Distributed Computing Systems, 1998. Proceed-
ings. 18th International Conference on. 1EEE, 1998, pp. 48-56.

T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed
systems,” Journal of the ACM (JACM), vol. 43, no. 2, pp. 225-267, 1996.

https://noxrepo.github.io/pox-doc/html/
https://osrg.github.io/ryu/index.html
https://osrg.github.io/ryu/index.html
http://doi.acm.org/10.1145/2408776.2408794
http://mininet.org/

Bibliography

[106]

[107]

[108]

[109]

[110]

[111]

[112]

(113]

[114]

[115]

[116]

[117]

[118]

R. Van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure detection ser-
vice,” in Proceedings of the IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing. Springer-Verlag, 2009, pp. 55-70.

M. K. Aguilera, W. Chen, and S. Toueg, “Heartbeat: A timeout-free failure detector
for quiescent reliable communication,” in International Workshop on Distributed
Algorithms. Springer, 1997, pp. 126-140.

H. Garcia-Molina, “Elections in a distributed computing system,” IEEE transac-
tions on Computers, no. 1, pp. 48-59, 1982.

S. D. Stoller, “Leader election in asynchronous distributed systems,” IEEE trans-
actions on computers, no. 3, pp. 283-284, 2000.

0. Babaoglu, R. Davoli, and A. Montresor, “Group membership and view syn-
chrony in partitionable asynchronous distributed systems: Specifications,” ACM
SIGOPS Operating Systems Review, vol. 31, no. 2, pp. 11-22, 1997.

R. Guerraoui and L. Rodrigues, Introduction to reliable distributed programming.
Springer Science & Business Media, 2006.

O. Laadan and S. E. Hallyn, “Linux-cr: Transparent application checkpoint-
restart in linux,” in Linux Symposium, vol. 159. Citeseer, 2010.

M. Chéreque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron, “Active replica-
tion in delta-4,” in Fault-Tolerant Computing, 1992. FTCS-22. Digest of Papers.,
Twenty-Second International Symposium on. 1EEE, 1992, pp. 28-37.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield, “Re-
mus: High availability via asynchronous virtual machine replication,” in Pro-
ceedings of the 5th USENIX Symposium on Networked Systems Design and Imple-
mentation. San Francisco, 2008, pp. 161-174.

L. Lamport et al., “Paxos Made Simple,” ACM Sigact News, vol. 32, no. 4, pp. 18-25,
2001.

E. E Camacho and C. B. Alba, Model predictive control. ~Springer Science &
Business Media, 2013.

A. Schiper and A. Sandoz, “Uniform reliable multicast in a virtually synchronous
environment,” in Distributed Computing Systems, 1993., Proceedings the 13th
International Conference on. 1EEE, 1993, pp. 561-568.

C.]. Fidge, “Timestamps in Message-Passing Systems that Preserve the Partial
Ordering,” 1987.

227

Bibliography

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

228

L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM
Transactions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3,
pp. 382-401, 1982.

G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo, “Efficient
byzantine fault-tolerance,” IEEE Transactions on Computers, vol. 62, no. 1, pp.
16-30, 2013.

J. Kirsch, S. Goose, Y. Amir, D. Wei, and P. Skare, “Survivable SCADA Via Intrusion-
Tolerant Replication,” Smart Grid, IEEE Transactions on, vol. 5, no. 1, pp. 60-70,
2014.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: Speculative
Byzantine Fault Tolerance,” in ACM SIGOPS Operating Systems Review, vol. 41,
no. 6. ACM, 2007, pp. 45-58.

M. Castro and B. Liskov, “Proactive recovery in a byzantine-fault-tolerant system,”
in Proceedings of the 4th conference on Symposium on Operating System Design
& Implementation-Volume 4. USENIX Association, 2000, p. 19.

V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert, “Proactive management of software aging,”
IBM Journal of Research and Development, vol. 45, no. 2, pp. 311-332, 2001.

K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for software rejuve-
nation,” IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 2,
pp. 124-137, 2005.

D. L. Parnas, “Software aging,” in Proceedings of the 16th international conference
on Software engineering. 1EEE Computer Society Press, 1994, pp. 279-287.

D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software Aging Analysis
of the Linux Operating System,” in Software Reliability Engineering (ISSRE), 2010
IEEE 21st International Symposium on. 1EEE, 2010, pp. 71-80.

