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Abstract-In the past few years, thanks to the increasing avail
ability of multimedia sharing platforms, the online availability 
of user generated content has incredibly grown. However, since 
media sharing is often not well regulated, copyright infringement 
cases may occur. One classic example is the pirate distribution 
of audio bootlegs, i.e., concerts illegally recorded using portable 
devices. In order to guarantee copyrights and avoid the sharing 
of such illicit material, in this paper we propose an automatic 
audio bootleg detector. This can be used to analyze audio data 
in bulk, in order to filter out from a database the audio tracks 
recorded, e.g., by fans during a live performance. To this purpose, 
we propose to use a set of acoustic features to characterize audio 
bootlegs, justified by theoretical foundations. Then, we train a bi
nary classifier that operates on this set of features to discriminate 
between: i) audio tracks recorded at either concerts, clubs, or 
theaters; ii) legally distributed live performances professionally 
mixed and edited. In order to validate our system, we tested it on 
a dataset of more than 250 audio excerpts considering different 
musical genres and different kinds of music performances. The 
results achieved are promising, showing a high bootleg detection 
accuracy. 

I .  INTRODUCTION 

Nowadays, with the rapid proliferation of inexpensive hard
ware devices that enable the acquisition of high-quality audio
visual data, the possibility to generate multimedia objects is 
within everyone's reach. Modern smart-phones and digital 
camcorders are, indeed, often equipped with small micro
phones or microphone arrays that allow high-quality record
ings. Furthermore, the increasing availability of multimedia 
sharing platforms has encouraged the widespread diffusion 
of audio-visual content on the Internet. However, when not 
strictly regulated, media sharing often gives rise to copyright 
infringement cases and legal issues. Indeed, it is customary to 
find online illegal copies of copyrighted audio-visual material. 
A typical example is the distribution on websites such as 
Youtube of concerts recorded from the audience without 
permission. Another common scenario is the distribution of 
movies illegally captured at theaters before their official DVD 
release date. 

In order to detect illegal or inauthentic audio-visual content, 
the multimedia forensic community has proposed a series 
of detectors targeting different kinds of media (i .e . ,  images, 
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video, and audio) over the years. Nonetheless, the most con
tributions in the literature focus on still-images, [ 1 ] [2] , and few 
effective solutions have been proposed for video [3] and audio 
[4] content. With a specific regard to audio, the media that we 
consider in this study, we can group the algorithms in two 
broad categories :  i) methods that digitally sign audio content 
during the acquisition step using watermarking techniques 
[5] [6] ; ii) blind methods based on detecting traces left by 
processing operations [7] [8] . 

In this paper we face the problem of audio bootlegs de
tection, and to this end we present a detector that belongs to 
the latter category, i .e . ,  blind methods that do not need any 
control on the acquisition step . Notice that the definition of 
bootleg that we consider in this study slightly differs from 
the one that music and movie production commonly refer to . 
In the production industry, in fact, the term is used to point 
out all the media content not officially released. However, 
this definition is purely related to laws and it is only based 
on copyright treaties. From the audio forensics perspective, 
we are more interested in detecting audio bootlegs as audio 
recordings captured with portable (e.g . ,  hand-held) devices 
and possibly re-distributed. According to this definition, audio 
bootlegs we consider in this study are live concerts captured 
by the audience (e.g . ,  some fans) at a concert hall or in a club, 
and also audio excerpts re-captured with any device (e.g . ,  the 
audio track of a movie in a theater) . 

