9 research outputs found

    Quantum Random Access Memory For Dummies

    Full text link
    Quantum Random Access Memory (QRAM) has the potential to revolutionize the area of quantum computing. QRAM uses quantum computing principles to store and modify quantum or classical data efficiently, greatly accelerating a wide range of computer processes. Despite its importance, there is a lack of comprehensive surveys that cover the entire spectrum of QRAM architectures. We fill this gap by providing a comprehensive review of QRAM, emphasizing its significance and viability in existing noisy quantum computers. By drawing comparisons with conventional RAM for ease of understanding, this survey clarifies the fundamental ideas and actions of QRAM.Comment: 12 pages, 10 figures, 4 tables, 65 citation

    Factorization in Cybersecurity: a Dual Role of Defense and Vulnerability in the Age of Quantum Computing

    Get PDF
    One of the most critical components of modern cryptography and thus cybersecurity is the ability to factor large integers quickly and efficiently. RSA encryption, one of the most used types, is based largely on the assumption that factoring for large numbers is computationally infeasible for humans and computers alike. However, with quantum computers, people can use an algorithm like Shor’s algorithm to perform the same task exponentially faster than any normal device ever could. This investigation will go into the strength and vulnerability of RSA encryption using the power of factorization in an age of quantum computers.We start by looking at the foundations of both classical and quantum factoring with greater detail at number field sieve (NFS) and Shor’s. We examine the mathematical background of each topic and the associated algorithms. We conclude with theoretical analysis and experimental simulations that address the difficulty and implications of the above-mentioned algorithms in cryptography. The final thing that I will be discussing is where quantum computing is at present and how this could pose a threat to the current type of cryptographic systems, we use every day. I will be mentioning how we need post-quantum cryptography and how people are currently creating algorithms that are designed to be attack-resistant even to large-scale quantum computers. This investigation has shown the changing dynamics of cybersecurity in the quantum era and helps us understand the challenges and the need to innovate the current cryptographic systems

    Efficient and Secure Delegation of Exponentiation in General Groups to a Single Malicious Server

    Get PDF
    Group exponentiation is an important and relatively expensive operation used in many public-key cryptosystems and, more generally, cryptographic protocols. To expand the applicability of these solutions to computationally weaker devices, it has been advocated that this operation is delegated from a computationally weaker client to a computationally stronger server. Solving this problem in the case of a single, possibly malicious, server, has remained open since the introduction of a formal model. In previous work we have proposed practical and secure solutions applicable to two classes of specific groups, related to well-known cryptosystems. In this paper, we investigate this problem in a general class of multiplicative groups, possibly going beyond groups currently subject to quantum cryptanalysis attacks. Our main results are efficient delegation protocols for exponentiation in these general groups. The main technique in our results is a reduction of the protocol's security probability (i.e., the probability that a malicious server convinces a client of an incorrect exponentiation output) that is more efficient than by standard parallel repetition. The resulting protocols satisfy natural requirements such as correctness, security, privacy and efficiency, even if the adversary uses the full power of quantum computers. In particular, in our protocols the client performs a number of online group multiplications smaller by 1 to 2 orders of magnitude than in a non-delegated computation

    On the Possibility of Classical Client Blind Quantum Computing

    Get PDF
    Classical client remote state preparation (CC − RSP) is a primitive where a fully classical party (client) can instruct the preparation of a sequence of random quantum states on some distant party (server) in a way that the description is known to the client but remains hidden from the server. This primitive has many applications, most prominently, it makes blind quantum computing possible for classical clients. In this work, we give a protocol for classical client remote state preparation, that requires minimal resources. The protocol is proven secure against honest-but-curious servers and any malicious third party in a game-based security framework. We provide an instantiation of a trapdoor (approximately) 2-regular family of functions whose security is based on the hardness of the Learning-With-Errors problem, including a first analysis of the set of usable parameters. We also run an experimentation on IBM’s quantum cloud using a toy function. This is the first proof-of-principle experiment of classical client remote state preparation

    Challenges of Post-Quantum Digital Signing in Real-world Applications: A Survey

    Get PDF
    Public key cryptography is threatened by the advent of quantum computers. Using Shor\u27s algorithm on a large-enough quantum computer, an attacker can cryptanalyze any RSA/ECC public key, and generate fake digital signatures in seconds. If this vulnerability is left unaddressed, digital communications and electronic transactions can potentially be without the assurance of authenticity and non-repudiation. In this paper, we study the use of digital signatures in 14 real-world applications across the financial, critical infrastructure, Internet, and enterprise sectors. Besides understanding the digital signing usage, we compare the applications\u27 signing requirements against all 6 NIST\u27s post-quantum cryptography contest round 3 candidate algorithms. This is done through a proposed framework where we map out the suitability of each algorithm against the applications\u27 requirements in a feasibility matrix. Using the matrix, we identify improvements needed for all 14 applications to have a feasible post-quantum secure replacement digital signing algorithm

    Actas de las VI Jornadas Nacionales (JNIC2021 LIVE)

    Get PDF
    Estas jornadas se han convertido en un foro de encuentro de los actores más relevantes en el ámbito de la ciberseguridad en España. En ellas, no sólo se presentan algunos de los trabajos científicos punteros en las diversas áreas de ciberseguridad, sino que se presta especial atención a la formación e innovación educativa en materia de ciberseguridad, y también a la conexión con la industria, a través de propuestas de transferencia de tecnología. Tanto es así que, este año se presentan en el Programa de Transferencia algunas modificaciones sobre su funcionamiento y desarrollo que han sido diseñadas con la intención de mejorarlo y hacerlo más valioso para toda la comunidad investigadora en ciberseguridad

    Cyber security in the quantum era

    No full text
    International audienc
    corecore