10,358 research outputs found

    An efficient method for scattering problems in open billiards: Theory and applications

    Get PDF
    We present an efficient method to solve scattering problems in two-dimensional open billiards with two leads and a complicated scattering region. The basic idea is to transform the scattering region to a rectangle, which will lead to complicated dynamics in the interior, but simple boundary conditions. The method can be specialized to closed billiards, and it allows the treatment of interacting particles in the billiard. We apply this method to quantum echoes measured recently in a microwave cavity, and indicate, how it can be used for interacting particles.Comment: 9 pages 6 figures submitted to PR

    Characterisation of a three-dimensional Brownian motor in optical lattices

    Full text link
    We present here a detailed study of the behaviour of a three dimensional Brownian motor based on cold atoms in a double optical lattice [P. Sjolund et al., Phys. Rev. Lett. 96, 190602 (2006)]. This includes both experiments and numerical simulations of a Brownian particle. The potentials used are spatially and temporally symmetric, but combined spatiotemporal symmetry is broken by phase shifts and asymmetric transfer rates between potentials. The diffusion of atoms in the optical lattices is rectified and controlled both in direction and speed along three dimensions. We explore a large range of experimental parameters, where irradiances and detunings of the optical lattice lights are varied within the dissipative regime. Induced drift velocities in the order of one atomic recoil velocity have been achieved.Comment: 8 pages, 14 figure

    Polarization Swings Reveal Magnetic Energy Dissipation in Blazars

    Full text link
    The polarization signatures of the blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, sometimes large (> 180^o) polarization angle swings are observed. We suggest that such p henomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change of its polarization signatures. This unprecedented combination of spectral, variability, and polarization information in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.Comment: Accepted for Publication in The Astrophysical Journa

    Multiple transient memories in sheared suspensions: robustness, structure, and routes to plasticity

    Get PDF
    Multiple transient memories, originally discovered in charge-density-wave conductors, are a remarkable and initially counterintuitive example of how a system can store information about its driving. In this class of memories, a system can learn multiple driving inputs, nearly all of which are eventually forgotten despite their continual input. If sufficient noise is present, the system regains plasticity so that it can continue to learn new memories indefinitely. Recently, Keim & Nagel showed how multiple transient memories could be generalized to a generic driven disordered system with noise, giving as an example simulations of a simple model of a sheared non-Brownian suspension. Here, we further explore simulation models of suspensions under cyclic shear, focussing on three main themes: robustness, structure, and overdriving. We show that multiple transient memories are a robust feature independent of many details of the model. The steady-state spatial distribution of the particles is sensitive to the driving algorithm; nonetheless, the memory formation is independent of such a change in particle correlations. Finally, we demonstrate that overdriving provides another means for controlling memory formation and retention

    Particle currents and the distribution of terrace sizes in unstable epitaxial growth

    Full text link
    A solid-on-solid model of epitaxial growth in 1+1 dimensions is investigated in which slope dependent upward and downward particle currents compete on the surface. The microscopic mechanisms which give rise to these currents are the smoothening incorporation of particles upon deposition and an Ehrlich-Schwoebel barrier which hinders inter-layer transport at step edges. We calculate the distribution of terrace sizes and the resulting currents on a stepped surface with a given inclination angle. The cancellation of the competing effects leads to the selection of a stable magic slope. Simulation results are in very good agreement with the theoretical findings.Comment: 4 pages, including 3 figure

    Molecular Basis for poly(A) RNP Architecture and Recognition by the Pan2-Pan3 Deadenylase

    No full text
    The stability of eukaryotic mRNAs is dependent on a ribonucleoprotein (RNP) complex of poly(A)-binding proteins (PABPC1/Pab1) organized on the poly(A) tail. This poly(A) RNP not only protects mRNAs from premature degradation but also stimulates the Pan2-Pan3 deadenylase complex to catalyze the first step of poly(A) tail shortening. We reconstituted this process in vitro using recombinant proteins and show that Pan2-Pan3 associates with and degrades poly(A) RNPs containing two or more Pab1 molecules. The cryo-EM structure of Pan2-Pan3 in complex with a poly(A) RNP composed of 90 adenosines and three Pab1 protomers shows how the oligomerization interfaces of Pab1 are recognized by conserved features of the deadenylase and thread the poly(A) RNA substrate into the nuclease active site. The structure reveals the basis for the periodic repeating architecture at the 3' end of cytoplasmic mRNAs. This illustrates mechanistically how RNA-bound Pab1 oligomers act as rulers for poly(A) tail length over the mRNAs' lifetime.We would like to thank ... the MPIB cryo-EM, and core facilities ..
    corecore