6 research outputs found

    Curvature-Scale-based Contour Understanding for Leaf Margin Shape Recognition and Species Identification

    Get PDF
    International audienceIn the frame of a tree species identifying mobile application, designed for a wide scope of users, and with didactic purposes, we developed a method based on the computation of explicit leaf shape descriptors inspired by the criteria used in botany. This paper focuses on the characterization of the leaf contour, the extraction of its properties, and its description using botanical terms. Contour properties are investigated using the Curvature-Scale Space representation, the potential teeth explicitly extracted and described, and the margin classified into a set of inferred shape classes. Results are presented for both margin shape characterization, and leaf classification over nearly 80 tree species

    PLANT SPECIE CLASSIFICATION USING SINUOSITY COEFFICIENTS OF LEAVES

    Get PDF
    Forests are the lungs of our planet. Conserving the plants may require the development of an automated system that will identify plants using leaf features such as shape, color, and texture. In this paper, a leaf shape descriptor based on sinuosity coefficients is proposed. The sinuosity coefficients are defined using the sinuosity measure, which is a measure expressing the degree of meandering of a curve. The initial empirical experiments performed on the LeafSnap dataset on the usage of four sinuosity coefficients to characterize the leaf images using the Radial Basis Function Neural Network (RBF) and Multilayer Perceptron (MLP) classifiers achieved accurate classification rates of 88% and 65%, respectively. The proposed feature extraction technique is further enhanced through the addition of leaf geometrical features, and the accurate classification rates of 93% and 82% were achieved using RBF and MLP, respectively. The overall results achieved showed that the proposed feature extraction technique based on the sinuosity coefficients of leaves, complemented with geometrical features improve the accuracy rate of plant classification using leaf recognition

    Curvature-Scale-based Contour Understanding for Leaf Margin Shape Recognition and Species Identification

    No full text
    International audienceIn the frame of a tree species identifying mobile application, designed for a wide scope of users, and with didactic purposes, we developed a method based on the computation of explicit leaf shape descriptors inspired by the criteria used in botany. This paper focuses on the characterization of the leaf contour, the extraction of its properties, and its description using botanical terms. Contour properties are investigated using the Curvature-Scale Space representation, the potential teeth explicitly extracted and described, and the margin classified into a set of inferred shape classes. Results are presented for both margin shape characterization, and leaf classification over nearly 80 tree species
    corecore