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Like the entomologist hunting for brightly coloured butterflies,
my attention was drawn to the flower garden of the grey matter,

which contained cells with delicate and elegant forms,
the mysterious butterflies of the soul,

the beating of whose wings may some day (who knows?)
clarify the secret of mental life.

— Santiago Ramón y Cajal





A B S T R A C T

Cerebral cortex is composed of intricate networks of neurons. These
neuronal networks are strongly interconnected: every neuron receives,
on average, input from thousands or more presynaptic neurons. In fact,
to support such a number of connections, a majority of the volume in
the cortical gray matter is filled by axons and dendrites. Besides the
networks, neurons themselves are also highly complex. They possess
an elaborate spatial structure and support various types of active
processes and nonlinearities. In the face of such complexity, it seems
necessary to abstract away some of the details and to investigate
simplified models.

In this thesis, such simplified models of neuronal networks are
examined on varying levels of abstraction. Neurons are modeled as
point neurons, both rate-based and spike-based, and networks are
modeled as block-structured random networks. Crucially, on this level
of abstraction, the models are still amenable to analytical treatment
using the framework of dynamical mean-field theory.

The main focus of this thesis is to leverage the analytical tractabil-
ity of random networks of point neurons in order to relate the net-
work structure, and the neuron parameters, to the dynamics of the
neurons—in physics parlance, to bridge across the scales from neurons
to networks.

More concretely, four different models are investigated: 1) fully
connected feedforward networks and vanilla recurrent networks of
rate neurons; 2) block-structured networks of rate neurons in continu-
ous time; 3) block-structured networks of spiking neurons; and 4) a
multi-scale, data-based network of spiking neurons. We consider the
first class of models in the light of Bayesian supervised learning and
compute their kernel in the infinite-size limit. In the second class of
models, we connect dynamical mean-field theory with large-deviation
theory, calculate beyond mean-field fluctuations, and perform parame-
ter inference. For the third class of models, we develop a theory for the
autocorrelation time of the neurons. Lastly, we consolidate data across
multiple modalities into a layer- and population-resolved model of
human cortex and compare its activity with cortical recordings.

In two detours from the investigation of these four network models,
we examine the distribution of neuron densities in cerebral cortex
and present a software toolbox for mean-field analyses of spiking
networks.
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Z U S A M M E N FA S S U N G

Die Großhirnrinde besteht aus komplizierten Netzwerken von Neu-
ronen. Diese neuronalen Netze sind stark untereinander verbunden:
Jedes Neuron erhält im Durchschnitt Input von Tausenden oder mehr
präsynaptischen Neuronen. Um eine solche Anzahl von Verbindungen
zu ermöglichen, ist ein Großteil des Volumens der Substantia grisea
mit Axonen und Dendriten gefüllt. Neben den Netzwerken sind auch
die Neuronen selbst hochgradig komplex. Sie besitzen eine ausgefeilte
räumliche Struktur und unterstützen verschiedene Arten von aktiven
Prozessen und Nichtlinearitäten. Angesichts dieser Komplexität er-
scheint es notwendig, einige Details zu abstrahieren und vereinfachte
Modelle zu untersuchen.

In dieser Arbeit werden solche vereinfachten Modelle neuronaler
Netze auf verschiedenen Abstraktionsebenen untersucht. Neuronen
werden als Punktneuronen modelliert, sowohl ratenbasiert als auch
spikebasiert, und Netzwerke werden als blockstrukturierte Zufall-
snetzwerke modelliert. Entscheidend ist, dass die Modelle auf dieser
Abstraktionsebene immer noch einer analytischen Behandlung im
Rahmen der dynamischen Mean-Field-Theorie zugänglich sind.

Das Hauptaugenmerk dieser Arbeit liegt darauf, die analytische Be-
handelbarkeit von Zufallsnetzwerken aus Punktneuronen zu nutzen,
um die Netzwerkstruktur und die Neuronenparameter mit der Dy-
namik der Neuronen in Beziehung zu setzen - um in der Sprache der
Physik eine Brücke von Neuronen zu Netzwerken zu schlagen.

Konkret werden vier verschiedene Modelle untersucht: 1) voll-
ständig verbundene Feedforward-Netzwerke und einfache rekurrente
Netzwerke von Ratenneuronen; 2) blockstrukturierte Netzwerke von
Ratenneuronen in kontinuierlicher Zeit; 3) blockstrukturierte Net-
zwerke von spikenden Neuronen; und 4) ein multiskaliges, daten-
basiertes Netzwerk von spikenden Neuronen. Wir betrachten die erste
Klasse von Modellen im Lichte des überwachten Bayes’schen Lernens
und berechnen ihren Kernel im Limes unendlicher Größe. Bei der
zweiten Klasse von Modellen verbinden wir die dynamische Mean-
Field-Theorie mit der Theorie der großen Abweichungen, berechnen
Fluktuationen jenseits des Mean-Fields und führen eine Parameter-
inferenz durch. Für die dritte Klasse von Modellen entwickeln wir
eine Theorie für die Autokorrelationszeit der Neuronen. Schließlich
fassen wir Daten mehrerer Modalitäten zu einem schicht- und popu-
lationsaufgelösten Modell des menschlichen Kortex zusammen und
vergleichen dessen Aktivität mit kortikalen Messungen.

In zwei Abstechern von der Untersuchung dieser vier Netzwerk-
modelle untersuchen wir die Verteilung der Neuronendichte in der
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Großhirnrinde und stellen eine Software-Toolbox für Mean-Field-
Analysen von spikenden Netzwerken vor.
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I enjoy the simplistic training and life in marathon.
You run, eat, sleep, walk around - that’s how life is.

You don’t get complicated.
The moment you get complicated it distracts your mind.

You cannot train alone and expect to run a fast time.
There is a formula: 100% of me is nothing compared to 1% of the whole team.

And that’s teamwork. That’s what I value.

— Eliud Kipchoge
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and for taking care of the PyMotW and the student representation.
Kirsten Fischer for many valuable discussions about GPs, feedback,
and more, and for taking care of the student representation. Jari
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Part I

I N T R O D U C T I O N





1
S T R U C T U R E O F T H I S T H E S I S

Establishing relations between the intricate structure of neural net-
works, in combination with the properties of the neurons, to the
emerging network dynamics is the main topic of this thesis. More
concretely, the relationship between structure and dynamics is inves-
tigated using neural network models with an increasing degree of
complexity. This increasing degree of complexity is the organizing
principle of this thesis: we start with simple, but analytically well-
tractable, models and work our way up to a complex, data-based
model which relies almost entirely on simulations.

While the problem is motivated by neuroscience, the approach is
shaped by a statistical physics point of view. The introduction is there-
fore split into two chapters: a summary of the relevant neuroscientific
background in Chapter 2 and a summary of the main tools borrowed
from statistical physics in Chapter 3.

In Chapter 4, the first chapter in the main part, the network mod-
els under investigation are very simple from a neuroscientific point
of view: fully-connected feedforward networks (DNNs) and vanilla
recurrent networks (RNNs). Owing to their simplicity, we can, for
the only time in this thesis, go beyond dynamics and take functional
aspects into account. To this end, we use the framework of Bayesian
supervised learning and develop a unified field-theoretical perspective
on DNNs and RNNs. The main result is a surprising similarity of, but
also subtle differences between, the two network models.

The first step towards more complicated models, which we make
in Chapter 5, is to replace discrete time steps by dynamics unfold-
ing continuously in time. For block-structured, recurrent networks of
rate neurons we combine the field-theoretical approach with large-
deviation theory to derive the distribution of network-averaged ob-
servables across the network ensemble. This result allows to calculate
beyond-mean-field fluctuations of the order parameter. Furthermore,
it allows to attack the inverse problem: inferring the statistics of the
connectivity from observed dynamics.

Spikes make their first appearance in Chapter 6 where we investigate
the single-unit timescale in block-structured, recurrent networks of
two types of spiking neuron models. Within our approach based on
dynamic mean-field theory, the main technical challenge is the colored
noise problem: determining the output statistics of a neuron driven by
temporally correlated input. Our analytical solutions to the colored
noise problem enable parameter scans to investigate the influence of
network parameters on the timescale.
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4 structure of this thesis

Chapter 7 is a detour from the main track to take a look at a peculiar
flower we found along the way: the distribution of neuron densities is,
to a surprising degree, lognormal. This holds true within cortical areas
as well as across cortical areas and for several mammalian species. To
provide an explanation to this curious finding, we propose a simple
model of noisy cell division which leads to lognormally distributed
neuron densities.

The main part ends with the large-scale, data-based model of human
cortex described in Chapter 8. This model can be seen as a framework
for data integration: due to the absence of comprehensive data on
the structure of human cortical networks, various data modalities are
aggregated to arrive at a consistent model. We simulate the resulting
model and compare it to activity data from recordings in cortex both
on the single-neuron and the area level.

In the final discussion we briefly summarize the main results of the
individual chapters and suggest avenues for future work. Finally, the
individual chapters are put into the broader context of the overarching
theme of this thesis.

A chapter in the appendix is devoted to a software toolbox. Due to
the elaborate nature of many analytical results in the context of mean-
field theory for spiking networks, their numerical implementation is
not straightforward and inherently error prone. To facilitate the use of
these methods, we collected their implementations in the toolbox.



2
N E U R O S C I E N C E

2.1 Neurons 5

2.1.1 The Butterflies of the Soul 5

2.1.2 Brain Cartography 8

2.2 Cortical Networks 9

2.2.1 Large-Scale Network Structure 9

2.2.2 Small-Scale Network Structure 11

2.3 Resting State Activity 12

2.3.1 Electrode Recordings 13

2.3.2 fMRI Imaging 13

2.4 Models 14

2.4.1 Neuron Models 15

2.4.2 Network Models 18

2.4.3 Neglected Aspects 22

“The ultimate goal of neural science is to understand
how the flow of electrical signals through neural circuits
gives rise to mind—to how we perceive, act, think, learn,
and remember.” (Kandel, Schwartz, Jessell, et al. 2013)

Currently, this “ultimate goal” seems still very far away. But of course,
more than a decade of intense research did not pass without significant
insights. This chapter summarizes a selection of these insights.

A recurring theme in this thesis is the step from the micro-scale to
the macro-scale. In this spirit, we start on the micro-scale with “the
basic units of the brain” (Kandel, Schwartz, Jessell, et al. 2013) in
Section 2.1: the neurons. The neurons are interconnected into intricate
networks on the macro-scale; this is the topic of Section 2.2. Next, we
discuss the activity of cortical neurons in the absence of a controlled,
external stimulus in Section 2.3. Finally, we leave the realm of the
biological reality and discuss models of it in Section 2.4.

2.1 neurons

2.1.1 The Butterflies of the Soul

Golgi’s staining method (Golgi 1873), which stains a random subset
of neurons to make them visible under a microscope, enabled Cajal’s
discovery (Ramón y Cajal 1888) that the brain consists of neurons,
giving rise to the neuron doctrine (DeFelipe 2015; Yuste 2015). Their
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6 neuroscience

Figure 2.1: Stained sections of human cortex. Left: Visual cortex of a hu-
man adult; only cell bodies are visible (Nissl-stained). Middle:
Motor cortex of a human adult; only cell bodies are visible (Nissl-
stained). Right: Cortex of a 1 1/2 month old infant; cell bodies,
dendrites, and axons are visible for a random subset of neurons
(Golgi-stained). Drawn by Ramon y Cajal (1899), file obtained
from Wikimedia Commons (public domain).

staggering variety caused Cajal to call neurons the “butterflies of the
soul” (Ramón y Cajal 1917); a recent census confirms this variety,
counting 69 neuron types in human cortex (Hodge et al. 2019).Of course, Golgi

already saw neurons,
dendrites, and axons.
But he supported the
theory that the axons

form a continuous
network rather than
being separated into

individual units with
an inherent direction

(DeFelipe 2015).

