A model of distributed key generation for
industrial control systems

Gorkem Kilinc* Igor Nai Fovino ** Carlo Ferigato ***
Ahmet Koltuksuz ****

* Izmir Institute of Technology, Izmir, Turkey (e-mail:
gorkemklnc@gmail.com,).
** Global Cyber Security Center GCSC, Rome, Italy (e-mail:
igor.nai@gmail.com)
*** Furopean Commission Joint Research Centre, Ispra, Italy (e-mail:
carlo.ferigato@jre.it)
% Yasar University, Tzmir, Turkey (e-mail:
ahmet.koltuksuz@Qyasar.edu.tr).

Abstract: The cyber-security of industrial control systems (ICS) is gaining high relevance due
to the impact of industrial system failures on the citizen life. There is an urgent need for
the consideration of security in their design, and for the analysis of the related vulnerabilities
and potential threats. The high exposure of industrial critical infrastructure to cyber-threats
is mainly due to the intrinsic weakness of the communication protocols used to control
the process network. The peculiarities of the industrial protocols (low computational power,
large geographical distribution, near to real-time constraints) make hard the effective use of
traditional cryptographic schemes and in particular the implementation of an effective key
management infrastructure supporting a cryptographic layer. In this paper, we describe a "model
of distributed key generation for industrial control systems" we have recently implemented. The
model is based on a known Distributed Key Generator protocol we have adapted to an industrial
control system environment and to the related communication protocol (Modbus). To validate in
a formal way selected security properties of the model, we introduced a Petri Nets representation.
This representation allows for modeling attacks against the protocol and understanding some

potential weaknesses of its implementation in the industrial control system environment.

Keywords: ICS — Industrial Control Systems; SCADA — Supervisory Control and Data

Acquisition; security protocols; Petri Nets.

1. INTRODUCTION

The operative core of Industrial Control Systems (ICS) is
generally known under the name of Supervisory Control
and Data Acquisition — SCADA — system. The scope
of this system is to gather data from the field devices
(sensors), to define the proper reaction strategies and
to send to the field actuators commands to maintain in
operation the process of the industrial system. In this
context, local control of sensors and actuators is realized
via devices called Programmable Logic Controllers (PLC).
These devices are sometimes spread over wide geographi-
cal areas, have relatively small computational power and
can have tight time limits for guaranteeing a response
to a command. Moreover, recent market constraints and
engineering decisions have imposed the use of TCP/IP
to these devices forcing the adaptation of the traditional
serial protocols used for controlling the processes to a
communication via TCP/IP packets. Consequently, at-
tacks performed against Internet communication In Kilinc
et al. (2012), a first step in the direction of obviating
to the structural weakness of ICS protocols by adding a
security layer to the transmitted packets was done. In this
paper we aim at proving the effectiveness of the solution

proposed and at opening our approach to the possibility of
formal proofs of security properties. Moreover, we aim at
considering completely the effective implementation of the
protocol, possibly in the industrial environment in which
it is used. To this scope, we decided to use as a modeling
tool Elementary Net Systems for being able to describe
at a very fine granularity the control flow in ICS. We
subsequently extended the basic model to 1-bounded Petri
Nets in order to allow for loops and use coherently a model
checking tool for Petri Nets.

2. ICS SECURITY OVERVIEW

As claimed previously, modern critical industrial infras-
tructures (e.g. Power Plants, Water Grids etc.) use ICT
technologies in an intensive manner.

Figure 1 provides a high level description of a typical
industrial setting from an ICT point of view. In details
figure 1.(a) shows the high level structure of different
ICT networks involved in the process control. Figure 1.(b)
provides an overview of the low level interaction in the
control network between actuators, sensors and PLCs,
while figure 1.(c) shows the interaction flows within the
process network and the control network. As it is possible

SCADA
PROTOCOLS

P
OVERTCP Communication
proocls @
PIC
Adtuators @
< Scada Servers % R

a
() Firewall

switch @

Diagnostic Servers
Field Network

Process Network

Corporate Network

Process Network

(b)

@&
Fes
—

DO |

0

| |

f-—] A |

Field Network | |

O
P
—+

(c)

Control Network

Builder
Swr.

