11,544 research outputs found

    Curve network interpolation by C1C^1 quadratic B-spline surfaces

    Full text link
    In this paper we investigate the problem of interpolating a B-spline curve network, in order to create a surface satisfying such a constraint and defined by blending functions spanning the space of bivariate C1C^1 quadratic splines on criss-cross triangulations. We prove the existence and uniqueness of the surface, providing a constructive algorithm for its generation. We also present numerical and graphical results and comparisons with other methods.Comment: With respect to the previous version, this version of the paper is improved. The results have been reorganized and it is more general since it deals with non uniform knot partitions. Accepted for publication in Computer Aided Geometric Design, October 201

    Restricted Likelihood Ratio Testing in Linear Mixed Models with General Error Covariance Structure

    Get PDF
    We consider the problem of testing for zero variance components in linear mixed models with correlated or heteroscedastic errors. In the case of independent and identically distributed errors, a valid test exists, which is based on the exact finite sample distribution of the restricted likelihood ratio test statistic under the null hypothesis. We propose to make use of a transformation to derive the (approximate) test distribution for the restricted likelihood ratio test statistic in the case of a general error covariance structure. The proposed test proves its value in simulations and is finally applied to an interesting question in the field of well-being economics

    Bivariate Hermite subdivision

    Get PDF
    A subdivision scheme for constructing smooth surfaces interpolating scattered data in R3\mathbb{R}^3 is proposed. It is also possible to impose derivative constraints in these points. In the case of functional data, i.e., data are given in a properly triangulated set of points {(xi,yi)}i=1N\{(x_i, y_i)\}_{i=1}^N from which none of the pairs (xi,yi)(x_i,y_i) and (xj,yj)(x_j,y_j) with iji\neq j coincide, it is proved that the resulting surface (function) is C1C^1. The method is based on the construction of a sequence of continuous splines of degree 3. Another subdivision method, based on constructing a sequence of splines of degree 5 which are once differentiable, yields a function which is C2C^2 if the data are not 'too irregular'. Finally the approximation properties of the methods are investigated

    A subdivision-based implementation of non-uniform local refinement with THB-splines

    Get PDF
    Paper accepted for 15th IMA International Conference on Mathematics on Surfaces, 2017. Abstract: Local refinement of spline basis functions is an important process for spline approximation and local feature modelling in computer aided design (CAD). This paper develops an efficient local refinement method for non-uniform and general degree THB-splines(Truncated hierarchical B-splines). A non-uniform subdivision algorithm is improved to efficiently subdivide a single non-uniform B-spline basis function. The subdivision scheme is then applied to locally hierarchically refine non-uniform B-spline basis functions. The refined basis functions are non-uniform and satisfy the properties of linear independence, partition of unity and are locally supported. The refined basis functions are suitable for spline approximation and numerical analysis. The implementation makes it possible for hierarchical approximation to use the same non-uniform B-spline basis functions as existing modelling tools have used. The improved subdivision algorithm is faster than classic knot insertion. The non-uniform THB-spline approximation is shown to be more accurate than uniform low degree hierarchical local refinement when applied to two classical approximation problems
    corecore