M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of software aging
in a web server,” IEEE Transactions on reliability, vol. 55, no. 3, pp. 411-420, 2006.

Y. Bao, X. Sun, and K. S. Trivedi, “A workload-based analysis of software aging,
and rejuvenation,” IEEE Transactions on Reliability, vol. 54, no. 3, pp. 541-548,
2005.

J. Mostafa, “Software Aging in Real-Time Control Systems,” 2017.

H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proceedings of the
IEEE, vol. 91, no. 1, pp. 112-126, 2003.

Bibliography

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

(141]

[142]

[143]

[144]

P. Verissimo and A. Casimiro, “The timely computing base model and architec-
ture,” Computers, IEEE Transactions on, vol. 51, no. 8, pp. 916-930, 2002.

M. Scharf and S. Kiesel, “Head-of-line blocking in tcp and sctp: Analysis and
measurements.” in GLOBECOM, vol. 6, 2006, pp. 1-5.

M. Scharf and A. Ford, “Multipath tcp (mptcp) application interface considera-
tions,” Tech. Rep., 2013.

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, E Yang, E Koura-
nov, . Swett, J. Iyengar et al., “The quic transport protocol: Design and internet-
scale deployment,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. ACM, 2017, pp. 183-196.

J. Iyengar and M. Thomson, “Quic: A udp-based multiplexed and secure trans-
port,” draft-ietf-quic-transport-01 (work in progress), 2017.

M. Allman, V. Paxson, and E. Blanton, “Tcp congestion control,” Tech. Rep., 2009.

M. Garcia, R. Agiiero, and L. Mufioz, “On the unsuitability of tcp rto estimation
over bursty error channels,” in IFIP International Conference on Personal Wireless
Communications. Springer, 2004, pp. 343-348.

D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable commu-
nication over packet networks,” Physical Communication, vol. 1, no. 1, pp. 3-20,
2008.

R. Coltun, D. Ferguson, J. Moy, and A. Lindem, “OSPF for IPv6,” RFC 5340
(Proposed Standard), Internet Engineering Task Force, Jul. 2008, updated by
RFCs 6845, 6860, 7503. [Online]. Available: http://www.ietf.org/rfc/rfc5340.txt

C. Hedrick, “Routing Information Protocol,” RFC 1058 (Historic), Internet
Engineering Task Force, Jun. 1988, updated by RFCs 1388, 1723. [Online].
Available: http://www.ietf.org/rfc/rfc1058.txt

R. Pallos, J. Farkas, I. Moldovan, and C. Lukovszki, “Performance of rapid span-
ning tree protocol in access and metro networks,” in Access Networks Workshops,
2007. AccessNets '07. Second International Conference on, Aug 2007, pp. 1-8.

T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J. P.
Vasseur, and R. Alexander, “Rpl: Ipv6 routing protocol for low-power and lossy
networks,” Tech. Rep., 2012.

N. Sprecher and A. Farrel, “MPLS Transport Profile (MPLS-TP) Survivability
Framework,” IETE RFC 6372 (Informational), Internet Engineering Task Force,
Sep. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6372.txt

229

http://www.ietf.org/rfc/rfc5340.txt
http://www.ietf.org/rfc/rfc1058.txt
http://www.ietf.org/rfc/rfc6372.txt

Bibliography

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

230

H. Kirrmann, M. Hansson, and P. Muri, “IEC 62439 PRP: Bumpless Recovery for
Highly Available, Hard Real-Time Industrial Networks,” in Emerging Technologies
and Factory Automation, 2007. ETFA. IEEE Conference on, Sept 2007, pp. 1396—
1399.

H. Kirrmann, K. Weber, O. Kleineberg, and H. Weibel, “Hsr: Zero recovery time
and low-cost redundancy for industrial ethernet (high availability seamless re-
dundancy, iec 62439-3),” in Proceedings of the 14th IEEE International Conference
on Emerging Technologies & Factory Automation, ser. ETFA'09. Piscataway, NJ,
USA: IEEE Press.

H. Yuasa, T. Satake, M. J. Cardona, H. Fujii, A. Yasuda, K. Yamashita, S. Suzaki,
H. Ikezawa, M. Ohno, A. Matsuzaki et al., “Virtual lan system,” 2000, uS Patent
6,085,238.