Figure 1. (a) High level schema of the SCADA cyber layer
(b) control network (c¢) process network

to see, the core of the entire system is constituted by
the control and data flows between the control network
(i.e. the PLCs) and the process network (i.e. the SCADA
servers).

Several studies (Dondossola et al. (2008); Carcano et al.
(2010)) proved that modern industrial critical infrastruc-
ture are, on average, exposed to the traditional computer
attacks and threats. Such an exposure is mainly due to the
intrinsic weakness of the communication protocols used in
SCADA systems to monitor and control the field devices.

Protocols like DNP3, Modbus, Profibus and Fieldbus were
originally conceived for “serial communication” between
SCADA master and slaves in a time in which there was
no need for authentication, integrity and generally “ICT
security” mechanisms.

In order to take advantage of the massive use of ICT, in
the last 10 years several vendors ported those protocols
over TCP/IP assuring the compatibility with the legacy
application. As a result, nowadays the classical SCADA
protocols are vulnerable to attacks which, in every other
ICT context, would be considered out-of-date.

Only in the last years the research community started to
pay attention to this problem. Adam and Byres presented

an interesting high level analysis of the possible threats
affecting a power plant system, a categorization of the
typical hardware devices involved and some high level
discussion about intrinsic vulnerabilities of the common
power plant architectures in Creery and Byres (2005).
A more detailed work on the topic of SCADA security,
is presented in Chandia et al. (2007). In this work, the
authors describe two possible strategies for improving the
protection of SCADA networks, underlying that several
aspects have to be improved in order to “secure” that kind
of architectures. What is evident is that communication
protocols used in such systems had not been conceived
with security considerations in mind. Historically, this is
due to the fact that when these protocols were designed,
the world of industrial control systems was completely
isolated from the public networks, and then ICT based
intrusion scenarios were considered completely negligible.
A variety of studies have been done about the security
of such specialized communication protocols: for example,
in M. Majdalawieh (2005) a proposal of extension of the
DNP3 protocol which tries to address some of the known
security problems of such master-slave control protocols
(i.e. integrity of the commands, authentication, non repu-
diation etc.) is presented. Unfortunately, their work does
not contain any detail on the implementation or test result,
and for that reason it is hard to evaluate its efficacy.
Similar approaches have been presented in Hong et al.
(2007) while Mander et al. (2007) presents a proxy filtering
solution aiming at identifying and avoiding anomalous con-
trol traffic. AGA (American Gas Association) proposed the
AGA-12 standard in Consortium (2006), a cryptographic
layer for serial SCADA communication. The use of IPsec
or SSL/TLS to protect the DNP3 communication channel
is proposed in Patel and Graham (2004).

The protocol which is presented in Bacnet (2009), imple-
ments some security capabilities; however, it is stated in
Holmberg et al. (2003) that the authentication protocol
implemented is vulnerable to man-in-the-middle attacks,
parallel interleaving attacks and replay attacks. In Wright
et al. (2004) a low latency encryption protocol based on
CRC for retrofit SCADA link protection is presented.
The work appears interesting for serial communications,
however, the project does not seem to be updated since
2006. In Kilinc et al. (2012), finally a secure architecture
for key generation and distribution suitable for enforcing
the security of SCADA protocols is presented. In partic-
ular authors presented a prototype developed to enforce
the Modbus over TCP protocol. Even if different other
implementation of Modbus exist, it is evident how the
characteristics of TCP are the most suitable for a reliable
implementation of the Distributed Private Key Generation
(DPKG) architecture. This paper takes start from this last
work, with the aim of proposing a formal model to be used
to validate the security properties guaranteed by Kilinc
et al. (2012). To define this model we adopted the Petri
Net paradigm. In the following section a brief introduction
to the related Petri Net literature is presented.

3. PETRI NETS AND SECURITY PROTOCOLS

Given the possibility to represent, at the lowest level,
the communication flow and for their intuitive graphical
presentation, Petri Nets are used ever since for the detailed

analysis of communication protocols. Starting from the
work of Nieh and Tavares (1992), Petri Nets have been
applied to the analysis of security protocols as well. While
in Nieh and Tavares (1992) the construction of the model
is based on a refinement process involving P/T net sys-
tems for the conceptual level and high-level nets for the
functional level, in more recent works, almost exclusively
high-level nets have been used. For example, in Xu and
Xie (2011), Colored Petri Nets are used for re-discovering
known flaws in the Andrew secure RPC protocol while in
Bouroulet et al. (2008), a special class of composable high-
level Petri Nets is used for showing flaws in the Kao-Chow
authentication protocol. In all of the cases, model checking
techniques are applied to the protocol model in order to
generate the cases witnessing the flaw in the protocol.

