202 research outputs found

    DC-Link Voltage and Catenary Current Sensors Fault Reconstruction for Railway Traction Drives

    Get PDF
    Due to the importance of sensors in control strategy and safety, early detection of faults in sensors has become a key point to improve the availability of railway traction drives. The presented sensor fault reconstruction is based on sliding mode observers and equivalent injection signals, and it allows detecting defective sensors and isolating faults. Moreover, the severity of faults is provided. The proposed on-board fault reconstruction has been validated in a hardware-in-the-loop platform, composed of a real-time simulator and a commercial traction control unit for a tram. Low computational resources, robustness to measurement noise, and easiness to tune are the main requirements for industrial acceptance. As railway applications are not safety-critical systems, compared to aerospace applications, a fault evaluation procedure is proposed, since there is enough time to perform diagnostic tasks. This procedure analyses the fault reconstruction in the steady state, delaying the decision-making in some seconds, but minimising false detections

    Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation

    Get PDF
    This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM) under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (L-q) of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and L-q. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The L-q estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and L-q besides exhibiting robustness against parameter uncertainties.1165Ysciescopu

    PSO BASED TAKAGI-SUGENO FUZZY PID CONTROLLER DESIGN FOR SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

    Get PDF
    A permanent magnet synchronous motor (PMSM) is one kind of popular motor. They are utilized in industrial applications because their abilities included operation at a constant speed, no need for an excitation current, no rotor losses, and small size. In the following paper, a fuzzy evolutionary algorithm is combined with a proportional-integral-derivative (PID) controller to control the speed of a PMSM. In this structure, to overcome the PMSM challenges, including nonlinear nature, cross-coupling, air gap flux, and cogging torque in operation, a Takagi-Sugeno fuzzy logic-PID (TSFL-PID) controller is designed. Additionally, the particle swarm optimization (PSO) algorithm is developed to optimize the membership functions' parameters and rule bases of the fuzzy logic PID controller. For evaluating the proposed controller's performance, the genetic algorithm (GA), as another evolutionary algorithm, is incorporated into the fuzzy PID controller. The results of the speed control of PMSM are compared. The obtained results demonstrate that although both controllers have excellent performance; however, the PSO based TSFL-PID controller indicates more superiority

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    A Fast Diagnosis Method for Both IGBT Faults and Current Sensor Faults in Grid-Tied Three-Phase Inverters With Two Current Sensors

    Get PDF
    © 1986-2012 IEEE. This article considers fault detection in the case of a three-phase three-wire (3P3W) inverter, when only two current sensors are used to save cost or due to a faulty current sensor. With two current sensors, there is no current method addressing the diagnosis of both IGBT open-circuit (OC) faults and current sensor faults. In order to solve this problem, this article proposes a method which innovatively combines two kinds of diagnosis variables, line voltage deviations and phase voltage deviations. The unique faulty characteristics of diagnosis variables for each fault are extracted and utilized to distinguish the fault. Using an average model, the method only needs the signals already available in the controller. Both IGBT OC faults and current sensor faults can be detected quickly in inverter mode and rectifier mode, so that the converter can be protected in a timely way to avoid further damages. In addition, error-adaptive thresholds are adopted to make the method robust. Effects such as system unbalance are analyzed to ensure that the method is robust and feasible. Simulation and experimental results are used to verify and validate the effectiveness of the method

    An online fault-diagnosis of electromagnetic actuator based on variation characteristics of load current

    Get PDF
    Accurate and fast fault-diagnosis is the foundation of fault-tolerance. To develop the fault-tolerance of magnetic-levitated bearing system, this paper presents an online fault-diagnosis approach of electromagnetic actuator based on variation characteristics of sampled load current in the modulation to identify the time constant of the electromagnetic coil, and then to diagnose the broken circuit or partial short-circuit faults. After analysing the variation characteristics of the load current theoretically, the simulation is constructed to verify the effectiveness of the proposed approach. Considering the real-time requirement of fault-diagnosis, we develop a fast sampling and calculating method for the equivalent slope of the load current in the modulation, which represents the variation characteristics of the load current. The experimental results demonstrate that the proposed approach is effective for diagnosing broken circuit and partial short-circuit faults, and the execution time for the fault-diagnosis is about 2 ms, proving its excellent real-time performance

    Real-Time Fault Diagnosis of Permanent Magnet Synchronous Motor and Drive System

    Get PDF
    Permanent Magnet Synchronous Motors (PMSMs) have gained massive popularity in industrial applications such as electric vehicles, robotic systems, and offshore industries due to their merits of efficiency, power density, and controllability. PMSMs working in such applications are constantly exposed to electrical, thermal, and mechanical stresses, resulting in different faults such as electrical, mechanical, and magnetic faults. These faults may lead to efficiency reduction, excessive heat, and even catastrophic system breakdown if not diagnosed in time. Therefore, developing methods for real-time condition monitoring and detection of faults at early stages can substantially lower maintenance costs, downtime of the system, and productivity loss. In this dissertation, condition monitoring and detection of the three most common faults in PMSMs and drive systems, namely inter-turn short circuit, demagnetization, and sensor faults are studied. First, modeling and detection of inter-turn short circuit fault is investigated by proposing one FEM-based model, and one analytical model. In these two models, efforts are made to extract either fault indicators or adjustments for being used in combination with more complex detection methods. Subsequently, a systematic fault diagnosis of PMSM and drive system containing multiple faults based on structural analysis is presented. After implementing structural analysis and obtaining the redundant part of the PMSM and drive system, several sequential residuals are designed and implemented based on the fault terms that appear in each of the redundant sets to detect and isolate the studied faults which are applied at different time intervals. Finally, real-time detection of faults in PMSMs and drive systems by using a powerful statistical signal-processing detector such as generalized likelihood ratio test is investigated. By using generalized likelihood ratio test, a threshold was obtained based on choosing the probability of a false alarm and the probability of detection for each detector based on which decision was made to indicate the presence of the studied faults. To improve the detection and recovery delay time, a recursive cumulative GLRT with an adaptive threshold algorithm is implemented. As a result, a more processed fault indicator is achieved by this recursive algorithm that is compared to an arbitrary threshold, and a decision is made in real-time performance. The experimental results show that the statistical detector is able to efficiently detect all the unexpected faults in the presence of unknown noise and without experiencing any false alarm, proving the effectiveness of this diagnostic approach.publishedVersio
    corecore