R. Yuan, W. T. Strayer, and T. Strayer, Virtual private networks: technologies and
solutions. Addison-Wesley, 2001.

A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of transport
protocols in the internet,” ACM SIGCOMM Computer Communication Review,
vol. 35, no. 2, pp. 37-52, 2005.

M. Rentschler and H. Heine, “The Parallel Redundancy Protocol for Industrial IP
Networks,” in Industrial Technology (ICIT), 2013 IEEE International Conference
on, Feb 2013, pp. 1404-1409.

R. Guerraoui, D. Kozhaya, M. Oriol, and Y. A. Pignolet, “Who’s on Board?: Proba-
bilistic Membership for Real-Time Distributed Control Systems ,” in 2016 IEEE
35th Symposium on Reliable Distributed Systems (SRDS), Sept 2016, pp. 167-176.

W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked control
systems,” IEEE Control Systems, vol. 21, no. 1, pp. 84-99, 2001.

A. K. Singh, R. Singh, and B. C. Pal, “Stability analysis of networked control in
smart grids,” IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 381-390, 2015.

M. Sanfridson, M. Torngren, and J. Wikander, “The effect of randomly time-
varying sampling and computational delay,” IFAC Proceedings Volumes, vol. 38,
no. 1, pp. 209-218, 2005.

P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,”
IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1680-1685, 2007.

C. Ly, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback control real-time schedul-
ing: Framework, modeling, and algorithms,” Real-Time Systems, vol. 23, no. 1-2,
pp. 85-126, 2002.

Bibliography

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

T. C. Yang, “Networked control system: a brief survey,” IEE Proceedings-Control
Theory and Applications, vol. 153, no. 4, pp. 403-412, 2006.

S. Gatziu and K. R. Dittrich, “Events in an active object-oriented database system,”
in Rules in Database Systems. Springer, 1994, pp. 23-39.

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S.
Sastry, “Kalman Filtering with Intermittent Observations,” IEEE transactions on
Automatic Control, vol. 49, no. 9, pp. 1453-1464, 2004.

W. Saab, R. Rudnik, L. Reyes-Chamorro, J.-Y. Le Boudec, and M. Paolone, “Robust
Real-Time Control of Power Grids in the Presence of Communication Network
Non-Idealities,” in 2018 IEEE International Conference on Probabilistic Methods
Applied to Power Systems (PMAPS), no. CONE 2018.

L. Lamport, “Fast Paxos,” Distributed Computing, vol. 19, no. 2, pp. 79-103, 2006.

W. Saab, M. Mohiuddin, S. Bliudze, and J.-Y. Le Boudec, “Quarts: Quick Agree-
ment for Real-Time Control Systems,” in 22nd IEEE International Conference on
Emerging Technologies And Factory Automation. 1EEE, 2017.

A. Casimiro and P. Verissimo, “Timing Failure Detection with a Timely Computing
Base,” 1999.

“leee standard for a precision clock synchronization protocol for networked
measurement and control systems,” IEEE Std 1588-2002, pp. i-144, 2002.

D. L. Mills, “Internet time synchronization: the network time protocol,” Commu-
nications, IEEE Transactions on, vol. 39, no. 10, pp. 1482-1493, 1991.

E J. Torres-Rojas and M. Ahamad, “Plausible clocks: constant size logical clocks
for distributed systems,” Distributed Computing, vol. 12, no. 4, pp. 179-195, 1999.

T. Landes, “Dynamic vector clocks for consistent ordering of events in dynamic
distributed applications.” in PDPTA, 2006, pp. 31-37.

P. S. Almeida, C. Baquero, and V. Fonte, “Interval tree clocks,” in International
Conference On Principles Of Distributed Systems. Springer, 2008, pp. 259-274.

J. C. Lui, V. Misra, and D. Rubenstein, “On the Robustness of Soft State Protocols,”
in Network Protocols, 2004. ICNP 2004. Proceedings of the 12th IEEE International
Conference on. 1EEE, 2004, pp. 50-60.

S. Kamboj, W. Kempton, and K. S. Decker, “Deploying Power Grid-Integrated
Electric Vehicles as a Multi-Agent System,” in The 10th International Confer-
ence on Autonomous Agents and Multiagent Systems-Volume 1. International
Foundation for Autonomous Agents and Multiagent Systems, 2011, pp. 13-20.