In this study, a different approach to model a security
protocol is chosen since the application domain, ICS, is
quite specific and low level control flow should be repre-
sented. Consequently, we decided to model the protocol
with low-level nets starting with Elementary Net Systems
and subsequently extending it to 1-bounded P /T systems.
In this way, we have at least three advantages: 1) leave the
representation open to the inclusion of low-level signal pro-
cessing; 2) use basic tools for proving structural properties
of the model like invariants analysis at the level of basic
signals; 3) construct easily abstractions of the model by
passing to higher-level nets. Moreover, this choice allows
for the use of powerful model checking tools like LoLA,
Schmidt (2003).

4. THE DPKG MODEL

A net N is a bipartite, non-empty, directed graph N =
(P,T,F). P and T are the nodes of the graph. The
P elements are called places (drawn as circles), the T
elements are called transitions (drawn as boxes) and F C
(P xT)U (T x P) — the set of edges of the graph —
is called flow relation. It is assumed that the net has no
isolated nodes.

If X = PUT and « € X, ° denotes the set {y €
X | (y,z) € F} while z° denotes the set {y € X | (z,y) €

States of Petri Nets are defined by markings, that is
mappings m : P —{ 0,1,2,...}. A transition ¢t € T is
enabled at a marking m if, for all p € %, m(p) > 0. In
this case, t can occur and the occurrence of ¢ transforms
m into a new marking m’:

m(p) =1 ifp e p\p%;
m'(p) = ¢m(p) +1 ifpep®\°p;
m(p) otherwise.

A marking m is graphically represented by n black tokens
in place p if m(p) = n. A net N endowed by an initial
marking m;, is called marked net; Desel and Reisig (1998).

It is possible to prove that, in the marked nets we are
considering, all markings m’ reachable from the initial
marking are such that m’ : P —{ 0,1}. In other words,
the net systems we are considering are I-bounded.

In an id-based cryptographic system, unlike the other
public key cryptographic systems, a publicly known string

such as e-mail address, domain name, a physical IP address
or a combination of more than one strings is used as public
key. Shamir’s scheme presented in Shamir (1979) enables
users to communicate securely and verify signatures with-
out exchanging any private or public key. Consequently,
there is no need for a certification authority to verify the
association between public keys and users.

Basically, in an id- based cryptographic system there is a
private key generator (PKG) which generates private keys
for users. PKG has a key pair which is referred as master
key pair consisting of a master private key and a master
public key. PKG generates a private key for a user basically
by first hashing its publicly known unique identity string
then signing hashed id by the master private key. Later,
user can verify its key by using the master public key.

Since the PKG can generate private keys for users, it can
sign or decrypt a message for any user or it can make
users’ private keys public. This problem about private key
generation is called the key escrow problem. Distributed
private key generation is one of the effective solutions
to the key escrow problem. In both schemes Boneh and
Franklin (2003), Kate and Goldberg (2009) secret sharing
methods are used for distributing private key generation
among multiple PKGs.

In a DPKG there is a number of PKG nodes participating
while they share the responsibility equally. In our work
we followed the identity based distributed private key
generation schemes presented by Boneh and Franklin
(2003) and Kate and Goldberg (2009) and contributed by
providing a formal model and analysis by Petri Nets. For
more detail about the algorithms and the terminology it is
recommended to refer to Boneh and Franklin (2003), Kate
and Goldberg (2009) and Kilinc et al. (2012).

The identity based distributed private key generation
scheme is modeled in two parts as distribution and ex-
traction.

The net shown in figure 2 represents the distribution step
of (3,2) distributed private key generation scheme which
means that there are three private key generators (PKG)
and the key can be constructed only if at least two pieces
of the key are acquired from two distinct PKG nodes.