In the recent forensic literature, the detection of re-captured 
material (e.g . ,  photographs of printed pictures) is a problem 
of actual interest discussed for both images [9] and videos 
[ 1 0] [ 1 1 ] .  However, when it comes to audio, to the best of our 
knowledge, no specific bootleg or re-capture detectors have 
been presented yet. Methods dealing with similar problems 
are : i) those addressing room estimation given a recorded 
track; ii) those aiming at estimating the model of the ac
quisition device used to capture the audio track. As far as 
the first category is concerned, in [ 1 2] the size of the room 
is estimated exploiting reverberation cues. In [ 1 3] ,  a feature
based analysis is conducted to discriminate between specific 
kinds of room. As fa as the second category is concerned, 
in [ 1 4] authors proposed a method for device estimation 
using speech recordings. Whereas, in [ 1 5] the problem of 
microphone classification is studied from different perspectives 
and different microphone models .  More recently, in [ 1 6] ,  the 
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authors have shown how to apply microphones classification 
methods using also portable devices (e.g . ,  smartphones). 

In this study we address the problem of audio bootleg 
detection from a different perspective that relies on the fact that 
humans have the ability to distinguish between audio tracks 
captured with portable devices and audio tracks that come 
from professional editing and mixing stages. This perceptual 
ability is based on acoustic cues (descriptors) we use to 
characterize sounds. Therefore, the contribution of this paper 
is twofold: i) we analyze music content in order to discover 
the best characterizing set of descriptors ;  ii) we develop a 
classification algorithm based on these features, in order to 
blindly detect audio bootlegs .  

The rest of this paper is structured as follows.  In Section II 
we describe the bootleg generation process and we explain 
which features are useful to characterize it. In Section III we 
introduce the detection algorithm explaining each step of it. 
In Section IV we present the results obtained on an audio 
dataset to validate our method. Finally, in Section V we draw 
our conclusions on this study. 

II .  AUDIO BOOTLEG CHARACTERIZATION 

The ability of humans to describe and classify sounds and 
music has been subject of studies in many disciplines including 
psychology, sociology, acoustics, signal processing and music 
information retrieval. Although an exhaustive knowledge of 
the perceptual mechanisms involved in the human decision 
process is still not reached, many studies show how our 
attitude to discriminate and isolate sounds is highly related 
to many simple acoustic and structural cues [ 1 7] [ 1 8] .  

In this paper we are interested in understanding which are 
the possible cues used to discriminate between bootleg and 
official professional produced music content. Indeed, in doing 
so, we can define a set of audio descriptors (i .e . ,  features) 
for bootleg characterization that can be used to solve the 
detection problem. The features that we select come from 
those extensively used in the music information retrieval field 
and exhaustively explained in [ 17] [ 1 9] .  For this reason we are 
more focused on explaining why the feature that we select can 
be used as cues to solve the bootleg detection problem, rather 
than reporting a formal definition of all of them. 

To this purpose, let us consider the process of bootleg 
acquisition. Typically portable devices are used for the record
ing, and the acquisition process chain is composed by sev
eral phases: Digital-to-Analog conversion performed by loud
speakers; sound propagation in a reverberant environments ; 
possible addition of audience and ambient noise ; Analog-to
Digital conversion performed by the recording engine. Each 
of these steps tends to alter the original content by introducing 
characteristic artifacts that we can exploit as fingerprints for 
bootleg detection. These effects can be broadly split into four 
categories :  

• Inharmonic Distortion: alteration of the audio source 
typically due to Digital-to-Analog and Analog-to-Digital 
conversions. 

Fig. 1 :  ZCR values distribution for bootleg (blue) and official professionally 
produced live (red) when a high-frequency band is analyzed. Notice that this 
feature is highly discriminant. 

• Harmonic Distortion: audio source rendered through a 
large set of loudspeakers in an uncontrolled environment 
can be affected by disturbs that tend to slightly alter the 
harmonic content of the audio source. 

• Loudness Saturation: audio source rendered at high 
volumes and captured using non professional recording 
engines can affect the audio source by a compression of 
the waveform to the volume upper bound. This cause a 
saturation effect to the sound. 

• Background Noise: environmental audio activities such as 
speech and scream alter the sound source adding noisy 
components . 

In the following we show which features can be used to capture 
these traces. 