231

Bibliography

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

232

S. Gilbert and N. A. Lynch, “Perspectives on the CAP Theorem.” Institute of
Electrical and Electronics Engineers, 2012.

A. Schiper, “Early consensus in an asynchronous system with a weak failure
detector,” Distributed Computing, vol. 10, no. 3, pp. 149-157, 1997.

J. L. Gersting, R. L. Nist, D. B. Roberts, and R. Van Valkenburg, “A Comparison
of Voting Algorithms for N-Version Programming,” in System Sciences, 1991.
Proceedings of the Twenty-Fourth Annual Hawaii International Conference on,
vol. 2. IEEE, 1991, pp. 253-262.

D. M. Blough and G. E Sullivan, “A Comparison of Voting Strategies for Fault-
Tolerant Distributed Systems,” in Reliable Distributed Systems, 1990. Proceedings.,
Ninth Symposium on. 1EEE, 1990, pp. 136-145.

R. Rudnik, L. E. Reyes Chamorro, A. Bernstein, J.-Y. Le Boudec, and M. Paolone,
“Handling Large Power Steps in Real-Time Microgrid Control Via Explicit Power
Setpoints,” in PowerTech 2017, no. EPFL-CONF-226196, 2017.

S. Sarri, L. Zanni, M. Popovic, J.-Y. Le Boudec, and M. Paolone, “Performance
Assessment of Linear State Estimators using Synchrophasor Measurements,”
IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 3, pp. 535—
548, 2016.

E. O. Elliott, “Estimates of Error Rates for Codes on Burst-Noise Channels,” The
Bell System Technical Journal, vol. 42, no. 5, pp. 1977-1997, 1963.

J.-Y. Le Boudec, Performance Evaluation of Computer and Communication Sys-
tems. Epfl Press, 2010.

D. W. Allan, M. A. Weiss et al., Accurate time and frequency transfer during
common-view of a GPS satellite.

S. Krishnamurthy, W. H. Sanders, and M. Cukier, “A dynamic replica selection
algorithm for tolerating timing faults,” in Dependable Systems and Networks,
2001. DSN 2001. International Conference on, July 2001, pp. 107-116.

A. Casimiro and P. Verissimo, “Generic Timing Fault Tolerance Using a Timely
Computing Base ,” in Dependable Systems and Networks, 2002. Proceedings.
International Conference on, 2002, pp. 27-36.

H. Kopetz, “Fault containment and error detection in the time-triggered archi-
tecture,” in Autonomous Decentralized Systems, 2003. ISADS 2003. The Sixth
International Symposium on. 1EEE, 2003, pp. 139-146.

——, “Fault Containment and Error Detection in the Time-Triggered Archi-
tecture,” in Autonomous Decentralized Systems, 2003. The Sixth International
Symposium on. 1EEE, 2003, pp. 139-146.

Bibliography

[184]

[185]

[186]

[187]

[188]

[189]

(190]

[191]

[192]

(193]

[194]

S. Poledna, “Replica Determinism in Distributed Real-Time Systems: A Brief
Survey,” Real-Time Systems, vol. 6, no. 3, pp. 289-316, 1994.

T. Maniak, C. Jayne, R. Igbal, and E Doctor, “Automated Intelligent System for
Sound Signalling Device Quality Assurance,” Information Sciences, vol. 294, pp.
600-611, 2015.

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot-a
technique for cheap recovery,” arXiv preprint cs/0406005, 2004.

J. P. Achara, M. Mohiuddin, W. Saab, R. Rudnik, J.-Y. Le Boudec, and L. Reyes-
Chamorro, “T-recs: A virtual commissioning tool for so ware-based control of
electric grids—design, validation, and operation,” in Proceedings of the Ninth
International Conference on Future Energy Systems. ACM, 2018, pp. 303-313.

Carnegie Mellon, University of Michigan, “Control Tutorials for MAT-
LAB & Simulink,” http://ctms.engin.umich.edu/CTMS/index.php?example=
InvertedPendulum§ion=SystemModeling, 2012, accessed: 2017-06-22.

T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A Distributed Control
Platform for Large-Scale Production Networks.” in OSD], vol. 10, 2010, pp. 1-6.

