12,446 research outputs found

    Analog Circuits in Ultra-Deep-Submicron CMOS

    Get PDF
    Modern and future ultra-deep-submicron (UDSM) technologies introduce several new problems in analog design. Nonlinear output conductance in combination with reduced voltage gain pose limits in linearity of (feedback) circuits. Gate-leakage mismatch exceeds conventional matching tolerances. Increasing area does not improve matching any more, except if higher power consumption is accepted or if active cancellation techniques are used. Another issue is the drop in supply voltages. Operating critical parts at higher supply voltages by exploiting combinations of thin- and thick-oxide transistors can solve this problem. Composite transistors are presented to solve this problem in a practical way. Practical rules of thumb based on measurements are derived for the above phenomena

    Single Event Effects in CMOS Image Sensors

    Get PDF
    In this work, 3T Active Pixel Sensors (APS) are exposed to heavy ions (N, Ar, Kr, Xe), and Single Event Effects (SEE) are studied. Devices were fully functional during exposure, no Single Event Latch-up (SEL) or Single Event Functional Interrupt (SEFI) happened. However Single Event Transient (SET) effects happened on frames: line disturbances, and half or full circular clusters of white pixels. The collection of charges in cluster was investigated with arrays of two pixel width (7 and 10 \textmu{}m), with bulk and epitaxial substrates. This paper shows technological and design parameters involved in the transient events. It also shows that STARDUST simulation software can predict cluster obtained for bulk substrate devices. However, the discrepancies in epitaxial layer devices are large - which shows the need for an improved model

    An Extended CMOS ISFET Model Incorporating the Physical Design Geometry and the Effects on Performance and Offset Variation

    No full text
    This paper presents an extended model for the CMOS-based ion-sensitive field-effect transistor, incorporating design parameters associated with the physical geometry of the device. This can, for the first time, provide a good match between calculated and measured characteristics by taking into account the effects of nonidealities such as threshold voltage variation and sensor noise. The model is evaluated through a number of devices with varying design parameters (chemical sensing area and MOSFET dimensions) fabricated in a commercially available 0.35-µm CMOS technology. Threshold voltage, subthreshold slope, chemical sensitivity, drift, and noise were measured and compared with the simulated results. The first- and second-order effects are analyzed in detail, and it is shown that the sensors' performance was in agreement with the proposed model

    An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis

    Get PDF
    Accepted versio

    A 3 Gb/s optical detector in standard CMOS for 850 nm optical communication

    Get PDF
    This paper presents a monolithic optical detector, consisting of an integrated photodiode and a preamplifier in a standard 0.18-/spl mu/m CMOS technology. A data rate of 3 Gb/s at BER <10/sup -11/ was achieved for /spl lambda/=850 nm with 25-/spl mu/W peak-peak optical power. This data rate is more than four times than that of current state-of-the-art optical detectors in standard CMOS reported so far. High-speed operation is achieved without reducing circuit responsivity by using an inherently robust analog equalizer that compensates (in gain and phase) for the photodiode roll-off over more than three decades. The presented solution is applicable to various photodiode structures, wavelengths, and CMOS generations

    Cross-Coupled Charge Pump Synthesis Based on Full Transistor-Level

    Get PDF
    This paper presents utility for the design of the cross-coupled charge pump, which is used for supplying peripherals with low current consumption on the chip, as the EEPROM or FLASH memories. The article summarizes the knowledge in the field of the theoretical and practical analysis of the cross-coupled charge pump (design relationships and their connection with the pump parameters, as the threshold voltage, power supply voltage, clock signal frequency, etc.) that are applicated in the design algorithm. Optimal MOSFETs sizes (W, L) were find based on the construct of the time response characteristics of the pump sub-block and finding of the maximal voltage increase in the active interval of the clock signal and minimizing of the pump losses, as the switch reverse current, inverter cross current, etc. Synthesis process includes the design of the pump functional blocks with dominant real properties, which are described based on BSIM equations for long channel MOSFET. The pump stage complex model is applicated for estimation of the number of pump stages via state-space model description and using of the interpolation polynomial functions in the algorithm. It involves the construction of the time response characteristic due to the state variables and prediction of the number of the pump stages for the next cycle based on the previous data. Optimization of the pump area is based on the minimizing of the main capacitor in each of the pump stages (number of the pump stages must be increased to obtain the desired output voltage value.) Access is designed to stress the maximum pump voltage efficiency. The whole procedure is summarized in the practical example, in which the solution is shown both in terms of maximal voltage efficiency and the optimal pump area on a chip with respect to the clock signal frequency. Added functions of the design environment are explained, inclusive of the designed pump netlist generating for professional design environment Mentor Graphics including the real models of components that are available in library MGC Design Kit. The procedure gives designer credible results without long timeconsuming optimization process. In addition, the complex model allows the inclusion effects of higher-levels
    corecore