To measure Inharmonic Distortion and Background Noise, 
features that can be used are Zero Crossing Rate (ZCR), 
Spectral Entropy, Flatness, and Spectral Irregularity. ZCR is 
defined as the normalized frequency at which the audio signal 
x ( n) crosses the zero axis .  Fig . 1 depicts the distribution of 
the ZCR values computed on a set of songs belonging to 
the two classes of analysis, when high-frequency components 
are analyzed. The figure outlines the ZCR highly discriminant 
attitude for bootleg detection issues. 

The most of the following features are computed through 
spectral analysis and in particular they derive from the magni
tude spectrum. Magnitude spectrum is defined as the module 
of the Fast Fourier Transform (FFT) . Particularly, given x ( n) 
a mono dimensional audio signal and X (k) its FFT, the 
magnitude spectrum is formalized as 

S(k) = IX (k) 1  = (Re (X (k) ) 2 + Im(X(k) ) 2 ) � , ( 1 )  

where Re(X(k) )  i s  the real component, Im(X(k) )  i s  the 
imaginary component of the FFT, and k is the frequency bin. 
Spectral analysis are performed through short term window
ing techniques .  Hence, magnitude spectrum and features are 
computed for each window (frame) .  

Spectral Entropy and Flatness features are measures of  the 
similarity between the spectral magnitude of the signal and 
a flat spectrum (i .e . ,  the spectrum of a white noise signal) . 
Whereas, since noisy signals tend to exhibit a weak correlation 
in the spectrum of successive temporal frame of analysis, 
Spectral Irregularity feature is used to capture the variation 
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Fig. 2: Overall scheme of the proposed method. The methods is composed by a training phase, a test phase and a fusion phase. In both training and test 
phase Feature Extraction (FE) are computed and a battery of Support Vector Machine (SVMs) are used for classification. 

of the successive peaks of the spectrum, and it is defined as 
K 
L (Sl (k) + Sl (k + 1 ) ) 2 

FIR = �k=�l __ �� ________ __ 
K 
L Sl (k) 2 
k=l 

(2) 

where Sl (k)  is the magnitude spectrum at the l-th frame and 
the k-th frequency bin. 

In order to provide a characterization of Harmonic Dis
tortion, we also consider Spectral Inharmonicity and Chroma
gram features .  Spectral Inharmonicity measures the divergence 
of the partials with respect to the purely harmonic signal, and 
it is defined as 

(3) 

where fo is the fundamental frequency, !h is the estimated h
th partial, hfo is h-th harmonic of fo and kh is the frequency 
bin of fh . 

The Chromagram is a representation of the spectrum in the 
logarithmic scale projected onto 12  bins representing the 12  
distinct semitones (or chroma) of  the musical octave. 

Loudness Saturation is an inherent flaw in the accuracy of 
the recording medium. Non professional recordings performed 
in uncontrolled environments tend to produce frequent satu
rations. In order to capture this artifact, Root-Mean-Square 
(RMS) is considered. 

Although the selected set of features can be very dis
criminant, as stated before, part of the human discriminant 
process is still not well understood. For this reason, since 
this process is mainly related to timbral characteristics, we 
include basilar timbral features (Basic Descriptors) to the 
set: Spectral Centroid, Spectral Spread, Spectral Kurtosis, 
Spectral Skewness, Spectral Flux, and Brightness . We also 
include MFCCs, which are proved to be very effective in many 
classification applications, since they are closely related to the 
human auditory system [ 1 3] .  

For the sake of clarity Table I reports the full list of features 
used in this study, grouped according to their characteristics .  

TABLE I: List of  acoustic and structural features used to  characterize music 
content and relative issue to capture. 