The initial marking assigns to the places with labels idle,
initCanStart and BBidle one token each, while the other
places have no tokens. Since the net system is 1-bounded,
it is possible to interpret idle, initCanStart and BBidle
as logically true local conditions while all the other local
conditions are logically false. The only event that can be
fired is initialize PKGnodes.

After initializing PKG nodes, PKG1, PKG2 and PKG3
are ready. From this point on, there are three flows (sub-
nets) representing three PKG nodes. The fourth subnet
represents the Bulletin Board. Only one of the flows will
be explained here since the other two are alike. The
transition choosePlandSendToBB means PKG1 chooses a
polynomial whose coefficients are random elements from a
predefined field. After choosing the polynomial P1, PKG1
also sends the commitments Cy; = ayg for [= 0,1,2
to the Bulletin Board to be broadcasted. a; is the [t"
coefficient of i*" polynomial. It is important to note that

init Can Start
idle

initialize PKGnodes

T | ; pkg3 |
| | | |
| | | | - - ﬁ]
| % i | | B i i :] j
| choosePlardSendToBB | | chooseP2arjdSendToBB | | chooseP3arjdSendToBB | 0 —- 2]
| | | | | |
Y Y y i { P |
| | | | | comn’?tmentsPl; b BcangRestart
\ \ | \ | "
: p1ReadyFgrSubshares | ‘ p2ReadyFgrSubshares | ‘ p3ReadyFqrSubshares | | S |
1
! |
\ 1| (- | | :
‘ calculaté quhshares | | | calculagé qubghares2 I | calculatgSubshares3 | ’ :
! calcylate re BB |
subshagA-2 | subghare1!3 subsha hshare?-3 stbshagg8-1 | subghare3-2 ! final 1
| . . I | . | | . . | i comijitment |
\ \ \ | | | | ﬁnaICoﬂnm'rtrnerﬁS
| sendSulgghaz}-3 | | o send Sulgghare3- | | i i ol S
dSubsh 12 ; ; sendSubshare3-2
1 oo o |
| : |
bshare2 1 () (th . () subshare2_3
| bsHare | | | stpshare3 |
| ! | | | \ |
calculiate sharel I calculate share2 | calculate share3 |
! !
\ | | \ |
: () sharet | . () share2 | . () share3 |
Z s
| | ~
| i | i ; ¥
‘verify hare! not\prify | ‘ven'fy hare2 not\prify verify phare3 not\prify
AsCqmect sharel Camect sh

sh ne2i

|

AsComect
!

T p—

ingtialize PKGnodes

Sl |

A

systemReady ForExtraction
distributionN

restart L

4

restart2

ot Successful

Figure 2. Petri Net model of distribution step of distributed private key generation.

PKG1 does not send the polynomial; it only sends the
commitments. When this transition is fired, the local states
PlreadyForSubshares and commitmentsP1 become true.

Independently, when all three PKG nodes send the com-
mitments, all four places in the preset of calculate final
commitment transition become true so the transition is
enabled. After pIReadyForSubshares becomes true, the
transition calculateSubshares1is enabled. The firing of this
transition leads to the case that three subshares of P1 (
subsharel-1, subshare1-2, subsharel-3) are calculated and
these three local states become true, while the token of
pl1ReadyForSubshares is consumed. One of the subshares
of each PKG node is for itself while the other two are to
send to other PKG nodes.

A PKG node needs three subshares including its own to
continue with calculating its share for the master pri-
vate key. Thus, PKG1 needs PKG2 to send subshare2-
1 and PKG3 to send subshare3-1. If related transitions

are already fired and subshare 2_ 1, subsharel-1 and sub-
share3 1 local states are all true, The transition calculate
sharel is enabled. Note that the local states subsharei-j
and subsharei_j are different places. subsharei j repre-
sents the subshare which is sent to PKGj by PKGi, while
subsharei-j is the subshare calculated by PKGi to send the
PKGj but still being held in PKGi.

After sharel becomes true, if final commitment is calcu-
lated, two transitions are enabled: verifySharel AsCorrect
and notVerifySharel. Each PKG node follows the same
flow and verifies their shares by using the final commit-
ment which is held by Bulletin Board. If all the PKG nodes
verify their shares as correct, then the system is ready for
the extraction. Otherwise, there can be no extraction and
the system needs to restart. If at least one of the shares
is incorrect then one of the transitions ¢1,t2,t3,t4, t5, 6,
t7 becomes enabled. Firing of this transition consumes the
remaining tokens to make system ready to restart.

