824 research outputs found

    Towards Accurate Run-Time Hardware-Assisted Stealthy Malware Detection: A Lightweight, yet Effective Time Series CNN-Based Approach

    Get PDF
    According to recent security analysis reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers, complexity, and harmful purposes to compromise the security of modern computer systems. Recently, malware detection based on low-level hardware features (e.g., Hardware Performance Counters (HPCs) information) has emerged as an effective alternative solution to address the complexity and performance overheads of traditional software-based detection methods. Hardware-assisted Malware Detection (HMD) techniques depend on standard Machine Learning (ML) classifiers to detect signatures of malicious applications by monitoring built-in HPC registers during execution at run-time. Prior HMD methods though effective have limited their study on detecting malicious applications that are spawned as a separate thread during application execution, hence detecting stealthy malware patterns at run-time remains a critical challenge. Stealthy malware refers to harmful cyber attacks in which malicious code is hidden within benign applications and remains undetected by traditional malware detection approaches. In this paper, we first present a comprehensive review of recent advances in hardware-assisted malware detection studies that have used standard ML techniques to detect the malware signatures. Next, to address the challenge of stealthy malware detection at the processor’s hardware level, we propose StealthMiner, a novel specialized time series machine learning-based approach to accurately detect stealthy malware trace at run-time using branch instructions, the most prominent HPC feature. StealthMiner is based on a lightweight time series Fully Convolutional Neural Network (FCN) model that automatically identifies potentially contaminated samples in HPC-based time series data and utilizes them to accurately recognize the trace of stealthy malware. Our analysis demonstrates that using state-of-the-art ML-based malware detection methods is not effective in detecting stealthy malware samples since the captured HPC data not only represents malware but also carries benign applications’ microarchitectural data. The experimental results demonstrate that with the aid of our novel intelligent approach, stealthy malware can be detected at run-time with 94% detection performance on average with only one HPC feature, outperforming the detection performance of state-of-the-art HMD and general time series classification methods by up to 42% and 36%, respectively

    IoT Botnet Malware Classification Using Weka Tool and Scikit-learn Machine Learning

    Get PDF
    Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and NaĂŻve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results

    Deep Learning for Mobile Multimedia: A Survey

    Get PDF
    Deep Learning (DL) has become a crucial technology for multimedia computing. It offers a powerful instrument to automatically produce high-level abstractions of complex multimedia data, which can be exploited in a number of applications, including object detection and recognition, speech-to- text, media retrieval, multimodal data analysis, and so on. The availability of affordable large-scale parallel processing architectures, and the sharing of effective open-source codes implementing the basic learning algorithms, caused a rapid diffusion of DL methodologies, bringing a number of new technologies and applications that outperform, in most cases, traditional machine learning technologies. In recent years, the possibility of implementing DL technologies on mobile devices has attracted significant attention. Thanks to this technology, portable devices may become smart objects capable of learning and acting. The path toward these exciting future scenarios, however, entangles a number of important research challenges. DL architectures and algorithms are hardly adapted to the storage and computation resources of a mobile device. Therefore, there is a need for new generations of mobile processors and chipsets, small footprint learning and inference algorithms, new models of collaborative and distributed processing, and a number of other fundamental building blocks. This survey reports the state of the art in this exciting research area, looking back to the evolution of neural networks, and arriving to the most recent results in terms of methodologies, technologies, and applications for mobile environments

    Intelligent and behavioral-based detection of malware in IoT spectrum sensors

    Full text link
    The number of Cyber-Physical Systems (CPS) available in industrial environments is growing mainly due to the evolution of the Internet-of-Things (IoT) paradigm. In such a context, radio frequency spectrum sensing in industrial scenarios is one of the most interesting applications of CPS due to the scarcity of the spectrum. Despite the benefits of operational platforms, IoT spectrum sensors are vulnerable to heterogeneous malware. The usage of behavioral fingerprinting and machine learning has shown merit in detecting cyberattacks. Still, there exist challenges in terms of (i) designing, deploying, and evaluating ML-based fingerprinting solutions able to detect malware attacks affecting real IoT spectrum sensors, (ii) analyzing the suitability of kernel events to create stable and precise fingerprints of spectrum sensors, and (iii) detecting recent malware samples affecting real IoT spectrum sensors of crowdsensing platforms. Thus, this work presents a detection framework that applies device behavioral fingerprinting and machine learning to detect anomalies and classify different botnets, rootkits, backdoors, ransomware and cryptojackers affecting real IoT spectrum sensors. Kernel events from CPU, memory, network,file system, scheduler, drivers, and random number generation have been analyzed, selected, and monitored to create device behavioral fingerprints. During testing, an IoT spectrum sensor of the ElectroSense platform has been infected with ten recent malware samples (two botnets, three rootkits, three backdoors, one ransomware, and one cryptojacker) to measure the detection performance of the framework in two different network configurations. Both supervised and semi-supervised approaches provided promising results when detecting and classifying malicious behaviors from the eight previous malware and seven normal behaviors. In particular, the framework obtained 0.88–0.90 true positive rate when detecting the previous malicious behaviors as unseen or zero-day attacks and 0.94–0.96 F1-score when classifying the