N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana: Controller Fault-
Tolerance in Software-Defined Networking,” in Proceedings of the 1st ACM SIG-
COMM Symposium on Software Defined Networking Research. ACM, 2015,

p- 4.

P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: Towards an Open, Distributed
SDN OS,” in Proceedings of the third workshop on Hot topics in software defined
networking. ACM, 2014, pp. 1-6.

A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “Cap for networks,” in
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN "13. New York, NY, USA: ACM, 2013, pp.
91-96. [Online]. Available: http://doi.acm.org/10.1145/2491185.2491186

M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates for
software-defined networks: Change you can believe in!” in Proceedings of the
10th ACM Workshop on Hot Topics in Networks, ser. HotNets-X, 2011, pp. 7:1-7:6.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74,
2008.

233

http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SystemModeling
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SystemModeling
http://doi.acm.org/10.1145/2491185.2491186

Bibliography

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

234

J. N. Gray, “Notes on data base operating systems,” in Operating Systems.
Springer, 1978, pp. 393-481.

N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies with rock-
etfuel,” ACM SIGCOMM Computer Communication Review, vol. 32, no. 4, pp.
133-145, 2002.

OpenFlow, “Openflow,” 2018. [Online]. Available: https://en.wikipedia.org/wiki/
OpenFlow

OVS, “Open vSwitch,” 2018. [Online]. Available: http://www.openvswitch.org/

D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Logically
Centralized?: State Distribution Trade-offs in Software Defined Networks,” in
Proceedings of the First Workshop on Hot Topics in Software Defined Networks,
2012, pp. 1-6.

S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of software-
defined networking,” IEEE Communications Magazine, vol. 51, no. 2, pp. 136-141,
February 2013.

A. Tootoonchian and Y. Ganjali, “Hyperflow: A Distributed Control Plane for
Openflow,” in Proceedings of the 2010 internet network management conference
on Research on enterprise networking, 2010, pp. 3-3.

H. Howard, M. Schwarzkopf, A. Madhavapeddy, and J. Crowcroft, “Raft refloated:
Do we have consensus?” SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 12-21, Jan.
2015.

M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Abstractions for
network update,” in Proceedings of the ACM SIGCOMM 2012 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication,
ser. SIGCOMM ’12, 2012, pp. 323-334.

T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,” in Pro-
ceedings of the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, ser. SOSR '15, 2015, pp. 21:1-21:14.

R. Mahajan and R. Wattenhofer, “On consistent updates in software defined net-
works,” in Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks,
ser. HotNets-XII, 2013, pp. 20:1-20:7.

N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,” in Pro-
ceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN ’13, 2013, pp. 49-54.

https://en.wikipedia.org/wiki/OpenFlow
https://en.wikipedia.org/wiki/OpenFlow
http://www.openvswitch.org/

Bibliography

[207]

[208]

[209]

(210]

[211]

[212]

[213]

(214]

[215]

(216]

[217]

M. Pignati and al., “Real-Time State Estimation of the EPFL-Campus Medium-
Voltage Grid by Using PMUs,” in Innovative Smart Grid Technologies Conference
(ISGT), 2015 IEEE PES, 2015.

J. Gao, Y. Xiao, J. Liu, W. Liang, and C. P. Chen, “A Survey of Communication/Net-
working in Smart Grids,” Future Gener. Comput. Syst., vol. 28, no. 2, pp. 391-404,
Feb. 2012.

M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Communication Network
Requirements for Major Smart Grid Applications in HAN, NAN and WAN,” Com-
puter Networks, vol. 67, pp. 74-88, 2014.

T. Kropp, “Assessment of Wireless Technologies in Substation Functions- Part
II: Substation Monitoring and Management Technologies,” Technical Report,
Electrical Power Research Institute, Tech. Rep., 2006.

E Cleveland, “Use of Wirelless Data Communiicatiions in Power System Opera-
tions,” in Power Systems Conference and Exposition, 2006. PSCE’06. 2006 IEEE
PES. 1EEE, 2006, pp. 631-640.

G. W. Irwin, J. Colandairaj, and W. G. Scanlon, “An overview of wireless networks
in control and monitoring,” in International Conference on Intelligent Computing.
Springer, 2006, pp. 1061-1072.