{
t
I
Tt ¥ ;
k kg2Read ‘r " I i
pkgiReady (®) pkg2Ready (®) pkg3Reddy (®) g g '
client with If] requests PK
1 L ¥ N¥T |)F“ wivl vl vl vl vl
| D ey] : & A A A
applyTo | X ! ‘ | . 2pplyTo
PkglandPkg2 | | Pkg2andeg§
‘ X |
I ¢ re2H(l ‘ |
i N 1 M
share1H(ID) | I share3H(ID)
] | |
\ L \
| ‘ pkg?.Se:LTo?hem _‘L ‘
1 . M
pkg)Sen{sToquem | pkg?Sen--sToq:liem
piede 2
(frongpkg2) |
piece | piecz 3
(from pkg1) (from rkg3
not not
ify | verigd 2 vigify 2verif 3
- not
venfyil yerity 3
1 rfot 2rfot 1
vegfied 2 vgified vegfiedd vegified
! veriﬁ'Fd '?ezged
1 =
L =
T
\
7 =l 10 11NN - n7na
" atleast
chieht Hs Corret ey OnePiece Not\erifed

Figure 3. Petri Net model of extraction step of distributed private key generation.

Only one of the local states systemReadyForExtraction
and distributionNotSuccessful can be true and the system
can restart both after a success and fail. For each restart
case, Bulletin Board also becomes ready to restart. The
place BBCanRestart eliminates deadlock situations like
the final commitment is still being used but Bulletin Board
restarts and there is no final commitment. InitCanStart
ensures that Bulletin Board restarts before initialization
of the PKG nodes. It is necessary to clear the previous
commitment values from the Bulletin Board and make the
system ready for the new distribution.

The Petri Net model of the extraction part is shown in fig-
ure 3. Extraction starts after all three shares are ready and
verified as correct and there is a client requesting a private
key. The places pkglReady, pkg2Ready and pkg3Ready in
extraction model overlaps with sharelcorrect,

share2correct and share3correct in the distribution model.

One can easily notice that the whole model is divided into
two parts as distribution of the shares and the extraction of
the client’s private key in a way that two nets can overlap.
This kind of division provides us with a more detailed and
powerful modeling capability and a possibility to analyze
the models without having memory and time constraint
problems.

We have stated that the models represent a (3,2) scheme
which means has to apply to two of the PKG nodes because
in this (3,2) scheme private key can be constructed by

using two shares from two distinct PKG nodes. When the
system starts, there is a client, whose ID is known by every
node, waiting for a private key and three nodes with three
shares are ready for an extraction.

All of the three transitions (applyToPkglandPkg2, apply-
ToPkglandPkg3 and applyToPkg2andPkg3) are enabled
but only one can be fired.

For instance if applyToPkglandPkg2 transition is fired,
sharelH(ID) and share2H(ID) become true. The firing
of the transition actually means that PKG1 does elliptic
curve scalar multiplication with sharel and hash value of
client’s identity string, H(ID). PKG2 does the same. In the
net sending the result to the client is done by transitions
pkg1SendsToClient and pkg2SendsToClient.

After sending, the flow goes on in the client part. In this
case, piecel and piece2 states become true. For each place
representing a piece there are two transitions as verify or
not verify. Both of the pieces need to be verified so that
client can use the pieces and calculate its private key. If any
of the pieces is not verified, the system reaches an unsuc-
cessful state and the local state atLeastOnePieceNotVeri-
fied becomes true. After both successful and unsuccessful
states the system can be restarted for a new extraction.
There are six restart transitions since each one is enabled
in a different ending state and the old tokens have to be
consumed in order to reproduce the initial marking.

5. ANALYSIS ON THE DPKG MODEL

In this section, we introduce a structural analysis of
the DPKG model for Identity based Cryptography. The
purpose of modeling the protocol is not only to provide
a formal representation of the system but also a basis for
formal analysis of it. Petri Net model enables us to do a
security property analysis for the protocol.

