35,778 research outputs found

    CSCI 6990

    Get PDF
    This course provides an introduction to the security of industrial control systems. The control systems are widely used to automate physical industrial processes such as gas pipeline, power generation and distribution, water filtering, waste management etc. The course introduces the basics of industrial control systems, how their components interact with each other, their network protocols, how they can be programmed, their cyber vulnerabilities and threats, and how they are tackled in Industry

    CSCI 6990

    Get PDF
    This course provides an introduction to the security of industrial control systems. The control systems are widely used to automate physical industrial processes such as gas pipeline, power generation and distribution, water filtering, waste management etc. The course introduces the basics of industrial control systems, how their components interact with each other, their network protocols, how they can be programmed, their cyber vulnerabilities and threats, and how they are tackled in Industry

    Software Defined Networking Opportunities for Intelligent Security Enhancement of Industrial Control Systems

    Get PDF
    In the last years, cyber security of Industrial Control Systems (ICSs) has become an important issue due to the discovery of sophisticated malware that by attacking Critical Infrastructures, could cause catastrophic safety results. Researches have been developing countermeasures to enhance cyber security for pre-Internet era systems, which are extremely vulnerable to threats. This paper presents the potential opportunities that Software Defined Networking (SDN) provides for the security enhancement of Industrial Control Networks. SDN permits a high level of configuration of a network by the separation of control and data planes. In this work, we describe the affinities between SDN and ICSs and we discuss about implementation strategies

    A model of distributed key generation for industrial control systems

    Get PDF
    11th International Workshop on Discrete Event Systems, WODES 2012; Guadalajara, Jalisco; Mexico; 3 October 2012 through 5 October 2012The cyber-security of industrial control systems (ICS) is gaining high relevance due to the impact of industrial system failures on the citizen life. There is an urgent need for the consideration of security in their design, and for the analysis of the related vulnerabilities and potential threats. The high exposure of industrial critical infrastructure to cyber-threats is mainly due to the intrinsic weakness of the communication protocols used to control the process network. The peculiarities of the industrial protocols (low computational power, large geographical distribution, near to real-time constraints) make hard the effective use of traditional cryptographic schemes and in particular the implementation of an effective key management infrastructure supporting a cryptographic layer. In this paper, we describe a "model of distributed key generation for industrial control systems" we have recently implemented. The model is based on a known Distributed Key Generator protocol we have adapted to an industrial control system environment and to the related communication protocol (Modbus). To validate in a formal way selected security properties of the model, we introduced a Petri Nets representation. This representation allows for modeling attacks against the protocol and understanding some potential weaknesses of its implementation in the industrial control system environment

    Autoencoder based anomaly detection for SCADA networks

    Get PDF
    Supervisory control and data acquisition (SCADA) systems are industrial control systems that are used to monitor critical infrastructures such as airports, transport, health, and public services of national importance. These are cyber physical systems, which are increasingly integrated with networks and internet of things devices. However, this results in a larger attack surface for cyber threats, making it important to identify and thwart cyber-attacks by detecting anomalous network traffic patterns. Compared to other techniques, as well as detecting known attack patterns, machine learning can also detect new and evolving threats. Autoencoders are a type of neural network that generates a compressed representation of its input data and through reconstruction loss of inputs can help identify anomalous data. This paper proposes the use of autoencoders for unsupervised anomaly-based intrusion detection using an appropriate differentiating threshold from the loss distribution and demonstrate improvements in results compared to other techniques for SCADA gas pipeline dataset

    Tracking advanced persistent threats in critical infrastructures through opinion dynamics

    Get PDF
    Advanced persistent threats pose a serious issue for modern industrial environments, due to their targeted and complex attack vectors that are difficult to detect. This is especially severe in critical infrastructures that are accelerating the integration of IT technologies. It is then essential to further develop effective monitoring and response systems that ensure the continuity of business to face the arising set of cyber-security threats. In this paper, we study the practical applicability of a novel technique based on opinion dynamics, that permits to trace the attack throughout all its stages along the network by correlating different anomalies measured over time, thereby taking the persistence of threats and the criticality of resources into consideration. The resulting information is of essential importance to monitor the overall health of the control system and cor- respondingly deploy accurate response procedures. Advanced Persistent Threat Detection Traceability Opinion Dynamics.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Cybersecurity awareness in an Industrial Control Systems company

    Get PDF
    Abstract: This paper investigates the cybersecurity awareness levels of employees at an industrial control systems organization and measures their knowledge on the potential impact of cyber-related attacks on their systems through a case study. Attacks on industrial control systems as well as the information technology infrastructure which it relies on, are becoming a growing problem for governments and organizations. Cybersecurity policies of organizations are critical to ensure that industrial control systems environments are adequately protected. It is equally important for the organizations to ensure that their employees are aware of the cybersecurity policies and why they must be implemented. In many cases, however, organizations are faced with employees who are not aware of the potential cyber-related security threats posed to their industrial control systems, nor the impact these attacks might have. Results show that although employees understand the severity of cyber vulnerabilities their awareness is low

    Detection of cyber-attacks in systems with distributed control based on support vector regression

    Get PDF
    Concept of Industry 4.0 and implementation of Cyber Physical Systems (CPS) and Internet of Things (IoT) in industrial plants are changing the way we manufacture. Introduction of industrial IoT leads to ubiquitous communication (usually wireless) between devices in industrial control systems, thus introducing numerous security concerns and opening up wide space for potential malicious threats and attacks. As a consequence of various cyber-attacks, fatal failures can occur on system parts or the system as a whole. Therefore, security mechanisms must be developed to provide sufficient resilience to cyber-attacks and keep the system safe and protected. In this paper we present a method for detection of attacks on sensor signals, based on e insensitive support vector regression (e-SVR). The method is implemented on publicly available data obtained from Secure Water Treatment (SWaT) testbed as well as on a real-world continuous time controlled electro-pneumatic positioning system. In both cases, the method successfully detected all considered attacks (without false positives)

    Detection of cyber-attacks in systems with distributed control based on support vector regression

    Get PDF
    Concept of Industry 4.0 and implementation of Cyber Physical Systems (CPS) and Internet of Things (IoT) in industrial plants are changing the way we manufacture. Introduction of industrial IoT leads to ubiquitous communication (usually wireless) between devices in industrial control systems, thus introducing numerous security concerns and opening up wide space for potential malicious threats and attacks. As a consequence of various cyber-attacks, fatal failures can occur on system parts or the system as a whole. Therefore, security mechanisms must be developed to provide sufficient resilience to cyber-attacks and keep the system safe and protected. In this paper we present a method for detection of attacks on sensor signals, based on e insensitive support vector regression (e-SVR). The method is implemented on publicly available data obtained from Secure Water Treatment (SWaT) testbed as well as on a real-world continuous time controlled electro-pneumatic positioning system. In both cases, the method successfully detected all considered attacks (without false positives)
    corecore