Characteristics 

Inharmonic Distortion 

Harmonic Distortion 

Loudness Saturation 

Background Noise 

Basic Descriptors 

Features 

Spectral Irregularity, Spectral Entropy, 
Flatness,  ZCR 

Inharmonicity, Chromagram 
Spectral Irregularity, Spectral Entropy, 

Flatness,  ZCR, RMS 
Spectral Irregularity, Spectral Entropy, 

Flatness,  ZCR 
Spectral Centroid, Spectral Spread, 

Spectral Kurtosis, Spectral Skewness,  
Spectral Flux, Spectral Rolloff, 

Brightness,  MFCC 

III . METHODOLOGY 

Bootleg detection issue mainly consists in performing a 
discrimination between bootlegs (B) and official professional 
productions (8) . Hence, machine learning binary classification 
paradigms can be used for the purpose. In this study we adopt 
Support Vector Machines (SVMs) resulted to be very effective 
in several sound and music classification applications [20] . 

As described so far in this study, human attitude to mu
sic classification is mainly based on acoustic cues and it 
is performed through spectral analysis. Due to the intrinsic 
characteristic of the sound source to analyze, and due to the 
characteristic of our auditory system, some spectral frequency 
are more informative than others. To the purpose a multi band 
analysis is adopted. 

The overall scheme of the method is depicted in Fig . 2. Each 
song is filtered through a Butterworth filter bank (Fig . 3) in 
order to split the spectrum in 10 bands as shown in Table II. 
For formalization purposes we refer to the full range case (i .e . ,  
the whole spectrum) as banda. 

For each of the 1 1  bands (i .e . ,  from banda to bandlO) a 
SVM model is trained independently. SVMs take as input a 
set of training pairs (d� ; Yi ) , where d� E ]RD is the feature 
vector composed by D elements representing the b-th band 
of the i-th audio track, and Yi E {B ;  8} is the class the track 
belongs to . During training, the surface in ]RD that maximizes 
the margin between the two classes is sought. This surface 
serves in the test phase as a decision boundary between the 
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Fig. 3: Magnitude response of the filter bank. 

TABLE II: Frequency boundaries used in multi band analysis as parameters 
for the Butterworth filters. The Table also shows the frequency boundaries for 
the full range analysis. In this case the whole spectrum is considered. 

Frequency Boundaries [Hz] 

0-22000 
0-60 

60-230 
230-500 

500- 1000 
1000-2000 
2000-4000 
4000-8000 
8000- 12000 
12000- 16000 
16000-22100 

ID 

full range (banda) 
bandl 
band2 
band3 
band4 
bandS 
band6 
band7 
band8 
band9 

bandlO 

two classes, splitting the D-dimensional space in two parts 
(see Fig . 4) .  Considering a single SVM (i .e . ,  decision taken 
on a single band) , an audio track whose db falls from one 

. I 
SIde of the surface is classified as belonging to one class, 
otherwise to the other. Notice that since some features are 
meaningful only for the full range (e.g . ,  MFCCs), these are 
extracted only for bandO. Moreover, since some features are 
not informative for all the bands, feature selection methods 
can be applied. To this end, in this study we used ReliefF 
feature selection algorithm that resulted to be very effective in 
music classification applications in the literature [2 1 ] .  

In order to take advantage from the multi band analysis, a 
prediction value is generated for each of the 1 1  bands, and 
a soft fusion technique is applied to combine them. More 
specifically, prediction values for each band are expressed as 
the signed distances Of between dS and the separating surface. 
Notice that the sign of the distance, defined as sign( of ) ,  
reveals from which side o f  the surface the point lies (i .e . ,  to 
which category it belongs to) .  Once of are computed, they are 
aggregated as 

t.i = L Oy ,  (4) 

bEI3 
where B i s  a subset of  bands. Indeed, in  multiband approach 
to classification it is important to select only bands that max
imize the information contribution. Adding non informative 
features can introduce some noise and downgrade the overall 
performances. For this reason only a subset B of the 1 1  bands 
that maximizes the overall accuracy in the training stage is 
considered in the fusion stage. The final decision B* is then 
taken on the sign of t.i as 

B* = { B� if 
if 

t.i > 0 ,  

t.i < O .  (5) 

Notice that the values Of can be summed without any normal
ization if features have been normalized beforehand. 