The first basic analysis on the models in figure 2 and figure
3 shows that the nets are both bounded both safe and
they are deadlock free. The analysis result tells us that the
system will go on working safely unless there is a physical,
electrical, human error problem, etc. The model supports
the fact that DPKG can perform repeatedly whenever
there is a need for (1) changing the master key and recreate
shares for PKGs , (2) extracting the same private key for
the client in case it has lost its key or (3) extracting a new
private key for a new client who has just joined the system.

For a more specified analysis we move to the model
checking environment and use the model checking tool
LoLA. To express the properties or situations needed to be
analyzed, we first defined the situation as a global states
of the model and translated it into temporal logic formulas
expressed in CTL (Computation Tree Logic).

FORMULA: EXPATH EVENTUALLY (finalCommit-
ments = 0 AND (systemReadyForExtraction = 1 OR dis-
tributionNotSuccessful = 1))

The above formula investigates the existence of a global
state in which PKG nodes finish the distribution of sub-
shares and calculating shares before Bulletin Board calcu-
lates final commitments. This is an unwanted situation
which means that the verification of the shares is not
performed and the calculated shares cannot be trusted.

When we check the model in figure 2, we see that the result
for the formula is false which means the global state is not
reachable in the model.

FORMULA EXPATH EVENTUALLY systemReadyForEz-
traction = 1 AND distributionNotSuccessful = 1

The second formula focuses on the possibility of a conflict
in the end of the distribution step. It asks if there exists
a global state in which the success and the fail states are
true in the same time. The result of the formula is false
when the model in figure 2 is checked for the formula.

FORMULA EXPATH EVENTUALLY (clientHasCorrec-
tKey = 1 AND atLeastOnePieceNotVerified = 1)

The last formula checks the existence of a global state in
the extraction model shown in the figure 3. This global
state defines the case in which client has the correct key
but at least one of the pieces is not verified. When the
model is checked for the formula, it is proved that the
global state is not reachable.

6. ATTACK MODEL

We introduce an intruder model which sneaks into the
channel during the distributed key generation. This model
is also composed of two parts: distribution and extraction.

The first intruder model is shown in figure 4. In this model
we included only two PKG nodes to keep the model small
but sufficient enough to analyze the properties we are
interested in like what can be done by the intruder in such
a scenario. The intruder listens to the channel between
PKG1 and PKG2 having also the possibility to change the
message on the channel. When PKG1 sends the subshare
for PKG2, subshare1-2, the intruder has two options. It can
read subsharel-2 and do no change on it or it can send a
fake subshare1-2 to PKG2 while keeping the original one
to itself. The same flow exists also in the opposite direction
to read and change the subshare2-1. The modeled DPKG
here is (2,1) which means there are two PKG nodes and
in the distribution step they produce two subshares.

The second intruder model representing the extraction
step with an intruder, is shown in the figure 5. In this
model there are three PKG nodes and the system is (3,2).
This is the smallest sufficient and meaningful model for
analyzing the intruder behavior. In this model, intruder
listens to the channels between three PKG nodes and the
client. The intruder can read the piece sent by the PKG
node to the client and then can change the message or
leave it as it is. Another option is that the intruder does
not read anything from the channel. In this way, we model
an intruder who can choose the channel to be listened and
has the ability to change the messages on the channels.

7. ANALYSIS ON THE ATTACK MODEL

After creating the model we used model checking with
LoLA to test the reachability of specific global states
threatening the system. To express the unwanted situa-
tions we first defined the situation as a global states of
the model and translated it into temporal logic formulas
expressed in CTL as we did for the DPKG analysis in
section 5.

FORMULA: EXPATH EVENTUALLY ((subsharel-
2AtIntruder = 1 AND subshare2-2AtIntruder = 1) OR
(subshare2-1AtIntruder = 1 AND subsharel-1AtIntruder

=1))

This formula investigates if it is possible that there exists a
global state in which the intruder captures both subshares
for PKG1 or PKG2. When the model displayed in figure
4 is checked for this formula, the result is found to be
false. In an (n,k) system, to be able to have a PKG node’s
share, an intruder has to capture n subshares addressing
that specific PKG node. But this situation cannot occur,
because one of these subshares is created by the node itself
and it is never sent to the channel.

FORMULA EXPATH EVENTUALLY (clientHasCorrec-
tKey = 1 AND atLeastOnePieceNotVerified = 1)

The above formula investigates a situation in which the
client supposes to have the correct key while at least one of
the received pieces is not verified. When the model shown
in figure 5 is checked for this formula we see that the result
is false.