Despite their variety, most neurons possess three main elements
(Kandel, Schwartz, Jessell, et al. 2013): the soma or cell body which
is the center of the cell, the dendrite which receives input from other
neurons, and the axon which sends output to other neurons. The
intricate structure of the dendrites is well known due to the drawings
of Cajal (Figure 2.1 on page 6). In contrast, we are only beginning to
understand the even more complex structure of the axons (Winnubst
et al. 2019; Peng et al. 2021) because they are very thin, mostly sub-
micron (Liewald et al. 2014) and thus close to or below the diffraction
limit of light microscopy, and they can spread across the entire cortex
(Figure 2.2 on page 7). Furthermore, the neurons are densely packed:
1 mm3 of mouse cortex contains approximately 105 neurons and 4 km
of axons (Braitenberg and Schüz 1998).

In contrast to the heterogeneity of neurons, their means of com-
munication is remarkably homogeneous (Kandel, Schwartz, Jessell,
et al. 2013). It relies almost exclusively on stereotyped electrical pulses,
the action potentials or spikes, which are initialized at the soma, more
precisely at the axon initial segment, and travel along the axon. The
stereotypical nature of the action potentials suggests that all infor-

https://commons.wikimedia.org/wiki/File:Cajal_cortex_drawings.png


2.1 neurons 7

Figure 2.2: Visualization of a single neuron in mouse cortex with its full
dendrite (red) and axon (blue). Data from (Winnubst et al. 2019)
visualized using the MouseLight viewer by Rembrandt Bakker.

mation is encoded in their timing (Rieke et al. 1997). Propagating
the action potential along the axon is an active process; the action
potential is regularly regenerated to keep its 100 mV amplitude and
1-2 ms width. This active regeneration accounts for more than a fifth
of the brain’s energy budget (Laughlin and Sejnowski 2003; Harris,
Jolivet, and Attwell 2012).

To reach its target neuron, an action potential has to be transmitted
from an axon to a dendrite. This transmission takes place at the
synapses. Most synapses rely on chemical signaling, with the electrical
gap junctions being the notable exception to this rule (Kandel, Schwartz,
Jessell, et al. 2013). At chemical synapses, pre- and postsynaptic neuron
are physically separated by a small space of a few tens of nanometers,
the synaptic cleft. To transmit a signal across the synaptic cleft, a
neurotransmitter is released upon arrival of an action potential at the
presynaptic axon terminal. This transmitter diffuses across the cleft
and binds to receptors at the postsynaptic cell. The receptors activate While diffusion is

extremely slow in
our macroscopic
world, it can be quite
effective on cellular
length scales (Berg
1993).

ion channels in the postsynaptic cell which leads to a change of
membrane conductance and voltage. While this intricate process leads
to a delay on the order of a few milliseconds, it allows a graded effect
on the postsynaptic cell despite the homogeneity of action potentials.

There are three main neurotransmitters—glutamate, GABA, and
glycine—with corresponding receptors: kainate, AMPA, and NMDA
for glutamate, GABAA and GABAB for GABA, and glycine receptors
(Kandel, Schwartz, Jessell, et al. 2013). Although the effect on the post-
synaptic neuron depends on the receptor, not the transmitter, synapses
can be organized based on the transmitter into excitatory (glutamate)

https://neuroinformatics.nl/HBP/mouselight-viewer/
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Figure 2.3: Map of cortical areas based on the cytoarchitecture. The first letter
of the area name indicates the lobe: temporal (T), occipital (O),
parietal (P), and frontal (F). Drawn by von Economo (1929), file
obtained from Wikimedia Commons (public domain).

and inhibitory (GABA and glycine) because the corresponding recep-
tors typically trigger a depolarization (excitatory) or hyperpolarization
(inhibitory) of the postsynaptic cell (Kandel, Schwartz, Jessell, et al.
2013). In combination with Dale’s law, i.e., neurons release the same
set of transmitters at all of their synapses, one can classify not only
synapses but also neurons as either excitatory or inhibitory.

2.1.2 Brain Cartography

Staining methods revealed not only that the brain consists of neurons,
but also that their density and structure varies systematically across
cortex. First, neurons are separated into layers which are clearly visible
already in the drawings by Cajal (Figure 2.1 on page 6). Second, the
density of the neurons within the layers as well as the relative size
of the layers varies discontinuously. These systematic variations were
first compiled by Brodmann (1909) into a map of cortex consisting of
distinct areas. Roughly two decades later, von Economo and Koskinas
(1925) refined Brodmann’s work, leading not only to a map that is
more finely parcellated (Figure 2.3 on page 8) but also to the only
layer-resolved collection of neuron densities across the entire human
cortex up to this date.

The early maps of cortex were based on the cytoarchitecture, i.e.,
the neuron density and the layer structure. This line of work has been
continued up to the present day; a recent example is the Julich-Brain
atlas of human cortex (Amunts et al. 2020). However, cytoarchitecture
is not the only criterion that is used to map cortex. A simple alternative
is to use landmarks on the cortical surface as done for example in the
widely used Desikan-Killiany parcellation (Desikan et al. 2006).

https://commons.wikimedia.org/wiki/File:Constantin_von_Economo%27s_cytoarchitectonic_chart_of_the_human_brain.png
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2.2 cortical networks

The synaptic connections between the neurons give rise to highly re-
current networks. The structure of these networks—the connectivity—
depends on the spatial scale. Below, we will follow a gradient from
the large-scale to the small-scale structure.

Before diving into the details, let us start with a rough estima-
tion of the orders a magnitude involved. In a fully reconstructed 1

mm3 sample of human cortical tissue from the temporal lobe there
are 16,087 neurons and 133,7 million synapses (Shapson-Coe et al.
2021), leading to 8,311 synapses per neuron on average. Taking into
account that up to a few synapses can connect a single pair of neu-
rons but the vast majority of > 90% connections are mediated by
single synapses (Shapson-Coe et al. 2021), we arrive at an estimate of
O(1,000) to O(10,000) presynaptic neurons. Thus, cortical neurons are
highly interconnected.

2.2.1 Large-Scale Network Structure

Somewhat counter-intuitively, the cortex-wide network structure be-
tween areas is better understood than the local structure within areas.
The main reason for this is that on the coarser spatial scale of areas,
there are more experimental techniques available.

Tracing

Axons consist of microtubules along which active transport towards
the cell body (retrograde) and away from the cell body (anterograde)
takes place. In tracing experiments, this active transport mechanism
is exploited to reveal the connectivity. To this end, a tracer, e.g.,
horseradish peroxidase for retrograde tracing or more recently vi-
ral tracers (Nassi et al. 2015; Rockland 2019), is injected in a given area.
Importantly, the tracer is designed such that it cannot cross a synapse
(or only in a controlled manner, e.g., a predetermined number of
crossings). Within a few days, the tracer is transported along the axon
towards the source (retrograde) or target (anterograde) areas. After-
wards, the animal is sacrificed, its brain is sectioned, and the tracer is
made detectable (for example by staining or immunohistochemistry).

Tracing experiments have been performed since more than half a
century with increasing sophistication (Nassi et al. 2015). Since only
one, or at most a few, areas can be injected at the same time, these
experiments used to provide only very specific information about
either sources or targets of a given area. Efforts like the CoCoMac
database (Stephan et al. 2001; Bakker, Thomas, and Diesmann 2012)
or the Marmoset Brain Connectivity Atlas (Majka et al. 2020) rem-
edy this problem by collecting the results of multiple experiments
and bringing them into a coherent structure. In addition, there are
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several recent large-scale tracing experiments following standardized
protocols and techniques: retrograde tracing in macaque (Markov,
Ercsey-Ravasz, Van Essen, et al. 2013; Markov, Vezoli, et al. 2014;
Markov, Ercsey-Ravasz, Ribeiro Gomes, et al. 2014), retrograde tracing
in mouse (Gămănuţ et al. 2018), and anterograde tracing in mouse
(Oh et al. 2014) which was extended to be layer- and cell-type specific
(Harris, Mihalas, et al. 2019).

A key finding from the large-scale retrograde tracing experiments
is a very dense connectivity on the area level. In mouse, injections
into 19 areas showed that 97% of the possible 19(19 − 1) connections
are present (Gămănuţ et al. 2018); in macaque, injections into 29 areas
showed that 66% of the possible 29(29 − 1) connections are present
(Markov, Ercsey-Ravasz, Van Essen, et al. 2013). The dense connectivity
comes along with a very high variability of the connection strength,
measured for example by the fraction of labeled neurons (FLN) in a
given source area relative to the total number of labeled neurons in all
source areas for a single injection. In both mouse and macaque, the
FLN is approximately log-normally distributed and spans five orders
of magnitude from below 10−5 up to almost 1 (Markov, Ercsey-Ravasz,
Van Essen, et al. 2013; Gămănuţ et al. 2018). Intuitively, one might
expect that nearby areas have a higher FLN; indeed, this intuition is
quantified by the exponential decay of FLN with projection distance in
both mouse (decay constant 1.3 mm) and macaque (decay constant 5.3
mm) (Ercsey-Ravasz et al. 2013; Horvát et al. 2016). The extremely wide
distribution, and in particular the long left tail, tells a cautionary tale
that sophisticated techniques and meticulous procedures are necessary
in order to not miss a connection.

Diffusion MRI

Tracing experiments possess the inherent problem that they are inva-
sive. Accordingly, they are not used to investigate the connectivity in
human cortex—for obvious reasons. To this end, non-invasive tech-
niques are necessary.

The most prominent non-invasive technique is diffusion MRI in
combination with tractography (Jbabdi et al. 2015). Diffusion MRI
indicates anisotropies in the diffusion of water molecules caused by
the axons. This information about the orientation of the fibres is
used by tractography algorithms to construct long-range connections.
An inherent problem of the method is that it yields a symmetric
connectivity and that it cannot distinguish “crossing” or “kissing”
fibres, leading to false positives (Jbabdi et al. 2015; Maier-Hein et al.
2017). Nonetheless, it captures most of the existing connections (Maier-
Hein et al. 2017) and is strongly correlated with the connectivity
obtained from tracing data: r = 0.59 for macaque (Donahue et al.
2016), up to r = 0.91 for ferret (Delettre et al. 2019). Note, however,
the decrease in correlation from ferret to macaque.
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An advantage of diffusion MRI compared to tracing is that it pro-
vides data for an individual brain. Large-scale efforts, such as the
Human Connectome Project (Van Essen et al. 2013), collected MRI
data for a large population of individuals which allows one to study
the variability across the population, in particular with respect to
neurological diseases.

2.2.2 Small-Scale Network Structure

Tracing and diffusion MRI provide insights into the connectivity be-
tween entire areas consisting of O(108) neurons. The obvious follow-
up question is: what does the structure of the network at smaller
scales, down to single-synapse resolution, look like?