... ... ... 

• 

• 
• 

• 
• 

• 
... • • ... ... 

. ... 

l ob i /:-- ... ... 
• 

I , ... :' ..... . . ... 
... 

Fig. 4: Two-dimensional representation of a SVM for the b-th band. Point db 
is the representation of the b-th band of the i-th song. Its distance from th� 
class separating surface is I bf I .  

IV, EXPERIMENTAL RESULTS AND EVALUATIONS 

With the intent to validate the developed detector, a dataset 
of songs has been conveniently collected, The dataset is 
composed by 260 audio 60s-long excerpts, all sampled at 
44100 Hz. The excerpts have been extracted from 1 30 songs. 
Since classification techniques require a large dataset to be 
effective and since collecting a reliable dataset is a hard task, 
two excerpts have been extracted from each track, In order to 
maximize the differences between chunks of the same piece, 
one has been extracted at the beginning and one in the middle 
of the song. The dataset is balanced over the two classes : 1 30 
excerpts are related to live concerts officially distributed in 
stores and 1 30 to bootlegs .  Songs have been selected to cover 
a big set of music genres (e.g . ,  rock, classic, j azz, etc . )  and 
recording conditions (e.g . ,  noisy concert halls , small clubs, 
etc . ) ] . Notice that we avoided the trivial case of comparing 
bootlegs to album versions of songs since tracks belonging 
to the latter category are easy to be distinguished from live 
performances. 

Features have been computed using a Hanning windowing 
technique. As window size we used 1024 samples for all the 
features except for Spectral Irregularity, Inharmonicity, and 
Chromagram, for which we set the window size to 1 6384 
samples. Windows were overlapped using 50% as hopsize. 
A compact representation for each feature have been obtained 
by averaging values for each song. The result is a feature 
vector dS E ]RD per song (i) per band (b), where D is the 
number of features .  The features have been extracted from 
each track using the MIR toolbox [ 1 9] . The SVM classification 
was performed using the LIBSVM [22] implementation with 
radial kernel. 

To estimate the robustness of the detector we performed a 
set of tests varying the cardinality of the training set. For each 
training set size NTr , we performed 10 different realizations 
randomly selecting NTr songs, and using the remaining NTe 
songs as the test set. We tested the algorithm using the whole 
feature set. Fig . 5 shows the average accuracy of the system for 
each tested case. Error bars also show the standard deviation 
computed on the 10 different realizations. The evaluation 

l The complete list of songs with audio examples is available at 
http://home.deib.polimi.itlbestaginilaudio_bootleg/audio_bootleg.html 
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Fig. 5 :  Effect of the training set size on the accuracy. The black dashed line 
indicates the training set size (i.e . ,  80 excerpts) that we choose for the other 
experiments as a good compromise between size and accuracy. Error bars 
show the standard deviation computed on 10 different realization of training 
and test set. 

resulted very promising. Indeed, the accuracy is prominent 
even for small cardinality. Moreover, using more than 35 
excerpts for training, the accuracy is always higher than 80% .  
For the further evaluations, we  decided to  adopt 80 as  the 
cardinality of the training set (as highlighted by the dashed 
black line in Fig . 5) as a good compromise between the set 
size and the achieved accuracy. 