    Securing Arm Platform: From Software-Based To Hardware-Based Approaches

    Get PDF
    With the rapid proliferation of the ARM architecture on smart mobile phones and Internet of Things (IoT) devices, the security of ARM platform becomes an emerging problem. In recent years, the number of malware identified on ARM platforms, especially on Android, shows explosive growth. Evasion techniques are also used in these malware to escape from being detected by existing analysis systems. In our research, we first present a software-based mechanism to increase the accuracy of existing static analysis tools by reassembleable bytecode extraction. Our solution collects bytecode and data at runtime, and then reassemble them offline to help static analysis tools to reveal the hidden behavior in an application. Further, we implement a hardware-based transparent malware analysis framework for general ARM platforms to defend against the traditional evasion techniques. Our framework leverages hardware debugging features and Trusted Execution Environment (TEE) to achieve transparent tracing and debugging with reasonable overhead. To learn the security of the involved hardware debugging features, we perform a comprehensive study on the ARM debugging features and summarize the security implications. Based on the implications, we design a novel attack scenario that achieves privilege escalation via misusing the debugging features in inter-processor debugging model. The attack has raised our concern on the security of TEEs and Cyber-physical System (CPS). For a better understanding of the security of TEEs, we investigate the security of various TEEs on different architectures and platforms, and state the security challenges. A study of the deploying the TEEs on edge platform is also presented. For the security of the CPS, we conduct an analysis on the real-world traffic signal infrastructure and summarize the security problems

    Detecting kernel rootkits

    Get PDF
    Kernel rootkits are a special category of malware that are deployed directly in the kernel and hence have unmitigated reign over the functionalities of the kernel itself. We seek to detect such rootkits that are deployed in the real world by first observing how the majority of kernel rootkits operate. To this end, comparable to how rootkits function in the real world, we write our own kernel rootkit that manipulates the network driver, thus giving us control over all packets sent into the network. We then implement a mechanism to thwart the attacks of such rootkits by noticing that a large number of the rootkits deployed today rely heavily on the redirection of function pointers within the kernel. By overwriting the desired function pointer to its own function, a rootkit can perform a proverbial man-in-the-middle attack. Our goal is not just the detection of kernel rootkits, but also to levy as little an impact on system performance as possible. Hence our technique is to leverage existing kernel functionalities (in the case of Linux) such as kprobes to identify potential attack scenarios from within the sytem rather than from outside it (such as a VMM). We hope to introduce real-world security in devices where performance and resource constraints are tantamount to security considerations

    SHARKS: Smart Hacking Approaches for RisK Scanning in Internet-of-Things and Cyber-Physical Systems based on Machine Learning

    Full text link
    Cyber-physical systems (CPS) and Internet-of-Things (IoT) devices are increasingly being deployed across multiple functionalities, ranging from healthcare devices and wearables to critical infrastructures, e.g., nuclear power plants, autonomous vehicles, smart cities, and smart homes. These devices are inherently not secure across their comprehensive software, hardware, and network stacks, thus presenting a large attack surface that can be exploited by hackers. In this article, we present an innovative technique for detecting unknown system vulnerabilities, managing these vulnerabilities, and improving incident response when such vulnerabilities are exploited. The novelty of this approach lies in extracting intelligence from known real-world CPS/IoT attacks, representing them in the form of regular expressions, and employing machine learning (ML) techniques on this ensemble of regular expressions to generate new attack vectors and security vulnerabilities. Our results show that 10 new attack vectors and 122 new vulnerability exploits can be successfully generated that have the potential to exploit a CPS or an IoT ecosystem. The ML methodology achieves an accuracy of 97.4% and enables us to predict these attacks efficiently with an 87.2% reduction in the search space. We demonstrate the application of our method to the hacking of the in-vehicle network of a connected car. To defend against the known attacks and possible novel exploits, we discuss a defense-in-depth mechanism for various classes of attacks and the classification of data targeted by such attacks. This defense mechanism optimizes the cost of security measures based on the sensitivity of the protected resource, thus incentivizing its adoption in real-world CPS/IoT by cybersecurity practitioners.Comment: This article has been accepted in IEEE Transactions on Emerging Topics in Computing. 17 pages, 12 figures, IEEE copyrigh
    • …
    corecore