M. Rentschler, O. A. Mady, M. T. Kassis, H. H. Halawa, T. K. Refaat, R. M. Daoud,
H. H. Amer, and H. M. ElSayed, “Simulation of Parallel Redundant WLAN with
OPNET,” in Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th
Conference on. IEEE, 2013, pp. 1-8.

M. T. Kassis, O. A. Mady, H. H. Halawa, M. Rentschler, R. M. Daoud, H. H. Amer,
and H. M. ElSayed, “Analysis of Parallel Redundant WLAN with Timing Diversity,”
in Computer and Information Technology (WCCIT), 2013 World Congress on.
IEEE, 2013, pp. 1-6.

M. Hendawy, M. EIMansoury, K. N. Tawfik, M. M. ElShenawy, A. H. Nagui, A. T.
Elsayed, H. H. Halawa, R. M. Daoud, H. H. Amer, M. Rentschler et al., “Applica-
tion of Parallel Redundancy in a Wi-Fi-based WNCS using OPNET,” in Electrical
and Computer Engineering (CCECE), 2014 IEEE 27th Canadian Conference on.
IEEE, 2014, pp. 1-6.

M. Rentschler and P. Laukemann, “Towards a Reliable Parallel Redundant WLAN
Black Channel,” in Factory Communication Systems (WFCS), 2012 9th IEEE
International Workshop on. 1EEE, 2012, pp. 255-264.

——, “Performance Analysis of Parallel Redundant Wlan,” in Emerging Technolo-
gies & Factory Automation (ETFA), 2012 IEEE 17th Conference on. 1EEE, 2012,

pp. 1-8.

235

Bibliography

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

236

A. Frommgen, T. Erbshdufler, A. Buchmann, T. Zimmermann, and K. Wehrle,
“Remp tcp: Low latency multipath tcp,” in Communications (ICC), 2016 IEEE
International Conference on. 1EEE, 2016, pp. 1-7.

D. Dzung, R. Guerraoui, D. Kozhaya, and Y.-A. Pignolet, “To transmit now or
not to transmit now,” in Reliable Distributed Systems (SRDS), 2015 IEEE 34th
Symposium on. 1EEE, 2015, pp. 246-255.

J. Korhonen and Y. Wang, “Effect of Packet Size on Loss Rate and Delay in Wireless
Links,” in Wireless Communications and Networking Conference, 2005 IEEE, vol. 3.
IEEE, 2005, pp. 1608-1613.

A. Willig, M. Kubisch, C. Hoene, and A. Wolisz, “Measurements of a Wireless Link
in an Industrial Environment using an IEEE 802.11-Compliant Physical Layer,”
Industrial Electronics, IEEE Transactions on, vol. 49, no. 6, pp. 1265-1282, 2002.

G. Cena, S. Scanzio, and A. Valenzano, “Experimental characterization of redun-
dant channels in industrial wi-fi networks,” in 2016 IEEE World Conference on
Factory Communication Systems (WFCS). 1EEE, 2016, pp. 1-4.

W. Fenner, “Internet group management protocol, version 2,” Tech. Rep., 1997.

S. Deering, W. Fenner, and B. Haberman, “Multicast listener discovery (mld) for
ipv6,” Tech. Rep., 1999.

J. Nonnenmacher and E. Biersack, “Optimal Multicast Feedback,” in INFOCOM
'98. Seventeenth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Proceedings. IEEE, vol. 3, Mar 1998, pp. 964-971 vol.3.

E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version 1.2,”
no. 6347, 2012.

E. N. Gilbert, “Capacity of a Burst-Noise Channel,” Bell system technical journal,
vol. 39, no. 5, pp. 1253-1265, 1960.

C. Z. Mooney, R. D. Duval, and R. Duval, Bootstrapping: A Nonparametric Ap-
proach to Statistical Inference. Sage, 1993, no. 94-95.

O. Stack, “Welcome to neutron’s documentation!” https://docs.openstack.org/
neutron/pike/, accessed: 2018-06-06.

M. Handley, S. Floyd, J. Padhye, and J. Widmer, “Tcp friendly rate control (tfrc):
Protocol specification,” Tech. Rep., 2002.

https://docs.openstack.org/neutron/pike/
https://docs.openstack.org/neutron/pike/

List of Publications

Following is the list of all my publications written as a PhD student at EPFL.