Electron Microscopy

The straightforward way to answer this question is to reconstruct corti-
cal tissue at a nanometer resolution such that all structures, including
axons and synapses, can be identified. This resolution, which is below
the diffraction limit of light microscopy, can be achieved by electron
microscopy (Gray 1959a; Gray 1959b). While acquiring the data already One of the first major

contributions of
electron microscopy
was to show that
dendritic spines are
the location of
synaptic contacts
(Gray 1959a;
DeFelipe 2015).

poses significant challenges, the post-processing—stitching, aligning,
and segmenting the images—is an equally heroic task. For example,
the 1 mm3 sample of human cortex mentioned above took 326 days of
imaging yielding 2.1 petabyte of raw data, was reconstructed using a
sophisticated semi-automated workflow, and required four years of
work to complete it (Shapson-Coe et al. 2021).

The reward for this effort is a uniquely detailed view on the structure
of cortex. The findings of Shapson-Coe et al. (2021) include that there
are two times more glia cells than neurons in the volume, that 69% of
neurons as well as synapses in the volume are excitatory, that 99.4%
of the 133.7 million synapses are between axons and dendrites, that
the synapse density is highest in the upper layers, that 74.3% of the
volume is occupied by axons and dendrites, and that very rarely an
axon forms ten to twenty synapses with a target cell.

Canonical Microcircuits

One drawback of electron microscopic reconstructions is that its re-
sults are restricted to a small volume in a specific area (with the
notable exception of C. Elegans where the whole brain has been re-
constructed across multiple stages of development by Witvliet et al.
(2021)). However, this problem would be alleviated if basic principles
of the network structure are conserved across areas or even species—
this is the idea of a stereotypical, or canonical, microcircuit (Douglas,
Martin, and Whitteridge 1989; Douglas and Martin 2004; Bastos et al.
2012; Harris and Shepherd 2015).
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While there are certain features that seem conserved, e.g., excitatory
cells in layer IV receive only little input from excitatory cells in other
layers and project to excitatory cells in layers II/III and V, there exists
also a significant variability, e.g., layer IV excitatory cells project to
layer VI in some species but not in others (Harris and Shepherd
2015). Moreover, it seems necessary to account for the different classes
of neurons to capture the features of the microcircuit (Harris and
Shepherd 2015). Unfortunately, there is currently no comprehensive
quantitative data on the local network structure even in mouse primary
visual cortex (Billeh et al. 2020). Thus, while the canonical microcircuit
remains a promising candidate for an ordering principle of the local
network structure, it remains to be seen to which extent this hypothesis
holds true.

2.3 resting state activity

Thus far, we have considered only the structural features of cortex. But
to “[...] understand how the flow of electrical signals through neural
circuits gives rise to mind [...]” (Kandel, Schwartz, Jessell, et al. 2013),
it is necessary to go beyond the static structure and to consider the
activity.

Typically, the activity in response to a specific stimulus or task is
investigated to create a link between activity and function. Here, we
restrict ourselves to resting state activity (Deco, Jirsa, and McIntosh
2011) which is (supposedly) intrinsically generated and free from
external influences. While this seems considerably less exciting at
first sight, it might have the advantage that the absence of external
influences allows for a tight link between network structure and
activity. For example, the default mode network, a group of areas with
correlated activity during resting state (Raichle 2015), can be linked to
an anatomical backbone using data from tracing experiments (Buckner
and DiNicola 2019). Furthermore, resting state activity seems to be
altered by neurological disorders like schizophrenia (Buckner and
DiNicola 2019).

A wide range of methods exists to measure the activity of neurons,
but each one of them is restricted to a specific subset of temporal
or spatial scales (Sejnowski, Churchland, and Movshon 2014). Below,
we briefly discuss two methods at opposite ends of the spectrum
which are frequently used to investigate resting state activity: elec-
trode recordings with single-neuron resolution and high temporal
precision, and fMRI imaging with whole-brain coverage but low tem-
poral precision.
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2.3.1 Electrode Recordings

Electrode recordings measure the electrophysiological properties of
neurons at a millisecond scale and they can take place either intra- or
extracellularly (see, e.g., the textbook by Brette and Destexhe 2012). For
intracellular recordings, the electrode is inserted into the neuron which
allows one to record the membrane voltage or the current across the
membrane. Extracellular recordings can measure the activity of either
single or multiple neurons. For extracellular single-neuron recordings,
a microelectrode is positioned close to the cell such that it picks up the
changes in the potential caused by currents across the cell membrane
during an action potential. Multi-unit recordings involve electrodes
with larger tips. These electrodes are arranged either linearly to allow
laminar recordings or in a grid. In multi-unit recordings, the signal
needs to be post-processed using spike sorting—identifying different
neurons based on the shape of the action potential—to arrive at parallel
recordings of single-neuron activity. Alternatively, the low-pass filtered
signal gives rise to the local field potential, which is a proxy for the
activity of the neurons surrounding the electrode.

Measuring neural activity using electrodes has a long history in
neuroscience (Yuste 2015). For example, intracellular recordings were
at the heart of Hodgkin and Huxley’s Nobel Prize-winning work on
the generation of action potentials (Hodgkin and Huxley 1952) and
extracellular recordings led to the Nobel Prize-winning discovery by
Hubel and Wiesel (1962) of receptive fields of neurons in cat primary
visual cortex.

Both intra- and extracellular recordings, as well as other modalities
with single-neuron resolution, paint a consistent picture of the resting
state activity in cortex (Harris and Thiele 2011): the activity is asyn-
chronous and irregular. Put differently, the cross-correlations between
the neurons are low and the variability of the times between spikes,
the inter-spike intervals, is high. More quantitatively, for resting state
activity in macaque motor cortex, the cross-correlations are distributed
between -0.2 and 0.2 and vanish on average (Dahmen, Layer, et al.
2022) and the local coefficient of variation is distributed between 0.5
and 1.2 with an average of 0.9 (Dąbrowska et al. 2021).

2.3.2 fMRI Imaging

Increased neural activity in a part of the brain triggers a change in the
blood flow, the hemodynamic response, in order to supply the increased
energy demand (for a brief review of fMRI see, e.g., Logothetis 2008).
The associated changes in the oxygen level of the blood can be made
visible using blood-oxygen-level-dependent (BOLD) imaging because
oxygenated and deoxygenated hemoglobin have different magnetic
properties. Thus, the BOLD signal provides a proxy of neural activity
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across the entire brain. Its drawbacks are the low spatial and temporal
resolution on the order of millimeters and seconds, respectively.

The analysis of resting state fMRI activity is in itself a quite promi-
nent field (Raichle 2015). Historically, Biswal et al. (1995) showed that
the correlations of BOLD signals between areas in resting state activ-
ity, often somewhat confusingly called functional connectivity, display
striking patterns. The same patterns are also found in the default mode
network, which was discovered because it exhibits ‘negative responses’
(compared to baseline) in task related activity (Raichle 2015). This rela-
tion between task related and resting state activity spurred significant,
and still ongoing, efforts to understand the underlying cause of the
default mode network (Buckner and DiNicola 2019). One approach to
tackle this problem is to use models to link the underlying network
structure with the emerging neural activity (Deco, Jirsa, and McIntosh
2011), which brings us to the next section.

2.4 models

“What makes a model good? Clearly it must be based
on biological reality, but modeling necessarily involves an
abstraction of that reality. It is important to appreciate that
a more detailed model is not necessarily a better model. A
simple model that allows us to think about a phenomenon
more clearly is more powerful than a model with under-
lying assumptions and mechanisms that are obscured by
complexity. The purpose of modeling is to illuminate, and
the ultimate test of a model is not simply that it makes
predictions that can be tested experimentally, but whether
it leads to better understanding. No matter how detailed,
no model can capture all aspects of the phenomenon being
studied. As theoretical neuroscientist Idan Segev has said,
borrowing from Picasso’s description of art, modeling is
the lie that reveals the truth.” (Kandel, Schwartz, Jessell,
et al. 2013)

Models play a peculiar role in neuroscience. They are always under
the tension that is vividly described in the quote above: if they are
too simple, they do not capture the relevant phenomenon; if they are
too complex, they do not increase our understanding. Somewhere
in between is a sweet spot which is hard to achieve—in particular
because opinions diverge on the precise location of this sweet spot.

The interplay between theory and simulation adds to this tension
(Gerstner, Sprekeler, and Deco 2012). If a model is simple enough,
all its consequences can be worked out, and understood, analytically.
However, analytically tractable models might be too simple to capture
the relevant phenomena, such that more complex models are necessary
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which rely on simulations to investigate their implications (Einevoll
et al. 2019).

Both tensions—complexity vs. understandability as well as theory
vs. simulation—will be a recurring theme not only in this section
but throughout the thesis. In this section, we start with models of
neurons, then move to models of neural networks, and last mention a
few salient properties of cortex which were neglected thus far.

2.4.1 Neuron Models

The subdivision of a neuron into dendrite, soma, and axon suggests
to model them as input-output devices. Since this is a rather weak
constraint, it leaves a lot of room for different implementations of
the device. Indeed, the abovementioned challenge—to account for
the relevant details and to neglect the irrelevant ones (Herz et al.
2006)—has led to an entire zoo of different neuron models. Below, we
introduce two models in detail, the Generalized Linear Model (GLM)
and the Leaky Integrate-and-Fire model (LIF), before zooming out again
for a brief tour through the zoo.

Both GLM and LIF model account for spikes. Thus, the output of
either model is a spike train

x(t) = ∑
k

δ(t − tk) (2.1)

where tk denotes the time of the k-th spike and δ(t) is a Dirac delta
function. The two models differ fundamentally in their transformation
from input to output: the GLM is inherently stochastic, i.e., the exact
same input η(t) might produce different output spike trains x(t),
while the LIF model is deterministic.

Generalized Linear Model

The GLM consists of three distinct steps (Gerstner, Kistler, et al. 2014).
In the first step, the input η(t) is filtered linearly through a filter κ(t)
to produce the membrane voltage

V(t) = (κ ∗ η)(t). (2.2)

Here, (a ∗ b)(t) =
∫ ∞
−∞ ds a(t− s)b(s) denotes a convolution and causal-

ity requires κ(t) = 0 for t < 0. For convenience, we also shifted the
voltage such that it is zero in the absence of input. The filter κ(t)
accounts for the effect of an incoming spike on the membrane voltage:
considering a single incoming spike at t = t̂ with synaptic strength
J, the input is η(t) = Jδ(t − t̂) and (2.2) yields V(t) = Jκ(t − t̂). In
the second step, the difference between voltage and threshold θ is
transformed through a non-negative nonlinearity ϕ(x) ≥ 0 to produce
the firing rate

λ(t) = c1 ϕ (c2 (V(t)− θ)) . (2.3)
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The parameters c1 and c2 control the overall firing rate and the sensi-
tivity to changes in the voltage, respectively. Typical choices for the
nonlinearity include a rectified linear function ϕ(x) = max(0, x) or an
exponential function ϕ(x) = exp(x). In the third step, a spike train is
generated through an inhomogeneous Poisson process with intensity
λ(t). In simpler terms, this means that in an infinitesimal time bin
dt a spike is generated with probability λ(t)dt independent of what
happened in any previous (or future) bin.