FORMULA: EXPATH EVENTUALLY (intruderHas-
TheKey = 1 AND clientHasCorrectKey = 1)

The last formula asks if it is possible for the intruder to
have the client’s key without the client being informed

kg ? |

chodsePlandSendToBB

commitmentsP1

plReady

g

®

calcy

fil

final Commitni\ents
i

\
\
\
\
ForSubsiFms ‘ g
| solisharel:2 | p2ReadyF-;$ujbshares
calculste Y ‘ ‘_ :
subshares 1 ™| | | suhshare?;} Talcfilate
! sendSubshare1-2 channkl2__\ subshiares 2
‘ | , odndy | ‘ |
read/an - ead R
| forgard 1 |
| | f
1 |
| subshare1{2AtIntruder
[- |
| L’hare of pkg2 ’(—_O |
Substarplt ‘ sfibshare2-24tInt
Y !
\ [
calculate | |
sharg{ i share of pkg2 |
| 4 |
| i |
| shal pkal
’ O >| calculate '
| | share of pkgll
| verify|sharel not verify shar&l £ :
' as cpmect |
: \
share lcoTect O |
ettt sharel ~ raadcha
not verified { not verified

channel

Figure 4. Petri Net model of an intruder in the distribution step of DPKG.

about it. This situation is likely to occur if the intruder
captures all the pieces needed for extraction of the client’s
key and does no change on them so that client will also
have the same key. The number of required pieces is k in
an (n,k) system. After checking the model for this formula,
the result turns out to be true. However, this situation is
a natural outcome for threshold cryptographic protocols
such as DPKG for identity based cryptography.

8. CONCLUSION

We aimed to analyze the behavior of the DPKG security
protocol applied to an industrial control system and prov-
ing its properties in the specific context of application.

To this end, a basic model of the protocol is built by
using Elementary Net Systems and then extended to 1-
bounded P/T systems. This model allows for the first
reflections about the protocol by means of traditional
structural analysis techniques. Then we extended our
work by including an intruder in the model aiming at
analyzing the security properties of the protocol and
revealing possible flaws. The results indicate that there
is no way to extract information about the master key or
the private keys of the clients. Thus it can be concluded
that the models drawn and the analysis performed on them
have not pointed out any flaws except the drawbacks of the
threshold cryptography. In this way, use of the protocol
in the industrial control systems is partially proved to

be safe. An attacker is not able to gain any information
about the system and two main goals of an attacker
which are stated in the beginning of the section 6 are not
to be achieved. Our work only focuses on the protocol
of distributed private key generation, thus we cannot
say anything about the use of the keys for encryption,
decryption and signature.

In addition, our models are given in an abstract and
theoretical manner and our future work will aim to ex-
tend the model with the inclusion of local acquisition and
actuation devices (PLCs). Such a study will allow for a
real representation of the protocol in its environment and
the subsequent possibility of analyzing its real flaws with
model checking techniques. The other extension will be
to model the use of the generated keys in the signature
scheme to provide industrial control systems with authen-
ticity. In this way we will be able to formally analyze the
authenticity in the system.

REFERENCES

Bacnet (2009). URL http://www.bacnet.org/.

Boneh, D. and Franklin, M.K. (2003). Identity-based
encryption from the weil pairing. SIAM J. Comput.,
32, 586—615.

Bouroulet, R., Devillers, R.R., Klaudel, H., Pelz, E., and
Pommereau, F. (2008). Modeling and analysis of secu-
rity protocols using role based specifications and petri

