199 research outputs found

    Modular Toolkit for Data Processing (MDP): A Python Data Processing Framework

    Get PDF
    Modular toolkit for Data Processing (MDP) is a data processing framework written in Python. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. Computations are performed efficiently in terms of speed and memory requirements. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. MDP has been written in the context of theoretical research in neuroscience, but it has been designed to be helpful in any context where trainable data processing algorithms are used. Its simplicity on the user's side, the variety of readily available algorithms, and the reusability of the implemented units make it also a useful educational tool

    Deep Learning Techniques in Radar Emitter Identification

    Get PDF
    In the field of electronic warfare (EW), one of the crucial roles of electronic intelligence is the identification of radar signals. In an operational environment, it is very essential to identify radar emitters whether friend or foe so that appropriate radar countermeasures can be taken against them. With the electromagnetic environment becoming increasingly complex and the diversity of signal features, radar emitter identification with high recognition accuracy has become a significantly challenging task. Traditional radar identification methods have shown some limitations in this complex electromagnetic scenario. Several radar classification and identification methods based on artificial neural networks have emerged with the emergence of artificial neural networks, notably deep learning approaches. Machine learning and deep learning algorithms are now frequently utilized to extract various types of information from radar signals more accurately and robustly. This paper illustrates the use of Deep Neural Networks (DNN) in radar applications for emitter classification and identification. Since deep learning approaches are capable of accurately classifying complicated patterns in radar signals, they have demonstrated significant promise for identifying radar emitters. By offering a thorough literature analysis of deep learning-based methodologies, the study intends to assist researchers and practitioners in better understanding the application of deep learning techniques to challenges related to the classification and identification of radar emitters. The study demonstrates that DNN can be used successfully in applications for radar classification and identification.   &nbsp

    Simulation and Theory of Large-Scale Cortical Networks

    Get PDF
    Cerebral cortex is composed of intricate networks of neurons. These neuronal networks are strongly interconnected: every neuron receives, on average, input from thousands or more presynaptic neurons. In fact, to support such a number of connections, a majority of the volume in the cortical gray matter is filled by axons and dendrites. Besides the networks, neurons themselves are also highly complex. They possess an elaborate spatial structure and support various types of active processes and nonlinearities. In the face of such complexity, it seems necessary to abstract away some of the details and to investigate simplified models. In this thesis, such simplified models of neuronal networks are examined on varying levels of abstraction. Neurons are modeled as point neurons, both rate-based and spike-based, and networks are modeled as block-structured random networks. Crucially, on this level of abstraction, the models are still amenable to analytical treatment using the framework of dynamical mean-field theory. The main focus of this thesis is to leverage the analytical tractability of random networks of point neurons in order to relate the network structure, and the neuron parameters, to the dynamics of the neurons—in physics parlance, to bridge across the scales from neurons to networks. More concretely, four different models are investigated: 1) fully connected feedforward networks and vanilla recurrent networks of rate neurons; 2) block-structured networks of rate neurons in continuous time; 3) block-structured networks of spiking neurons; and 4) a multi-scale, data-based network of spiking neurons. We consider the first class of models in the light of Bayesian supervised learning and compute their kernel in the infinite-size limit. In the second class of models, we connect dynamical mean-field theory with large-deviation theory, calculate beyond mean-field fluctuations, and perform parameter inference. For the third class of models, we develop a theory for the autocorrelation time of the neurons. Lastly, we consolidate data across multiple modalities into a layer- and population-resolved model of human cortex and compare its activity with cortical recordings. In two detours from the investigation of these four network models, we examine the distribution of neuron densities in cerebral cortex and present a software toolbox for mean-field analyses of spiking networks
    corecore