Although the stochastic nature of the GLM might seem like a disad-
vantage at first sight, it can be a valuable asset. To fit the model to data,
the full toolbox of statistical inference is readily applicable because the
likelihood of the GLM is determined by the resulting inhomogeneous
Poisson process (Paninski 2004). Accordingly, GLMs are often used
to fit to data, see, e.g, Pillow and Latham (2007), Pillow, Shlens, et al.
(2008), and Bellec, Wang, et al. (2021).

Leaky Integrate-and-Fire Model

Similarly to the first step of the GLM, the input is filtered linearly to
arrive at the membrane voltage. For LIF neurons, these linear filters
are typically specified in terms of ordinary differential equations for
the membrane voltage V and the synaptic current I,

τmV̇ = −V + Rm I, (2.4)

τs İ = −I + τsη(t), (2.5)

where τm and τs are the membrane and synaptic time constants, respec-
tively, and Rm the membrane resistance. The membrane time constant
is determined by the membrane resistance Rm and the membrane
capacitance Cm through τm = RmCm. Similar to the GLM, we shifted
the voltage such that it is zero in the absence of input. Sometimes, the
exponential post-synaptic currents in (2.5) are replaced by delta synapses
Rm I(t) = τmη(t) which correspond to the limit of infinitely short
synaptic time constants.

The crucial difference between GLM and LIF neurons is the firing
mechanism. LIF neurons emit a spike as soon as the voltage crosses the
threshold θ. After the threshold crossing event, the voltage is set to the
reset voltage Vr where it stays clamped during the refractory period
tref. Once the refractory period is over, the membrane voltage evolves
again according to (2.4) until it crosses the threshold again. This “fire-
and-reset” mechanism renders the LIF deterministic, in contrast to the
stochastic GLM, and highly non-linear.

Although the LIF model is more difficult to fit to data, the vanilla
LIF and generalizations thereof were fitted to a large, standardized
database of electrophysiological experiments performed at the Allen
Institute (Teeter et al. 2018). The authors found that “overall, [the
LIF model] had a surprisingly high explained variance of 70% when
all neurons were considered.” This finding raises the hope that even
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strongly simplified neuron models, such as LIF neurons, might capture
most of the relevant dynamics displayed by neurons.

The Zoo of Neuron Models

With two concrete examples at hand, let us consider again the entire
zoo of different neuron models. To provide a guiding thread, we follow
along the five levels introduced by Herz et al. (2006).

On level I, the entire structure of the dendrite shown in Figure 2.1
on page 6 is taken into account. To this end, the neuron is divided
into compartments which obey their own dynamical equation. Thus, a
single neuron is described by a coupled system of O(1,000) dynamical
equations. While this allows one to fully take the geometry of the
neuron into account, it hardly reduces the complexity. On level II,
the situation is remedied by reducing the number of compartments
to a few. On level III, this approach is taken to the extreme and the
neuron is described by a single compartment. The archetypical single-
compartment neuron model is the Hodgkin-Huxley model (Hodgkin
and Huxley 1952) which describes how the various ionic currents
conspire to produce an action potential in the giant squid axon. Still,
the Hodgkin-Huxley model is a four-dimensional, coupled, nonlinear
system of differential equations which is hard to understand. To
further reduce the complexity, various two-dimensional simplifications
of the Hodgkin-Huxley model exist which capture essential qualitative
features of the dynamics of the full model; prominent examples are
the FitzHugh-Nagumo model and the Morris-Lecar model (Gerstner,
Kistler, et al. 2014). Finally, there are a number of models which further
reduce the dimensionality to one. The LIF model introduced above
belongs to this class together with simpler models, like the Perfect
Integrate-and-Fire model (Lapicque 1907; Brunel and van Rossum
2007), as well as more complex ones, like the (adaptive) Exponential
Integrate-and-Fire model (Brette and Gerstner 2005).

On level IV, a qualitative change occurs because the quantities
described by the mathematical equations become detached from the
underlying biophysical processes. Instead, the focus shifts towards
taking only the input-output relationship into account. The most
prominent model on this level is the GLM, either in the minimal
version presented above or in more complicated versions taking, e.g.,
after-spike currents into account (Gerstner, Kistler, et al. 2014). On level
V, the models are entirely detached from the biophysical processes and
the goal is fully restricted to capturing the input-output relationship.
Typically, this is done using a parameterized distribution p(x | η).
With the advent of deep learning (LeCun, Bengio, and Hinton 2015),
level V models gained significant traction because deep learning is
essentially a technique to fit complicated parameterized distributions
p(x | η), the various networks, to data (MacKay 2003). Transposing the
techniques and networks from deep learning has led to new state-of-
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the art models of, among others, tiger salamander retinal ganglion
cells (McIntosh et al. 2016) and macaque V1 neurons (Cadena et al.
2019).

Following the above gradient of models further, there is yet an-
other level of models outside the scope of Herz et al. (2006): even
more simplified models which are typically employed in theoretical
studies of network dynamics. The archetypical model of this level is
the binary neuron model employed in associative network models
(Amit, Gutfreund, and Sompolinsky 1985) or balanced networks (van
Vreeswijk and Sompolinsky 1996; van Vreeswijk and Sompolinsky
1998). Another typical example are rate neurons which fully neglect
the discontinuity imposed by the spikes. These rate neuron models
are either derived from more complex models (e.g., Wong and Wang
2006; Mastrogiuseppe and Ostojic 2017) or simply chosen to match the
qualitative features of the input-output relationship (e.g., Sompolinsky,
Crisanti, and Sommers 1988).

2.4.2 Network Models

Going beyond single neurons, there exists also a long tradition of
models of neural networks (Yuste 2015) starting with the work of
McCulloch and Pitts (1943). Such models were built with a wide
variety of goals—prominent examples are the associative memory
model by Hopfield (1982) or the model of asynchronous, irregular
activity by van Vreeswijk and Sompolinsky (1996)—and take into
account various levels of detail.

There are several dimensions along which network models can be
categorized, for example

• top-down vs. bottom-up models (Gerstner, Sprekeler, and Deco
2012), i.e., either starting from the biological details (bottom-up)
or from a high level function (top-down);

• single-neuron vs. population models, i.e., either taking the activ-
ity of single neurons into account or describing only the activity
of a population of neurons;

• spiking vs. rate-based models, i.e, either taking the spiking (or,
more generally, the discontinuous) nature of the communication
into account or simplifying it to a continuous signal.

Sticking to the overarching theme of the thesis—starting from the
single-neuron level and bridging to the network level—we focus on
bottom-up, single-neuron models in the remainder of this introduction.

Random Networks

We saw in Section 2.2 that there is (almost) no comprehensive data on
the network structure on the single-neuron level. Thus, single-neuron-
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level network models are typically random networks with statistics
which are in rough agreement with the available data. For example,
connections are chosen with a fixed connection probability (Gilbert
model; Gilbert 1959), a fixed number of connections is randomly as-
signed to all possible pairs of neurons (Erdős–Rényi model; Erdős and
Rényi 1959), or a fixed number of presynaptic / postsynaptic neurons
is chosen randomly (fixed indegree / outdegree).

Beyond the simple models mentioned above, there exists a wide
range of more complicated models. Important examples include small-
world networks like the model by Watts and Strogatz (1998) or scale-
free networks like the model by Barabási and Albert (1999). Fur-
thermore, certain low-order statistics, or motifs, seem to be over-
represented compared to a Gilbert null model (Song et al. 2005);
this can also be taken into account in the model.

All of the above models determine merely the structure of the
network, i.e., whether a synapse exists or not. Additional assumptions
need to be made to quantify the synaptic weights, e.g., a log-normal
distribution (Buzsáki and Mizuseki 2014; Ziv and Brenner 2018).

Balanced Networks

The high number of synapses per neuron, the indegree K, and the
asynchronous irregular activity in cortex are seemingly in contradic-
tion to each other: according to the central limit theorem, fluctuations
in the input average out in the limit K → ∞ if they are weakly corre-
lated (asynchronous). Thus, the asynchronous irregular state is not
self-consistent in the limit K → ∞ because the fluctuations in the input,
and hence in the activity, vanish, leading to regular activity which is
furthermore the same for all neurons and hence highly synchronous.

There is an elegant resolution of this apparent paradox using the
excitatory or inhibitory nature of neurons: balanced networks (van
Vreeswijk and Sompolinsky 1996; van Vreeswijk and Sompolinsky
1998). In such networks, the inputs are strong, which means that
O(

√
K) are sufficient to evoke activity in the postsynaptic neuron. Put

differently, the strength of the weights is O(1/
√

K). Thus, the mean
input is O(

√
K) and the fluctuations are O(1). We see already that the

fluctuations do not vanish; however, the mean activity diverges in the
limit K → ∞. Here, the excitatory and inhibitory nature of the neurons
enters the picture: both cancel each other approximately leading to
an O(1) mean input. Intuitively speaking, there are two very strong
forces driving the neuron which annihilate each other on average but
give rise to violent fluctuations.

This balanced state is self-consistent (and stable) and emerges in a
large parameter regime (van Vreeswijk and Sompolinsky 1996; van
Vreeswijk and Sompolinsky 1998). The main requirements on the pa-
rameters are dominance of inhibition (otherwise recurrent excitation
would lead to divergent activity) and excitatory external input (oth-
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erwise inhibition dominance would lead to vanishing activity). Thus,
asynchronous and irregular activity can be a simple consequence of
the large indegree, the presence of both excitation and inhibition, and
a random network structure. Note that this is truly a network-level
mechanism; there are no fluctuations induced by the external input.

Remarkably, the above arguments for the emergence of a balanced
state hardly depend on details such as the neuron model. Indeed, a
balanced state emerges not only in the networks of binary neurons
investigated by van Vreeswijk and Sompolinsky (1996) but also in spik-
ing networks (Amit and Brunel 1997; Brunel 2000) and rate networks
(Sompolinsky, Crisanti, and Sommers 1988; Kadmon and Sompolinsky
2015).

An important detail in the heuristic derivation sketched above is
that cross-correlations were implicitly assumed to be vanishing. Un-
derstanding this aspect, in particular in light of the shared input that
neurons receive, required further investigations (Renart et al. 2010;
Tetzlaff et al. 2012; Helias, Tetzlaff, and Diesmann 2014). Furthermore,
a direct consequence of the balanced state is a linear input-output
relation on the network level (van Vreeswijk and Sompolinsky 1996)
which might not seem plausible (Ahmadian and Miller 2021). How-
ever, this argument holds only in the limit K → ∞; at finite (but large)
K balanced networks support various different nonlinearities (Sanzeni,
Histed, and Brunel 2020).

Data-Driven Spiking Networks

Balanced network models are only weakly constrained by anatomi-
cal data, e.g., by choosing an appropriate indegree for the neurons
(Amit and Brunel 1997; Brunel 2000). The fact that they already yield
asynchronous and irregular activity leads to the follow-up questions
whether this still holds if one takes additional data into account, and
whether this additional data improves the quantitative agreement with
the activity statistics in cortex.

It seems obvious that a model which takes all details into account
also produces realistic dynamics. However, modeling inherently has
to neglect features, which renders the question whether it is possible“In time, those

Unconscionable
Maps no longer

satisfied, and the
Cartographers

Guilds struck a Map
of the Empire whose
size was that of the
Empire, and which
coincided point for

point with it.”
(Borges, quoted in

Abbott 2008)

to achieve plausible activity under the given constraints non-trivial.
Furthermore, the available data is not yet sufficient to fully specify
the models. Thus, the data needs to be supplemented by statistical
regularities discovered in other species or modalities (predictive connec-
tomics; see Hilgetag et al. 2019; van Albada, Morales-Gregorio, et al.
2022) which adds another layer of complexity and, potentially, errors.