]
| [
] i It] ‘
apply to] i | } | apply to
pkal and pkg2 . ' ?kg2 and pkg3
| | | |
| | share2H(12) | |
share1H(ID) 1 i sLaman(ln)
| ? | ! | |
t! T | <] | té
{ =i, i {
channel 1 channel 2 channel 3 V7
H(ID)
ER o = [[N (LT T 1 iy L s p— L Ainggder wg
no intrufler! read change read change read change share1H(ID) share3H(ID)
i sendl send2 send3 Atintruder c e AtIntruder
' froi
| read&forward! read&forward2 reafl&forward3 i celr:n 1
calculate calculate
from from
piecel and 2 piecezf and 3
ie¢e | iede 2 |
(piege piede |
) G ' anl, bt | el -ttt dpmy. fremtm—r— ; L
| | piece 1 piece 2 piece 3 1 piece 3 intruderHasTheKey
. {from pkg1) (from pkg2) (from pkg3) changed
. vy n n
client with 10 |
requests PK @ - veyy | veyfy 2 veyy 2 veyy 3 not
| s " verify 3
| 2 vegified 3 vegified ‘
5 1 not 2 not | 3not
| Vveiied verified verified | verified
| T m I
—_——
l — |
| 1 ‘
| \ 'y I
|
| |
I T\ fa 10 arNANRE M7 ua |
|
G atleast
Gt ias Comeatiiay. OnePiece Noterifed |

Figure 5. Petri Net model of an intruder in the extraction

nets. In Petri Nets, volume 5062 of Lecture Notes in
Computer Science, 72-91. Springer.

Carcano, A., Fovino, I.N., Masera, M., and Trombetta, A.
(2010). State-based network intrusion detection systems
for scada protocols: a proof of concept. In Proceedings of
the 4th international conference on Critical information
infrastructures security, CRITIS’09.

Chandia, R., Gonzalez, J., Kilpatrick, T., Papa, M., and
Shenoi, S. (2007). Security strategies for scada networks.
In Critical Infrastructure Protection, volume 253 of
IFIP. Springer.

Consortium, A. (2006). URL http://www.aga.org/.

Creery, A.A. and Byres, E.J. (2005). Industrial cyber-
security for power system and scada networks. IFEFE
Industry Apllication Magazine, 13, 303-309.

Desel, J. and Reisig, W. (1998). Place/transition petri
nets. In Petri Nets, volume 1491 of Lecture Notes in
Computer Science. Springer.

Dondossola, G., Szanto, J., Masera, M., and Nai Fovino,
I. (2008). Effects of intentional threats to power substa-
tion control systems. International Journal of Critical
Infrastructures, 4, 129-143.

Holmberg, D.G., Holmberg, D.G., and Evans, D.L. (2003).
Bacnet wide area network security threat assessment.
Hong, J.H.C.S., Ju, S.H., Lim, Y.H., Lee, B.S., and Hyun,
D.H. (2007). A security mechanism for automation
control in plc-based networks. In ISPLC ’07. IEEE In-
ternational Symposium on Power Line Communications

and Its Applications.

Kate, A. and Goldberg, I. (2009). Asynchronous dis-
tributed private-key generators for identity-based cryp-

step of DPKG.

tography. TACR Cryptology ePrint Archive, 2009, 355.

Kilinc, G., Fovino, ILN., Ferigato, C., and Koltuksuz, A.
(2012). A model of distributed key generation for
industrial control systems. Jrc technical note 69663,
E.C. Joint Research Centre, Institute for the Protection
and Security of the Citizen.

M. Majdalawieh, F. Parisi-Presicce, D.W. (2005). Dis-
tributed network protocol security (dnpsec) security
framework. In 21st Annual Computer Security Appli-
cations Conference.

Mander, T., Nabhani, F., Wang, L., and Cheung, R.
(2007). Data object based security for dup3 over tcp/ip
for increased utility commercial aspects security. In
Power Engineering Society General Meeting, IEEE.

Nieh, B.B. and Tavares, S.E. (1992). Modelling and
analyzing cryprographic protocols using petri nets. In
AUSCRYPT, volume 718 of LNCS. Springer.

Patel, S. and Graham, J. (2004). Security considerations
in dnp3 scada systems. In International Conference on
Computer Applications in Industry Engineering.

Schmidt, K. (2003). Distributed verification with lola.
Fundam. Inform., 54, 253-262.

Shamir, A. (1979). How to share a secret. Commun. ACM,
22, 612-613.

Wright, A.K., Kinast, J.A., and McCarty, J. (2004). Low-
latency cryptographic protection for scada communi-
cations. In ACNS, volume 3089 of Lecture Notes in
Computer Science. Springer.

Xu, Y. and Xie, X. (2011). Modeling and analysis of
security protocols using colored petri nets. JCP, 6, 19—
27.

	356