Since we proposed features capturing different acoustic 
characteristics, we are also interested in studying the discrim
inatory effect of different feature sets . For this reason, we 
tested the classification algorithm using either the whole set 
of features, or subsets of them. More specifically, we defined 
five groups:  

• All :  all the features ;  
• Distortion :  RMS,  ZCR, Flatness, Spectral Entropy, Spec

tral Irregularity, Inharmonicity, and Chromagram; 
• Basic: Brightness, Spectral Rolloff, Spectral Flux, Spec

tral Centroid, Spectral Spread, Spectral Kurtosis, Spectral 
Skewness, MFCC; 

• MFCC: MFCC only ; 
• ReliefF: features selected by the ReliefF algorithm. 
These groups have also been used to test the effect of the 

fusion algorithm (except the MFCC group for which the band 
division is meaningless) . In particular, for each group, we 
computed the accuracy for each band on the training set, and 
we ranked the bands according to this accuracy value. We then 
fixed the number B E  [ 1 ; 1 1 ] of bands to consider. We applied 
the fusion method to the most significant B bands, according 
to the ranking obtained on the training set accuracy. Fig . 6 
shows the effect on the accuracy as B increases for different 
groups of features .  Results are reported as average value on 
100 realizations of training and test set. 

As shown in Table III and in Fig . 6, the band fusion method 
(solid lines) outperforms the full range case (bandO - dashed 
lines). The results are mainly influenced by the fact that in 
the perceptual classification process most of the discriminant 
information lies in some specific frequency bands. Those 
bands are selected by the fusion method, by eclipsing those 
that can introduce noisy information. This effect can be seen 
in Fig . 6, where in some cases the add of the 1 1 -th band 
downgrades the performances. From Fig . 6, we can also 
retrieve that when fusion is applied to a single band, results 
are different from the ones achieved in the full range case. 

88 
86 

'" 84 
g � 8 
� 8ri:::::-"""-�"" - All 

- Dist. 
78 - Basic 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - Reuef 
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Fig. 6:  Accuracy of the detector varying the number of bands selected by the 
fusion algorithm for each group of features (solid line). The accuracy is the 
average value computed over the 100 realizations. Dashed lines represent the 
accuracy value achieved in the full range case (i.e . ,  using only bandO). 

TABLE III: Comparative percentage values of accuracy, Precision, Recall, 
and F-measure when the detector makes use of different groups of features 
averaged over the 100 realizations. Results are shown for both the full range 
case (bandO), and when fusion !fusion) is applied (considering the set of bands 
that maximize the accuracy). 

Features I Bands I Accuracy Precision Recall F -measure 
All bandO 84.92% 83.97% 86.32% 85. 1 3 %  

fusion 86.26% 85.38% 87.51 % 86.43% 

Distortion bandO 76.55% 75.83% 77.94% 76.87% 
fusion 85. 1 1 %  83.50% 87.51 % 85.46% 

Basic bandO 80.29% 77.34% 85.68% 8 1 .30% 
fusion 82.59% 80.77% 85.54% 83.09% 

MFCC bandO 79. 15% 75.87% 85.50% 80.39% 

ReliefF bandO 84. 15% 82.89% 86.06% 84.45% 
fusion 86.86 % 85.70 % 88.48 % 87.07 % 

This is due to the fact that the ranking of bands is suboptimal, 
since it has been performed in the training phase. 

In order to analyze the contribute of each band, Fig . 7(a) 
shows the histograms of the bands selected over the 100 
realizations. In figure, histograms are presented by varying the 
number of the first B ranked bands considered in the fusion 
process . The figure is relative to the case where All feature 
set is used. Notice that in general the most informative bands 
are bandO and band2 , whereas the less significant ones are 
band7 and band8. Indeed, bootlegs are often recorded in the 
audience. As a consequence they suffer, with respect to the 
official versions, of the alteration derived by : i) the reverberant 
environment, which tends to alter the sound source by boosting 
low frequencies (as band2) ;  ii) the emphasis to low frequencies 
provided by the sound engineers "punching the live". 