Accepted

1. M. Pignati, M. Popovic, S. Barreto, R. Cherkaoui, G. D. Flores, J.-Y. Le Boudec,
M. Mohiuddin, M. Paolone, P Romano, S. Sarri et al., “Real-Time State Estimation
of the EPFL-Campus Medium-Voltage Grid by Using PMUs,” in Innovative Smart
Grid Technologies Conference (ISGT), 2015 IEEE Power & Energy Society. 1EEE,
2015, pp. 1-5.

2. M. Popovic, M. Mohiuddin, D.-C. Tomozei, and J.-Y. Le Boudec, “iPRP: Parallel Re-
dundancy Protocol for IP Networks,” in Factory Communication Systems (WFCS),
2015 IEEE World Conference on. 1EEE, 2015, pp. 1-4.

3. M. Popovic, M. Mohiuddin, D.-C. Tomozei, and J.-Y. Le Boudec, “iPRP—the
Parallel Redundancy Protocol for IP Networks: Protocol Design and Operation,”
IEEE Transactions on Industrial Informatics, vol. 12, no. 5, pp. 1842-1854, 2016.

4. M. Mohiuddin, W. Saab, S. Bliudze, and J.-Y. Le Boudec, “Axo: Masking Delay
Faults in Real-Time Control Systems,” in Industrial Electronics Society, IECON
2016-42nd Annual Conference of the IEEE. 1EEE, 2016, pp. 4933-4940.

5. M. Mohiuddin, M. Popovic, A. Giannakopoulos, and J.-Y. Le Boudec, “Experi-
mental Validation of the Usability of Wi-Fi over Redundant Paths for Streaming
Phasor Data,” in Smart Grid Communications (SmartGridComm), 2016 IEEE
International Conference on. 1EEE, 2016, pp. 533-538.

6. J. Achara, M. Mohiuddin, W. Saab, R. Rudnik, and J.-Y. Le Boudec, “T-RECS: A
Software Testbed for Multi-Agent Real-Time Control of Electric Grids,” in Emerg-
ing Technologies and Factory Automation (ETFA), 2017 22nd IEEE International
Conference on. 1EEE, 2017, pp. 1-4.

7. W. Saab, M. Mohiuddin, S. Bliudze, and J.-Y. Le Boudec, “Quarts: Quick Agree-
ment for Real-Time Control Systems,” in Emerging Technologies and Factory

237

Bibliography

10.

11.

Automation (ETFA), 2017 22nd IEEE International Conference on. 1EEE, 2017,
pp. 1-8.

. M. Mohiuddin, W. Saab, S. Bliudze, and J.-Y. Le Boudec, “Axo: Detection and

Recovery for Delay and Crash Faults in Real-Time Control Systems,” IEEE Trans-
actions on Industrial Informatics, 2017.

. W. Saab, M. Mohiuddin, S. Bliudze, and J.-Y. Le Boudec, “Ordering Events Based

on Intentionality in Cyber-Physical Systems,” in Proceedings of the 9th ACM/IEEE
International Conference on Cyber-Physical Systems. 1EEE Press, 2018, pp. 107-
118.

J. P. Achara, M. Mohiuddin, W. Saab, R. Rudnik, J.-Y. Le Boudec, and L. Reyes-
Chamorro, “T-RECS: A Virtual Commissioning Tool for software-Based Control
of Electric Grids-Design, Validation, and Operation,” in Proceedings of the Ninth
International Conference on Future Energy Systems. ACM, 2018, pp. 303-313.

E. Mohammadpour, E. Stai, M. Mohiuddin, and J.-Y. Le Boudec, “End-to-End
Latency and Backlog Bounds in Time-Sensitive Networking with Credit Based
Shapers and Asynchronous Traffic Shaping,” in International Workshop on Net-
work Calculus and Applications (NetCal 2018). 1EEE, 2018.

Under Review

1.

238

M. Mohiuddin, W. Saab, and J.-Y. Le Boudec, “Consistent Replication of Con-
trollers in a Cyber-Physical System with Asynchronous Sensors,” IEEE Transac-
tions on Industrial Informatics, 2018.

. M. Mohiuddin, M. Primorac, E. Stai, and J.-Y. Le Boudec, “The Quick Coordina-

tion Layer for Consistent Controller-Replication in SDN,” 2018.