Using data-constrained network models is a research direction
which gained traction in the last decade (for a review see Shimoura
et al. 2021). The first brain-scale model which was strongly constrained
by data is the model of the “mammalian thalamocortical system” by
Izhikevich and Edelman (2008). This model is mainly based on a com-
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bination of human DTI data and data from cat visual cortex (Binzegger,
Douglas, and Martin 2004), it uses the neuron model proposed by
Izhikevich (2003), and it includes short-term plasticity as well as long-
term spike-time-dependent plasticity. In total, the model comprises
106 neurons (but the size was increased to up to 1011 according to the
supplement) which display, after an initial stimulation, self-sustained
activity featuring different rhythms and waves.

Even stronger constraints by data were applied to the model of rat
somatosensory cortex by Markram et al. (2015). In this model, the full
morphology of approximately 31,000 neurons and their position in
space is taken into account. These neurons belong to 55 morphologi-
cal classes and 11 electrophysiological classes. The resulting activity
reproduced features observed either in vitro or in vivo, for example a
dependence of the synchronicity on the concentration of extracellular
calcium. In follow-up studies, this model was used to investigate the
interplay of noise and chaos (Nolte, Reimann, et al. 2019) and the
effect of higher-order statistics in the connectivity (Nolte, Gal, et al.
2020).

The most detailed model to date is the model of mouse primary
visual cortex developed by Billeh et al. (2020). It is based on the
extensive amount of data on mouse cortex collected in particular at
the Allen Institute (Tasic et al. 2018; Seeman et al. 2018; Gouwens et al.
2018; Teeter et al. 2018; Siegle et al. 2021). In total, it comprises ~230,000

neurons and it comes in two versions: a version using morphologically
detailed multi-compartment neurons and a reduced version based on
point neurons. After refinements of the connectivity, the activity of
the model quantitatively reproduces features observed in vivo for a
large array of different visual stimuli. Recently, the connectivity of the
model was further adjusted using gradient-descent based methods to
enable the model to solve tasks (Chen, Scherr, and Maass 2021; Scherr
and Maass 2021).

In another line of work, the focus is to take the full density of neu-
rons and synapses into account. The first full-density model by Potjans
and Diesmann (2014) accounts for 1 mm2 of generic early sensory cor-
tex. The size of 1 mm2 was chosen such that the majority of inputs
are generated by neurons inside this column. Although all neurons
are intrinsically the same, the model displays a systematic variation of
firing rates across layers and populations which is also observed in
vivo. In a next step, this model was used by Schmidt, Bakker, Hilgetag,
et al. (2018) as a blueprint for the within-area connectivity to create
a model of all vision-related areas in one hemisphere of macaque
cortex. In this model, the connectivity between the areas is determined
by tracing data (Markov, Ercsey-Ravasz, Ribeiro Gomes, et al. 2014)
and supplemented by predictive connectomics. The resulting activity
reproduces features observed in electrophysiological recordings as
well as fMRI imaging (Schmidt, Bakker, Shen, et al. 2018).
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While the model by Schmidt, Bakker, Hilgetag, et al. (2018) bridges
between the single-neuron and area scale, area-level models consist
more frequently of a few equations per area. One example are the
models by Wang and coworkers (Chaudhuri, Knoblauch, et al. 2015;
Mejias et al. 2016; Joglekar et al. 2018) which are based on the same
tracing data (Markov, Ercsey-Ravasz, Ribeiro Gomes, et al. 2014).
Another example is the Virtual Epileptic Patient—a network model
describing the onset of epileptic seizures—developed by Jirsa, Proix,
et al. (2017) which is currently being evaluated in an ongoing clinical
trial (Wang et al. 2022).

2.4.3 Neglected Aspects

Let us conclude this introduction with a selection of phenomena which
are omitted in this thesis. This selection is unordered and by no means
comprehensive; it focuses only very briefly on particularly salient
examples.

Why were these aspects omitted in the first place? “A good theoreti-
cal model of a complex system should be like a good caricature [...]”
(Frenkel, quoted in Herz et al. 2006). In the caricatures sketched in this
thesis, these aspects were neglected to avoid an overflow of complexity.
Whether or not the resulting caricatures are still good remains to be
judged by the reader.

Plasticity

The key omission is arguably to neglect plasticity: new synapses
between neurons can form, old ones can vanish, and existing ones
can alter their strength. This is currently believed to be the basis of
the remarkable ability of animals, including humans, to learn from
experiences and to adapt their behavior (Kandel, Schwartz, Jessell, et
al. 2013). A wide variety of mechanisms for plasticity exist which can
be loosely grouped into Hebbian plasticity, neuromodulated plasticity,
and supervised plasticity (Magee and Grienberger 2020).

Intriguingly, significant changes in the network structure, more
concretely the dendritic spines, also occur in the absence of activ-
ity (Berry and Nedivi 2017; Ziv and Brenner 2018). These sponta-
neous changes occur on quite fast timescales, i.e., within a few days
(Mongillo, Rumpel, and Loewenstein 2018). The implications of this
finding for the synaptic theory of learning are still unclear (Ziv and
Brenner 2018).

Dendritic Nonlinearities

Modeling a neuron by a single compartment reduces the dendrites to
passive cables. However, they support a range of nonlinear operations—
calcium, sodium, and NMDA spikes—as well as backpropagating
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action potentials (Stuart and Spruston 2015; Larkum et al. 2022). These
additional nonlinearities can significantly increase the computational
capacity of single neurons (Poirazi, Brannon, and Mel 2003; Poirazi
and Papoutsi 2020). Thus, it might be crucial to take the dendritic
nonlinearities into account to understand the full capacity of the brain.

Conversely, if one considers only network dynamics, it is possible
to reduce multi-compartment models to point neurons while approxi-
mately preserving the dynamics (Rössert et al. 2016; Billeh et al. 2020).

Glial Cells

One hemisphere of human cortex consists of 6.2 billion neurons but
even more glial cells (Azevedo et al. 2009; Shapson-Coe et al. 2021).
Most glial cells do not produce electric impulses and were thought to
be merely supporter cells for the neurons, for example to myelinate
axons, but there is evidence that they can also directly affect the activity
of neurons (Fields et al. 2014). More generally, it might be necessary
to take the wide variety of neuromodulators, and their spatial spread
through volume transmission, into account because they bypass the
synapse-based connectivity but still alter the activity.

Action-Perception Loop

Brains do not exist in isolation. They are embodied, in the literal sense,
and interact with their environment, thereby affecting the sensory
input. A prominent theory that takes the interplay between action and
perception into account is the free energy principle (Friston 2010), but
see the nuanced analysis of the promises and pitfalls of the free energy
principle by Buckley et al. (2017). Whether it ultimately turns out to be
possible to understand specific aspects of the brain using a reductionist
approach which neglects the interaction with the environment is still
unclear.
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“The constructionist hypothesis breaks down when con-
fronted with the twin difficulties of scale and complexity.
The behavior of large and complex aggregates of elemen-
tary particles, it turns out, is not to be understood in terms
of a simple extrapolation of the properties of a few par-
ticles. Instead, at each level of complexity entirely new
properties appear [...].” (Anderson 1972)

Even if the microscopic laws of a system are fully determined, it is by
no means straightforward to arrive at an understanding of the system’s
properties on the macroscopic scale. A striking example in physics is a
broken symmetry. For example, technically, the microscopic dynamics
of a gas is symmetric under time reversal; practically, this symmetry
offers little insight into its macroscopic properties because the recur-
rence time far exceeds all relevant timescales (Boltzmann 1896). The
appropriate approach to successfully bridge the scales turned out to
be statistical physics (Goldenfeld 1992; Kardar 2007b; Kardar 2007a).

Neuroscience faces a similar problem—one cannot simply extrapo-
late from neurons to networks. Since this is again a problem involving
two distinct scales, re-purposing tools from statistical physics proved
to be fruitful (see for example Amit, Gutfreund, and Sompolinsky
1985; Gardner 1988; Sompolinsky, Crisanti, and Sommers 1988). The
statistical physics approach is also at the heart of this thesis; this
chapter provides a brief introduction to the main tools.
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The foundation is based on probability theory, which is briefly sum-
marized in Section 3.1, including an overview of large-deviation theory.
Afterwards, stochastic processes, with a focus on a field-theoretical
perspective, are in discussed Section 3.2. Next, point processes are
introduced in Section 3.3 to treat spikes appropriately. The core of
this chapter is Section 3.4 on Dynamic Mean-Field Theory—the main
tool to bridge from neurons to networks. Last, the inverse problem is
briefly discussed in Section 3.5.

3.1 probability theory

While probability theory may or may not be the “logic of science”
(Jaynes 2003), it is certainly, and rather unsurprisingly, underlying
statistical physics (Mezard and Montanari 2009).

We follow (Stratonovich 1967) for this very brief summary of proba-
bility theory. Let us consider a collection of random variables ξ1, . . . , ξn.
The associated n-dimensional probability density is

p(x1, . . . , xn) = ⟨δ(ξ1 − x1) . . . δ(ξn − xn)⟩. (3.1)

With p(x1, . . . , xn), we can compute the average of an arbitrary func-
tion f (ξ1, . . . , ξn),

⟨ f (ξ1, . . . , ξn)⟩ =
∫

dξ1· · ·
∫

dξn p(ξ1, . . . , ξn) f (ξ1, . . . , ξn). (3.2)

One important choice is f (ξ1, . . . , ξn) = 1 which leads to the normal-
ization condition

∫
dξ1· · ·

∫
dξn p(ξ1, . . . , ξn) = 1. (3.3)

Another important choice is f (ξ1, . . . , ξn) = exp[i(k1ξ1 + · · ·+ knξn)]

which gives rise to the characteristic function

ϕ(k1, . . . , kn) =
∫

dξ1· · ·
∫

dξn p(ξ1, . . . , ξn)ei(k1ξ1+···+knξn). (3.4)

From the characteristic function, we can obtain the moments using

⟨ξ1 . . . ξn⟩ =
1
in

∂nϕ(k1, . . . , kn)

∂k1 . . . ∂kn

∣∣∣∣
k1=···=kn=0

(3.5)

and the cumulants using

⟨⟨ξ1 . . . ξn⟩⟩ =
1
in

∂n ln ϕ(k1, . . . , kn)

∂k1 . . . ∂kn

∣∣∣∣
k1=···=kn=0

. (3.6)

Furthermore, we can recover the density from the characteristic func-
tion

p(ξ1, . . . , ξn) =
∫ dk1

2π
· · ·

∫ dkn

2π
ϕ(k1, . . . , kn)e−i(k1ξ1+···+knξn); (3.7)
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the characteristic function is simply the Fourier transformation of the
density.