Since less informative features can produce noise in the 
classification process, bands with both informative and non
informative features risk to be discarded by the fusion algo
rithm. This is the case of the bandlO. The use of ReliefF 
helps to solve the problem. The effect is shown in Fig . 7(b), 
where the application of the feature selection algorithm tends 
to gain the importance of the bandlO. As the results , the most 
informative bands become bandO, band2 , and bandlO. This 
is plausible, since the recording engine used in the bootleg 
acquisition chain is often a low-quality device that tends to 
apply a high attenuation (quality downgrade) on both low 
(band2) and high (bandlO) frequencies. 

The best results (over 86% of accuracy) are obtained com
bining ReliefF and the band fusion method, since they are 
able to select the most discriminant bands and features for 
each band. Moreover, the analysis of most selected features 
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Fig. 7: Histograms of the most selected bands when the fusion method is 
applied as the number of bands B increases for both the All features case (a) 
and when ReliefF is applied (b) . 

confirms that the human ability to recognize bootlegs mainly 
relies on timbral cues. The most frequently selected features 
(more than the 80% of the times on the 100 realizations) 
are : RMS ; ZCR; Spectral Entropy ; Spectral Rolloff; Spectral 
Flux; Spectral Centroid; Spectral Skewness ;  Spectral Kurtosis. 
Among these, RMS and Spectral Flux are the two most 
discriminant features (i .e . ,  selected the 98% of the times). 
Flux, in fact, captures the smoothing effect on the evolution 
of the spectrum over the time, due to the long reverberations 
typical of concert halls and clubs. 

A further confirmation of the predominance of timbral 
descriptors can be proved considering the experiment with the 
bandO (the only one in which MFCCs and Chromagram are 
extracted) . In this case, indeed, MFCCs have been selected the 
88% of the times, while chromagram only the 7 1  % .  

V. CONCLUSIONS 

In this paper we presented a supervised algorithm to detect 
audio bootlegs .  To develop such a detector, we first defined 
a set of audio features that are able to characterize the traces 
left during the bootleg acquisition process from the perspective 
of the human auditory system. Then, we trained a set of 
SVMs classifiers using these features extracted from different 
frequency bands for each audio track. In order to decide if an 
audio track is a bootleg, the outputs of the SVMs have been 
aggregated with a soft-assignment-based fusion technique. 
Results are promising, showing a detection accuracy of over 
86%. 

This algorithm can in principle be used also as a general 
audio re-capture detector. This make the developed tool in
teresting also for other scenarios. As an example, it can be 
jointly used with a video re-capture detector, to detect illegally 
re-captured movies .  From this point of view, this detector may 
pave the way for multimodal audio-visual forensic analyses. 

ACKNOWLEDGMENT 

This work was supported by the REWIND Project funded 
by the Future and Emerging Technologies (FET) programme 

within the Seventh Framework Programme (FP7) of the Eu
ropean Commission, under FET-Open grant number: 268478 .  

REFERENCES 

[1]  H. Farid, "Exposing digital forgeries in scientific images," in MM&Sec 
'06: Proceedings of the 8th workshop on Multimedia and security, 2006. 

[2] A. Piva, "An overview on image forensics," ISRN Signal Processing, 
vol. 2013 ,  p. 22, 201 3 .  

[ 3 ]  S .  Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi, 
and S. Tubaro, "An overview on video forensics," APSIPA Transactions 
on Signal and Information Processing, vol. I, p. e2 , 2012 .  

[4 ]  S .  Gupta, S .  Cho, and c. -c .  Kuo, "Current developments and future 
trends in audio authentication," IEEE MultiMedia, vol. 19 ,  pp. 50-59, 
2012 .  

[5 ]  R. Olanrewaju and O. Khalifa, "Digital audio watermarking; techniques 
and applications," in 2012 International Conference on Computer and 
Communication Engineering (ICCCE), 2012 .  

[6 ]  X.-M. Chena, M. Arnolda, P. Baum, and G. Doerr, "AC-3 bit stream 
watermarking," in 2012 IEEE International Workshop on Information 
Forensics and Security (WIFS), 2012 .  