. S. A. Sanaee Kohroudi, J. Mostafa, M. Mohiuddin, W. Saab, and J.-Y. Le Boudec,
“Experimental Validation of the Suitability of Virtualization-Based Replication for

Fault Tolerance in Real-Time Control of Electric Grids,” 2018.

Maaz Mohiuddin e oo e

, _ ¢ 141 78 805 50 78
Curriculum Vitae 54 maaz.mohiuddin@epfl.ch

meem——— Research Interests

Cyber-Physical Systems, Distributed Systems, Fault-Tolerance, Communication Networks

e [ducation

2014-2018 PhD in Computer Science, Swiss Federal Institute of Technology (EPFL).
Advisor Prof. Jean-Yves Le Boudec
Thesis Reliability Mechanisms for Controllers in Real-Time Cyber-Physical Systems
2009-2013 Bachelor in Technology, Indian Institute of Technology Hyderabad (IITH).
Major Electrical Engineering with Honors
Minor Computer Science and Engineering
Grade 9.01/10
Advisor Dr. Kiran Kuchi

Thesis Performance Limits of a Cloud Radio

s Research Experience

Current Research Assistant, Laboratory for Computer Communications and Applications
2014-Present (LCA2), EPFL, Switzerland.
o Research on real-time cyber-physical systems (e.g., smart grids, autonomous cars, SDN)
o Designed reliability mechanisms (Axo, Quarts) for software-based real-time control
- Fault-tolerance for delays and crashes of controllers under stringent real-time constraints
- Improved availability and latency by several orders of magnitude

o Involved in deployment of campus-wide communication test-beds
- Conducted a two-month long measurement campaign to study the fail-independence
of directional Wi-Fi links

2013-2014 Research Intern, Laboratory for Computer Communications and Applications
(LCA2), EPFL, Switzerland.
o Successfully completed an evaluation to be hired as a PhD student at LCA2

o Designed and implemented UDP-based applications over fail-independent Wi-Fi paths
- Worked with ALIX system boards and OpenWRT operating system

o Implemented iPRP, an IP-layer protocol for transparent-packet replication
- Worked with Linux kernel modules and iptables
- ldentified and repaired performance bottle-necks to achieve low dataplane latency

1/4

2012

2014-2017

2016-2018

2017

2013

2017-2018

2017-2018

2015-2017

2018

2017

Research Intern, University of Bamberg, Germany.

o Implemented a discrete-event simulator for peer-to-peer live video streaming over Wi-Fi
and Cellular networks

o Analyzed quality of video-streaming with stationary and mobile nodes

Teaching Experience
Teaching Assistant, TCP/IP Networking, EPFL.

Responsible for labs with hands-on exercises on socket programming, TCP congestion
control, IPv4/IPv6 interworking, tunneling, routing, and network security. Designed research
exercises for advanced concepts in TCP/IP Networking.

Teaching Assistant, Smart Grid Technologies, EPFL.

Designed the labs on traffic engineering and security attacks in smart-grids. In 2017 and
2018, | taught the course on introduction to TCP/IP networking to a class of 20 students.
Teaching Assistant, Performance Evaluation of Computer Systems, EPFL.
Responsible for the lab problems that involved performance patterns (bottlenecks, congestion
collapse), model fitting and forecasting, discrete-event simulation and queuing theory.
Teaching Assistant, Wireless Sensor Networks, 1ITH.

Conducted hand-ons course on wireless networking with CrossBow TelosB sensor motes.

Other Professional Activities
CEO and Co-Founder, RaaSSs.

Reliability software for real-time cyber-physical systems such as smart grids, autonomous
cars and datacenter controllers. Conducted interviews for customer discovery and product
market-fit. Raised capital through the EPFL Enable grant.

Deployment of a Campus-Wide Communication Network, EPFL.

Involved in deploying two parallel redundant communication networks for streaming real-time
sensor data. Enabled IP multicast routing to support source-specific multicast. Deployed
iPRP on the end-hosts for transparent and 0-ms repair of packet losses.

Project Demos, EPFL.

Demoed the fault-tolerance mechanisms developed as a PhD student at EPFL. Demonstrated
real-time packet repair using iPRP at the annual conference of Swiss Competence Center
for Energy Research in 20