The density p(x1, . . . , xn) contains the information about all random
variables ξ1, . . . , ξn. In particular, it contains the information about a
subset ξ1, . . . , ξk, k < n, of the random variables. The corresponding
density follows by marginalizing the density:

p(ξ1, . . . , ξk) =
∫

dξk+1· · ·
∫

dξn p(ξ1, . . . , ξn). (3.8)

Furthermore, information about a subset of the random variables
ξk+1, . . . , ξn might affect the remaining random variables ξ1, . . . , ξk.
This is quantified by the conditional density

p(ξ1, . . . , ξk | ξk+1, . . . , ξn) =
p(ξ1, . . . , ξn)

p(ξk+1, . . . , ξn)
. (3.9)

Note that p(ξ1, . . . , ξk | ξk+1, . . . , ξn) is again a probability density; in
particular it is normalized due to (3.8). If the the information about
ξk+1, . . . , ξn does not affect the information about ξ1, . . . , ξk they are
independent. In this case the conditional density and the marginal
density coincide,

p(ξ1, . . . , ξk | ξk+1, . . . , ξn) = p(ξ1, . . . , ξk). (3.10)

In combination with (3.9), we see that the densities of the independent
random variables factorize.

3.1.1 Multivariate Gaussian

Arguably the most important probability distribution is the Gaussian
distribution. Using vector notation (ξ)i ≡ ξi, its density is

p(ξ) =
1√

det(2πK)
exp

(
− 1

2
(ξ−µ)TK−1(ξ−µ)

)
(3.11)

where µi = ⟨ξi⟩ denotes the mean and K−1 the inverse of the covariance
matrix Kij = ⟨⟨ξiξ j⟩⟩. For convenience, we will use the notation

ξ ∼ N (µ,K) (3.12)

to designate that ξ is Gaussian distributed with mean µ and covariance
matrix K.

The characteristic function (3.4) of a multivariate Gaussian is

ϕ(k) = exp
(

iµTk− 1
2
kTKk

)
. (3.13)

The observation that the exponent is at most quadratic in k, in combi-
nation with (3.6), immediately shows that only cumulants up to order
two—the mean and the variance—are non-vanishing. Thus, moments
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of all orders can be expressed through the first two cumulants (Isserlis’
or Wick’s theorem). The finite number of cumulants is unique to the
Gaussian (Marcinkiewicz 1939): if the exponent of the characteristic
function is a polynomial, it is a polynomial of at most order two
(Marcinkiewicz theorem).

For the multivariate Gaussian, both marginal and conditional distri-
butions can be calculated analytically (Williams and Rasmussen 2006).
Let

x,y ∼ N
((

µx

µy

)
,

(
Kx Kxy

KT
xy Ky

))
, (3.14)

i.e., x and y are jointly Gaussian with corresponding means and
covariance matrices. The marginal distribution of x is

x ∼ N (µx,Kx) (3.15)

which looks almost trivial but is surprisingly cumbersome to show.
The conditional distribution of x given y is

x|y ∼ N
(
µx +KxyK

−1
y (y −µy),Kx −KxyK

−1
y KT

xy

)
. (3.16)

If the marginal distribution of y is degenerate, K−1
y is the generalized

inverse of Ky.
Additionally, the Gaussian distribution is stable: a linear combina-

tion of two independent Gaussian random variables is still Gaussian
(Papoulis and Pillai 2002). The converse is also true (Cramér 1936): if
ξ1 and ξ2 are independent and their sum is Gaussian then ξ1 and ξ2

are Gaussian (Cramér’s decomposition theorem).

3.1.2 Large-Deviation Theory

The importance of the Gaussian distribution is largely due to the
central limit theorem: given a sequence of independent and identically
distributed (i.i.d.) random variables ξ1, . . . , ξN with mean µ and vari-
ance σ2 < ∞, the scaled sample average ξ̄N =

√
N( 1

N ∑i ξi − µ)/σ

is asymptotically Gaussian, limN→∞ ξ̄N ∼ N (0, 1). While the central
limit theorem captures small fluctuations of O(σ/

√
N), it does not

make a statement about the probability of a rare but large deviations
from the sample mean. This is the topic of large-deviation theory
(Varadhan 2008; Touchette 2009; Mezard and Montanari 2009; Dembo
and Zeitouni 2010).

Let us consider a concrete example by Varadhan (2008): tossing a
fair coin N ≫ 1 times and counting the relative fraction of heads
x ∈ {0, 1/N, . . . , 1}. The corresponding probability is determined by
the binomial distribution

p(x | N) =

(
N

xN

)
1

2N . (3.17)
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Figure 3.1: Rate function for the relative number of heads x in N = 20 tosses
of a fair coin. Empirical distribution based (gray bars) based on
107 samples. Rate function (solid black line) and its quadratic
approximation (dashed black line). Both analytical distributions
are normalized.

Using Stirling’s approximation ln N! = N ln N − N + O(ln N), we get

ln p(x | N) = −NH(x) + O(ln N), (3.18)

H(x) = x ln x + (1 − x) ln(1 − x) + ln 2. (3.19)

Put differently, we have p(x | N) ≈ exp[−NH(x)] up to algebraic
corrections in N. Importantly, we did not put any restrictions on
x, thus this results also holds for fluctuations far from the mean
value x = 1/2 (see Figure 3.1 on page 29). For small fluctuations
δx = x − 1/2, we can expand H(x) = 2(x − 1/2)2 + O(δx4) and
we see that we recover a Gaussian p(x | N) ≈ exp[−2N(x − 1/2)2]

with mean 1/2 and variance 1/4N. This is equivalent to the result of
the central limit theorem applied to a sum of independent Bernoulli
variables with mean p = 1/2 and variance p(1 − p) = 1/4.

In the coin tossing example, we see explicitly how a distribution with
exponentially suppressed large fluctuations p(ξ | N) ≈ exp[−NH(ξ)]

arises and how we recover the result of the central limit theorem by
expanding H(ξ) around the mean. More generally, a large deviation
result is of the form

− lim
N→∞

1
N

ln p(ξ | N) = H(ξ) (3.20)

where we assume that the limit exists. Here, the limit N → ∞ ensures
that o(N) contributions vanish and the remaining quantity H(ξ) is
called the rate function. Note that (3.20) is a heuristic statement; the
mathematically rigorous statement involves lower and upper bounds
on the probability of closed and open sets, respectively (Varadhan
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2008). In the following, we stay on this heuristic level. Note further-
more that (3.20) can be used for discrete as well as continuous random
variables (Touchette 2009).

Gärtner-Ellis Theorem

In the above example, we used Stirling’s approximation which can be
derived using a saddle-point (or, more precisely, Laplace) approxima-
tion

ln
∫

dx g(x)e−N f (x) = −N inf
x

f (x) + O(ln N) (3.21)

of N! = NN+1
∫ ∞

0 dx e−N(x−ln x) (Bender and Orszag 1999). The fact
that the saddle-point approximation provides the leading order behav-
ior required in (3.20) suggests a connection between large-deviation
theory and the saddle-point approximation—this connection is made
precise by the Gärtner-Ellis theorem:

H(x) = sup
x̃
[x̃x − λ(x̃)] (3.22)

where λ(x̃) denotes the scaled cumulant generating function

λ(x̃) = lim
N→∞

1
N

ln⟨eNx̃ξ⟩. (3.23)

We see immediately that H(x) is the Legendre-Fenchel transform
of λ(x̃). An important caveat of the Gärtner-Ellis theorem is that it
only yields the convex hull of H(x) for a multimodal distribution
(Touchette 2009).

To highlight the connection to the saddle-point approximation,
we follow the heuristic derivation of the Gärtner-Ellis theorem by
Touchette (2009). We start from (3.7) and change variables to ik = Nx̃,
which yields

p(x) =
N

2πi

∫ i∞

−i∞
dx̃ ⟨eNx̃ξ⟩e−Nx̃x. (3.24)

Using the scaled cumulant generating function, we get

ln p(x) = ln
∫ i∞

−i∞
d(−ix̃) e−N[x̃x−λ(x̃)] + o(N)

= −N sup
x
[x̃x − λ(x̃)] + o(N) (3.25)

where we replaced 1
N ln⟨eNx̃ξ⟩ by λ(x̃) with an o(N) error and em-

ployed a saddle-point approximation. The final result looks deceptively
simple but a saddle-point approximation involves several technical in-
tricacies, see the excellent examples in (Bender and Orszag 1999, Chap-
ter 6). For the above calculation, it is assumed that λ(x̃) is analytic and
the Cauchy-Riemann equations were used (Touchette 2009, Appendix
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C). Comparing the result with (3.20), we arrive at the Gärtner-Ellis
theorem and we see that the supremum in (3.22) can be seen as a
consequence of a saddle-point approximation.

The Gärtner-Ellis theorem provides a constructive way to compute
rate functions (or at least their convex hull). For example, let us
consider again the sample average x = 1

N ∑
N

i=1 ξi of i.i.d. random
variables. The corresponding scaled cumulant generating function is

λ(x̃) = lim
N→∞

1
N

ln⟨ex̃ ∑
N
i=1 ξi⟩ = ln⟨ex̃ξ⟩, (3.26)

and the rate function is the Legendre-Fenchel transform of the cumu-
lant generating function of ξ (Cramér’s theorem). Assuming a Bernoulli
distribution with λ(x̃) = ln(1 + ex̃)− ln 2, we recover (3.19).

Sanov’s Theorem

The restriction to unimodal distributions of the Gärtner-Ellis theorem
seems quite severe. But there is an interesting detour which allows to
treat the multimodal case as well. To this end, let us again consider
i.i.d. random variables ξ1, . . . , ξN and the associated empirical measure

µ(x) =
1
N

N

∑
i=1

δ(x − ξi). (3.27)

Intuitively, the empirical measure describes a histogram with ‘infinitely
narrow’ bins and it can be used to calculate arbitrary empirical av-
erages,

∫
dx µ(x) f (x) = 1

N ∑N
i=1 f (ξi). Now we can ask: how is µ(x)

distributed across different realizations of the random variables? We
know that sample histograms of i.i.d. random variables roughly look
like the underlying distribution p(ξ), thus we might expect that µ(x)
approaches p(ξ) asymptotically. This intuition is made rigorous in
Sanov’s theorem: the rate function of µ(x) is its Kullback-Leibler diver-
gence with respect to p(ξ), We use the notation

H[µ] to denote a
functional, i.e., an
object that maps a
function µ(x) to the
reals.

H[µ] =
∫

dx µ(x) ln
µ(x)
p(x)

. (3.28)

Note that µ(x) converges to p(x) whether or not the latter is multi-
modal. The reason why this approach circumvents the problem of
multimodality is that the distribution of µ(x)—a ‘distribution of a
distribution’—is unimodal. This step towards considering ‘distribu-
tions of distributions’ is also called level-2 (Touchette 2009).

To provide an intuition about Sanov’s theorem, let us sketch a
heuristic derivation based on the Gärtner-Ellis theorem. First, we note
that

λ[k] = lim
N→∞

1
N

ln⟨eN
∫

dx k(x)µ(x)⟩ = ln⟨ek(ξ)⟩ (3.29)
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is the scaled cumulant generating functional of the empirical measure.
To proceed, we need the functional derivative

δλ[k]
δk(x)

=
p(x)ek(x)

⟨ek(ξ)⟩ (3.30)

where we used the chain rule and δk(ξ)
δk(x) = δ(ξ − x). Using this to

perform the Legendre-Fenchel transform supk{
∫

dx k(x)µ(x)− λ[k]},
we arrive at (3.28).

We can obtain the sample mean from the empirical measure using∫
dx µ(x)x = 1

N ∑N
i=1 ξi. Thus, Sanov’s theorem is more general than,

for example, Cramér’s theorem. The relation between the two is given
by the contraction principle:

H(x) = inf
µ s.t.