[7 ]  S .  Hicsonmez, H. Sencar, and I. Avcibas, "Audio codec identification 
through payload sampling," in 2011 IEEE International Workshop on 
Information Forensics and Security (WIFS), 201 1 .  

[8] C .  Dittmar, K .  Hildebrand, D.  Gaertner, M .  Winges, F. Muller, and 
P. Aichroth, "Audio forensics meets Music Information Retrieval - A 
toolbox for inspection of music plagiarism," in 2012 Proceedings of the 
20th European Signal Processing Conference (EUSIPCO), 2012 .  

[9 ]  H. Cao and A. Kot, "Identification of recaptured photographs on LCD 
screens," in 2010 IEEE International Conference on Acoustics Speech 
and Signal Processing (ICASSP), 2010 .  

[ IO] M. Visentini-Scarzanella and P. L. Dragotti, "Video jitter analysis for 
automatic bootleg detection," in 2012 IEEE 14th international Workshop 
on Multimedia Signal Processing (MMSP), 2012 .  

[ I I ]  P. Bestagini, M. Visentini-Scarzanella, M. Tagliasacchi, P. Dragotti, 
and S. Tubaro, "Video recapture detection based on ghosting artifact 
analysis," in 2013 IEEE International Conference on Image Processing 
(ICIP), 201 3 .  

[ 12] H. Malik and H. Farid, "Audio forensics from acoustic reverberation," 
in 2010 IEEE International Conference on Acoustics Speech and Signal 
Processing (ICASSP), 2010 .  

[ 1 3] N. Peters, H. Lei, and G. Friedland, "Name that room: room identifica
tion using acoustic features in a recording," in Proceedings of the 20th 
ACM international conference on Multimedia, 2012 .  

[ 1 4] D. Garcia-Romero and C. Espy-Wilson, "Automatic acquisition device 
identification from speech recordings," in 2010 IEEE International 
Conference on Acoustics Speech and Signal Processing (ICASSP), 2010 .  

[ 1 5] C. Kratzer, K. Qian, M. Schott, and J. Dittmann, "A context model 
for microphone forensics and its application in evaluations," in SPTE 
Conference on Media Watermarking, Security, and Forensics, 201 1 .  

[ I 6] L .  Cuccovillo, S .  Mann, M .  Tagliasacchi, and P. Aichroth, "Audio 
tampering detection via microphone classification," in 2013 IEEE 15th 
International Workshop on Multimedia Signal Processing (MMSP), 
201 3 .  

[ 17] H.-G. Kim, N. Moreau, and T. Sikora, MPEG-7 Audio and Beyond: 
Audio Content Indexing and Retrieval. John Wiley & Sons, 2005. 

[ I  8] M. Zanoni, D.  Ciminieri, A. Sarti, and S .  Tubaro, "Searching for 
dominant high-level features for music information retrieval," in 2012 
Proceedings of the 20th European Signal Processing Conference (EU
SIPCO), 2012 .  

[ 19] O. Lartillot and P. Toiviainen, "MIR in matlab (ii) : A toolbox for musical 
feature extraction from audio," in 2007 International Society for Music 
Information Retrieval conference (ISMIR), 2007 . 

[20] A. Lerch, An Introduction to Audio Content Analysis: Applications in 
Signal Processing and Music Informatics, 2012,  Ed. Hoboken: Wiley
IEEE Press, 2012 .  

[2 1 ]  Y-H. Yang, y-c. Lin, Y-F. Su ,  and H. Chen, "A regression approach to 
music emotion recognition," IEEE Transactions on Audio, Speech, and 
Language Processing, vol. 16 ,  pp. 448-457, 2008.  

[22] C.-c. Chang and c.-J. Lin, "LIBSVM: A library for support vector 
machines," ACM Transactions on Intelligent Systems and Technology, 
vol. 2, pp. 27: 1-27:27, 201 1 .  

- 1 3 1  -


