5 research outputs found

    AMR Compressed-Domain Analysis for Multimedia Forensics Double Compression Detection

    Get PDF
    An audio recording must be authentic to be admitted as evidence in a criminal prosecution so that the speech is saved with maximum fidelity and interpretation mistakes are prevented. AMR (adaptive multi-rate) encoder is a worldwide standard for speech compression and for GSM mobile network transmission, including 3G and 4G. In addition, such encoder is an audio file format standard with extension AMR which uses the same compression algorithm. Due to its extensive usage in mobile networks and high availability in modern smartphones, AMR format has been found in audio authenticity cases for forgery searching. Such exams compound the multimedia forensics field which consists of, among other techniques, double compression detection, i. e., to determine if a given AMR file was decompressed and compressed again. AMR double compression detection is a complex engineering problem whose solution is still underway. In general terms, if an AMR file is double compressed, it is not an original one and it was likely doctored. The published works in literature about double compression detection are based on decoded waveform AMR files to extract features. In this paper, a new approach is proposed to AMR double compression detection which, in spite of processing decoded audio, uses its encoded version to extract compressed-domain linear prediction (LP) coefficient-based features. By means of feature statistical analysis, it is possible to show that they can be used to achieve AMR double compression detection in an effective way, so that they can be considered a promising path to solve AMR double compression problem by artificial neural networks

    Speech assessment and characterization for law enforcement applications

    No full text
    Speech signals acquired, transmitted or stored in non-ideal conditions are often degraded by one or more effects including, for example, additive noise. These degradations alter the signal properties in a manner that deteriorates the intelligibility or quality of the speech signal. In the law enforcement context such degradations are commonplace due to the limitations in the audio collection methodology, which is often required to be covert. In severe degradation conditions, the acquired signal may become unintelligible, losing its value in an investigation and in less severe conditions, a loss in signal quality may be encountered, which can lead to higher transcription time and cost. This thesis proposes a non-intrusive speech assessment framework from which algorithms for speech quality and intelligibility assessment are derived, to guide the collection and transcription of law enforcement audio. These methods are trained on a large database labelled using intrusive techniques (whose performance is verified with subjective scores) and shown to perform favorably when compared with existing non-intrusive techniques. Additionally, a non-intrusive CODEC identification and verification algorithm is developed which can identify a CODEC with an accuracy of 96.8 % and detect the presence of a CODEC with an accuracy higher than 97 % in the presence of additive noise. Finally, the speech description taxonomy framework is developed, with the aim of characterizing various aspects of a degraded speech signal, including the mechanism that results in a signal with particular characteristics, the vocabulary that can be used to describe those degradations and the measurable signal properties that can characterize the degradations. The taxonomy is implemented as a relational database that facilitates the modeling of the relationships between various attributes of a signal and promises to be a useful tool for training and guiding audio analysts

    Statistical pattern recognition for audio-forensics : empirical investigations on the application scenarios audio steganalysis and microphone forensics

    Get PDF
    Magdeburg, Univ., Fak. fĂŒr Informatik, Diss., 2013von Christian KrĂ€tze
    corecore