∫
dy µ(y)y=x

H[µ]. (3.31)

Of course we can replace the sample mean
∫

dx µ(x)x by an arbitrary
empirical average

∫
dx µ(x) f (x) to go beyond Cramér’s theorem.

3.2 stochastic processes

Frequently, we encounter random, or noisy, processes that evolve con-
tinuously in time. There are plenty of examples for such processes in
biology, from the motion of bacteria under the constant bombardment
of the surrounding molecules (Purcell 1977; Berg 1993) to the fluctu-
ating membrane potential of a neuron due to the massive synaptic
input (Gerstein and Mandelbrot 1964; Shadlen and Newsome 1994).
The mathematical description of these random processes leads to the
notion of a stochastic process or random function ξ(t) (Stratonovich
1967; Risken 1996; Van Kampen 2007; Gardiner 2009).

3.2.1 Field-Theoretical Formulation

Stochastic processes can be seen as an infinite-dimensional collection
of random variables: for any fixed set of points in time t1, . . . , tn with
n arbitrary, the corresponding values of the process ξ(t1), . . . , ξ(tn)

are governed by a multivariate distribution p(ξ(t1), . . . , ξ(tn)); since
there are infinitely many points on a continuous interval, this leads to
an ‘infinite dimensional distribution’. The natural language for suchThe first sentence in

Kleinert’s tome on
path integrals

(Kleinert 2009) is:
“Path integrals deal

with fluctuating
line-like structures.”

objects are path integrals (Feynman, Hibbs, and Styer 2010; Kleinert
2009) or, in different words, field theory (Helias and Dahmen 2020).
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Characteristic Functionals

Similar to random variables, stochastic processes can either be speci-
fied using the probability distribution functional p[ξ] or the character-
istic functional (Stratonovich 1967; Van Kampen 2007)

ϕ[k] =
〈

exp
(

i
∫ T

0
dt k(t)ξ(t)

)〉
(3.32)

where k(t) is an arbitrary test function. For stochastic processes, ϕ[k] is In a field-theoretical
context, this object is
usually called
(moment) generating
functional
(Zinn-Justin 1996;
Kleinert 2009).

very convenient because it is normalized, ϕ[0] = 1, while p[ξ] typically
contains an infinite normalization constant. From the characteristic
functional, one can obtain either the moments

⟨ξ(t1) . . . ξ(tn)⟩ =
1
in

δnϕ[k]
δk(t1) . . . δk(tn)

∣∣∣∣
k=0

(3.33)

or the cumulants

⟨⟨ξ(t1) . . . ξ(tn)⟩⟩ =
1
in

δn ln ϕ[k]
δk(t1) . . . δk(tn)

∣∣∣∣
k=0

(3.34)

using functional derivatives. Conversely, the characteristic functional
can be written as

ϕ[k] = exp
( ∞

∑
n=1

in

n!

∫ T

0
dt1 . . . dtn ⟨⟨ξ(t1) . . . ξ(tn)⟩⟩k(t1) . . . k(tn)

)

(3.35)

because (3.34) defines its expansion in k.
More down to earth—without functionals—a stochastic process can

also be defined by the hierarchy of distributions p(ξ(t1), . . . , ξ(tn)) for
increasing n (Stratonovich 1967; Van Kampen 2007). These distribu-
tions have to be consistent: the marginal of p(ξ(t1), . . . , ξ(tn+k)) has
to equal p(ξ(t1), . . . , ξ(tn)).

A stochastic process is called stationary if all its properties (moments,
cumulants, marginal distributions) are invariant under a shift in time,
e.g.,

⟨⟨ξ(t1 + τ) . . . ξ(ts + τ)⟩⟩ = ⟨⟨ξ(t1) . . . ξ(ts)⟩⟩.

In particular, this implies that the mean µ(t1) = ⟨⟨ξ(t1)⟩⟩ is constant,
µ(t) ≡ µ, and that the correlation function C(t1, t2) = ⟨⟨ξ(t1)ξ(t2)⟩⟩
depends only on the time difference, C(t1, t2) ≡ C(t2 − t1). In some
situations, for example for oscillatory processes, the Fourier transform
of the stationary correlation function is of interest. The Fourier trans-
formed correlation function is equal to the power spectrum (Wiener-
Khinchin theorem).
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Gaussian Processes

An important, and usually well tractable, stochastic process is the
Gaussian process (GP) which is defined by vanishing cumulants beyond
the second one (Stratonovich 1967; Van Kampen 2007; Rasmussen and
Williams 2006):

ϕ[k] = exp
(

i
∫ T

0
dt1 µ(t1)k(t1)−

1
2

∫ T

0
dt1dt2 k(t1)C(t1, t2)k(t2)

)
.

(3.36)

Alternatively, a GP is defined by Gaussian marginals p(ξ(t1), . . . , ξ(tn))

for all sets of time points t1, . . . , tn.
The most common GP is a Gaussian white noise with C(τ) = 2Dδ(τ).

It is called white because its power spectrum is flat, similar to the
spectrum of white light.

The generalization to multidimensional GPs is straightforward: one
simply needs to replace µ(t1)k(t1) by ∑i µi(t1)ki(t1) to account for the
means of the GPs and k(t1)C(t1, t2)k(t2) by ∑i,j ki(t1)Cij(t1, t2)k j(t2) to
account for their correlations.

3.2.2 Stochastic Differential Equations

A typical application of a stochastic process ξ is to model an external
influence—for example the thermal motion of molecules surrounding
a Brownian particle (Langevin 1908)—which affects a second process
x governed by a differential equation

ẋ = f (x) + g(x)ξ. (3.37)

Due to the stochastic term on the right hand side, this is a stochastic
differential equation (SDE) or Langevin equation (Stratonovich 1967;
Risken 1996; Van Kampen 2007; Gardiner 2009).

If g(x) = const., the SDE is called additive, otherwise it is multi-
plicative. For g(x) ̸= 0, a multiplicative SDE can be transformed into
the additive SDE ẏ = f (y)

g(y) + ξ with the transformation dy = dx
g(x) , or

y(x) =
∫ x du 1

g(u) ; thus, we restrict the following discussion to the
additive case. If ξ is a Gaussian white noise, this transformation as-
sumes implicitly the Stratonovich interpretation (Van Kampen 2007).
Additionally, in the non-white case, we assume a correlation-free
preparation (Hänggi and Jung 1995), i.e., no correlation between x and
ξ prior to t = 0, throughout.

Probability Density Functional

An SDE specifies the transformation of the stochastic process ξ to the
stochastic process x. Thus, the probability density functional of x is

p[x] =
∣∣∣∣
Dξ

Dx

∣∣∣∣pξ [ξ[x]] (3.38)
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where
∣∣∣Dξ
Dx

∣∣∣ denotes the Jacobian of the transformation (3.37). The
Jacobian turns out to depend on the discretization parameter λ where
λ = 0 corresponds to the Itô interpretation and λ = 1/2 to the
Stratonovich interpretation (Stratonovich 1989): All results should

only depend on λ in
the white noise case;
this is indeed the
case but highly
cumbersome to show
(Stratonovich 1989).

∣∣∣∣
Dξ

Dx

∣∣∣∣ = exp
(
− λ

∫ T

0
dt f ′(x(t))

)
. (3.39)

While setting λ = 0 looks tempting, λ = 1/2 ensures the simple
transformation property (3.38) under a nonlinear change of variables
y = y(x) (Stratonovich 1989). Expressing pξ [ξ] using the inverse trans-
form of the characteristic functional, we arrive at

p[x] ∝
∫

Dx̃ e−i
∫ T

0 dt x̃(t)[ẋ(t)− f (x(t))]−λ
∫ T

0 dt f ′(x(t))ϕξ [x̃]. (3.40)

If ξ is zero-mean GP (a nonzero mean can be absorbed in f (x)), the
inverse transform can be performed and we arrive at

p[x] ∝ exp
(
− S[x]− λ

∫ T

0
dt f ′(x(t))

)
(3.41)

S[x] =
1
2

∫ T

0
dt1dt2 [ẋ(t1)− f (x(t1))]C−1(t1, t2)[ẋ(t2)− f (x(t2))]

where
∫ T

0 C−1(t1, s)C(s, t2) = δ(t2 − t1). For white noise with correla-
tion function C(τ) = 2Dδ(τ), the inverse is C−1(τ) = 1

2D δ(τ) and we
obtain the Onsager-Machlup functional

SOM[x] =
1

4D

∫ T

0
dt [ẋ(t)− f (x(t))]2. (3.42)

In order to avoid the infinite normalization constant hidden in the
proportionality signs, one can consider ratios of probability density
functionals akin to Radon-Nikodym derivatives (Stratonovich 1989).

From the probability density functional, we can obtain, for example,
the transition probability to start at x(0) = x0 and to end up at
x(T) = x using

pT(x | x0) =
∫ x(T)=x

x(0)=x0

Dx p[x] (3.43)

where
∫ x(T)=x

x(0)=x0
Dx denotes a path integral constrained to processes

that fulfill the boundary conditions. For weak Gaussian white noise
D ≪ 1, the exponent is dominated by SOM[x] and a saddle-point, or
WKB, approximation yields

pT(x | x0) ≈ exp
(
− inf

y s.t. y(0)=x0,y(T)=x
SOM[y]

)
. (3.44)

Note the similarity to the contraction principle (3.31); indeed, the same
result can be obtained in the framework of large-deviation theory
(Touchette 2009, and references therein).
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3.3 point processes

The language of neurons—the spikes—is not continuous. Thus, we
need to go beyond continuous-valued stochastic processes to point
process or random sets of points {t1, . . . , tn} (Stratonovich 1967; Van
Kampen 2007). For simplicity, we assume throughout that there are
no coinciding events, ti ̸= tj for i ̸= j.

Generating Functionals

Stochastic processes are fully specified by the characteristic functional
(3.32); the analogous quantity for point processes {t1, . . . , ts} on a
fixed interval ti ∈ [0, T] is the generating functional (Kuznetsov and
Stratonovich 1965; Stratonovich 1967; Van Kampen 2007)We stick to the

names by
Stratonovich (1967)

although they are
somewhat

ambiguous
(Van Kampen 2007

does not offer a
better solution).

ℓ[k] =
〈 s

∏
i=1

(
1 + k(ti)

)〉
. (3.45)

The functional derivatives determine the distribution functions

fn(t1, . . . , tn) =
δnℓ[k]

δk(t1) . . . δk(tn)

∣∣∣
k=0

. (3.46)

Performing the functional derivatives of the generating functional,

we get δnℓ[k]
δk(t1)...δk(tn)

∣∣∣
k=0

= ⟨∑i1 ̸=... ̸=in
δ(t1 − ti1) . . . δ(tn − tin)⟩ and we

see that fn(t1, . . . , tn)dt1 . . . dtn is the probability to observe an event
in each of (t1, t1 + dt) to (tn, tn + dtn). Note that the distribution
functions are not normalized, for example

∫ T
0 dt1 f1(t1) = ⟨n⟩ and∫ T

0 dt1dt2 f2(t1, t2) = ⟨n(n − 1)⟩. The derivatives of the logarithm yield
the correlation functions

gn(t1, . . . , tn) =
δn ln ℓ[k]

δk(t1) . . . δk(tn)

∣∣∣
k=0

(3.47)

which relate to the distribution functions as cumulants relate to mo-
ments. Furthermore, the correlation functions define the series expan-
sion of ln ℓ[k] which leads to

ℓ[k] = exp
( ∞

∑
n=1

1
n!

∫ T

0
dt1 . . . dtn gn(t1, . . . , tn)k(t1) . . . k(tn)

)
. (3.48)

We see that the gn(t1, . . . , tn), or the fn(t1, . . . , tn), fully specify the
generating functional and hence the point process. A point process
is called stationary if all fn(t1, . . . , tn), or equivalently all gn(t1, . . . , tn),
are invariant under time shifts ti → ti + τ. For a Poisson process, this
means g1(t1) ≡ g1, i.e., it is homogeneous.

The most simple example of a generating functional is the case of
vanishing gn(t1, . . . , tn) for n ≥ 2,

ℓ[k] = exp
( ∫ T

0
dt1 g1(t1)k(t1)

)
. (3.49)
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The number of events in the interval [0, T] has the characteristic func-
tion ⟨eisk⟩ = ℓ(eik − 1) and thus ϕ(k) = exp

(
(eik − 1)

∫ T
0 dt1 g1(t1)

)

which corresponds to a Poisson distribution with mean
∫ T

0 dt1 g1(t1).
Hence, (3.49) characterizes an inhomogeneous Poisson process.

Point processes {t1, . . . , ts} naturally give rise to the stochastic pro-
cesses ξ(t) = ∑s

i=1 δ(t − ti). The corresponding characteristic func-
tional is

ϕ[k] = ℓ[eik − 1] (3.50)

which can be seen by inserting the sum of Dirac deltas into (3.32).
Taking again the Poisson process as an example, this leads to

ϕ[k] = exp
( ∫ T

0
dt1 g1(t1)(eik(t1) − 1)

)
. (3.51)

Thus, by (3.34) the Poisson process is a white process: ⟨⟨ξ(t1)ξ(t2)⟩⟩ =
g1(t1)δ(t2 − t1). Furthermore, we get for a general point process
⟨⟨ξ(t1)ξ(t2)⟩⟩ = g1(t1)δ(t2 − t1) + g2(t1, t2), i.e., there is always a
white component in the correlation function (and all higher cumu-
lants).

3.3.1 Renewal Processes

In neuroscience, a frequently used point process is the renewal process
(Gerstner, Kistler, et al. 2014) where the intervals between events are
drawn independently from a distribution ρ(τ) (if the events are spikes,
ρ(τ) is the inter-spike interval distribution). Equivalently, a renewal
process can be specified by the survival probability S(τ) =

∫ ∞
τ ds ρ(s)

or the hazard function

h(τ) =
ρ(τ)

S(τ)
= − d

dτ
ln S(τ). (3.52)

The hazard function h(τ)dτ quantifies the conditional probability of
an event in [τ, τ + dτ) given that no event took place in [0, τ). It is
a useful quantity because it has a clear interpretation and it only
needs to fulfill two basic requirements: it needs to be non-negative (by
definition) and its integral needs to diverge (to ensure normalization
of ρ(τ)). From (3.52), we see immediately that the hazard function
specifies the survival probability by S(τ) = exp

(
−
∫ τ

0 ds h(s)
)

and
ρ(τ) by ρ(τ) = h(τ)S(τ).

The huge advantage of a renewal process is that a single function,
e.g., ρ(τ) or h(τ), fully specifies it instead of having to consider the en-
tire generating functional or the collection of all fn(t1, . . . , tn). But this
also means that all properties of the point process can be derived from
this function. Indeed, the average rate of events is ν =

[ ∫ ∞
0 ds ρ(s)s

]−1
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and the power spectrum follows from (Stratonovich 1967; Gerstner,
Kistler, et al. 2014)

S(ω) = ν
1 − |ρ̃(ω)|2
|1 − ρ̃(ω)|2 (3.53)

where ρ̃(ω) =
∫ ∞

0 dτ eiωτρ(τ).

3.3.2 Level-Crossing Processes

Another way to generate a point process is to consider an underlying
stochastic process x which (up-)crosses a certain level or threshold
θ, akin to a LIF neuron. If the stochastic process generating the level
crossings is sufficiently smooth, the distribution functions can be
determined using the Kac-Rice formulae (Stratonovich 1967; Rainal
1988; Azaïs and Wschebor 2009).

The Kac-Rice formulae follow from a simple consideration. Suppose
the process is at time t at position [x, x + dx) below the threshold
with velocity [ẋ, ẋ + dẋ). The associated probability is pt(x, ẋ)dxdẋ. To
up-cross the threshold in the interval [t, t + dt) given a fixed velocity
ẋ, the process needs to be in the interval [θ − ẋdt, θ), i.e., a maximum
of dx = ẋdt below the threshold. Thus, the probability of a threshold
crossing is pt(θ, ẋ)ẋdtdẋ, and we arrive at the first Kac-Rice formula

f1(t1) =
∫ ∞

0
dẋ pt1(θ, ẋ)ẋ (3.54)

where we integrate only over positive velocities to take into account
that it is an up-crossing. These arguments generalize for multiple
up-crossings to

fn(t1, . . . , tn) =
∫ ∞

0
dẋ1 . . . dẋn pt1,...,tn(θ, ẋ1, . . . , θ, ẋn)ẋ1 . . . ẋn (3.55)

where pt1,...,tn(x1, ẋ1, . . . , xn, ẋn) denotes the joint probability to be at
times t1, . . . tn at positions x1, . . . , xn with velocities ẋ1, . . . , ẋn. (3.55)
fully determines the point process—in principle. In practice, the inte-
grals quickly become intractable with increasing n.

For a stationary GP with zero mean, Rice (1945) famously derived
the up-crossing rate

f1 =
1

2π

σẋ

σx
exp

(
− θ2

2σ2
x

)
(3.56)

using the curious property ⟨xẋ⟩ = 0 of stationary GPs. Here, we
see a hallmark of the abovementioned smoothness condition: the
variance of the velocity σẋ needs to be finite, excluding for example
Ornstein-Uhlenbeck processes. This condition is equivalent to a finite
second spectral moment (Azaïs and Wschebor 2009) or a finite second
derivative of the correlation function at the origin.
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3.4 dynamic mean-field theory

Dynamic Mean-Field Theory (DMFT) is the central tool in this thesis
to bridge between the neuron- and the network-level and it draws
heavily on the previously introduced tools.

On an intuitive level, DMFT relies on the approximation of the
recurrent input to a neuron by a stochastic process. Importantly, this
approximation is not ad-hoc but results from a series of controlled
steps. In the spin-glass literature, DMFT was pioneered by Sompolin-
sky and Zippelius (1982) and it entered neuroscience through the
seminal work of Sompolinsky, Crisanti, and Sommers (1988).

Below, we briefly derive the central DMFT result in the most simple
setup of a fully connected, zero-mean Gaussian network (for a textbook
see Helias and Dahmen 2020). The result can be generalized in various
directions, for example taking different inputs into account (Chapter
4 and references therein), using multiple populations (Chapter 5 and
references therein), or considering sparse networks (Chapter 6 and
references therein).

DMFT describes the single-neuron statistics. An important orthogo-
nal line of work relies on the population activity as the central quantity
(see Gerstner, Kistler, et al. 2014); a recent example including finite-size
corrections is the work by Schwalger, Deger, and Gerstner (2017). The
latter approach is not used in this thesis (except for trivial cases where
the distinction is irrelevant), hence it is not further discussed in the
remainder of this introduction.

3.4.1 Model-Independent Formulation

We follow along the lines of Keup et al. (2021) to derive a DMFT
which is independent of the dynamics of the neurons. To this end,
we assume that the neuron dynamics are quantified by a distribution
p[xi | ηi] which maps the input ηi to the output xi. Additionally, we
assume that neurons are exclusively coupled through the recurrent
input

ηi(t) =
N

∑
j=1

Jijxj(t). (3.57)

For simplicity, we consider only fully connected Gaussian networks

with Jij
i.i.d.∼ N (0, g2/N). We use η = Jx and x · y =

∫ T
0 dt x(t)y(t) as

well as A · B =
∫ T

0 dt1dt2 A(t1, t2)B(t1, t2) to ease the notation.
The neuron dynamics factorize if the inputs η are given and we can

split the probability density functional of the full system into

p[x |J ] =
∫

Dη p[η |J ,x]
N

∏
i=1

p[xi | ηi] (3.58)
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with p[η |J ,x] = δ[η − Jx]. Now we marginalize the connectivity
(we perform the disorder average), i.e., we consider the distribution
p[x] =

∫
dJ p[x |J ]p(J) across the ensemble of connectivities. The

marginalization only affects the constraint δ[η− Jx]; because η and
J are linearly related and J is Gaussian, η is Gaussian as well with
⟨ηi(t)⟩ = 0 and

⟨ηi(t1)ηj(t2)⟩ = δij
g2

N

N

∑
k=1

xk(t1)xk(t2) ≡ δijC[x](t1, t2). (3.59)

We note that the ηi are independent, hence we arrive at

p[x] =
N

∏
i=1

∫
Dηi p[xi | ηi]GP[ηi | 0, C[x]]. (3.60)

Something remarkable happened here: the system almost factorizes
and is only coupled through a single scalar field C[x]. To fully decou-
ple the system, we formally introduce this global constraint through a
Dirac delta and obtain

p[x] =
∫

DC δ[C − C[x]]
N

∏
i=1

p[xi |C] (3.61)

with the short-hand notation p[xi |C] ≡
∫
Dηi p[xi | ηi]GP[ηi | 0, C], i.e.,

the output of a neuron driven by a zero-mean GP with correlation
function C. At this point, we need to specify the type of observables
that we are interested in.

We choose arbitrary network-averaged observables, i.e., we consider
the empirical measure of the trajectories

µ[y] =
1
N

N

∑
i=1

δ[xi − y]. (3.62)

The corresponding scaled cumulant generating functional is given by
(compare (3.29))We use the notation

λ{k} to denote an
object that maps a

functional k[x] to a
real number.

λ{k} = lim
N→∞

1
N

ln⟨eN
∫
Dy k[y]µ[y]⟩ = lim

N→∞

1
N

ln⟨e∑N
i=1 k[xi ]⟩. (3.63)

Using (3.61) for the average, expressing δ[C − C[x]] with the inverse
transform of the corresponding characteristic functional exp(iC̃ ·C[x]),
and rescaling C̃ → NC̃, we arrive at

λ{k} = lim
N→∞

1
N

ln
∫

DCDC̃ e−N(iC̃·C−Ω{k,C,C̃}), (3.64)

Ω{k, C, C̃} = ln
∫

Dx p[x |C]eig2x·C̃·x+k[x]. (3.65)

Here, we neglected terms which vanish in the limit N → ∞. This looks
very suggestive of a saddle-point approximation:

λ{k} = −iC̃k · Ck + Ω{k, Ck, C̃k} (3.66)
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where Ck and C̃k are determined self-consistently by the saddle-point
equations iC̃ = δ

δC Ω{k, C, C̃} and iC = δ
δC̃ Ω{k, C, C̃}.

The average empirical measure µ̂ follows by differentiating λ{k}
and evaluating it at zero. Due to the saddle-point equations only the
partial derivative w.r.t. k survives and we get

λ′{k} =
p[x |Ck]eig2x·C̃k ·x+k[x]

∫
Dx p[x |Ck]eig2x·C̃k ·x+k[x]

. (3.67)

To evaluate the expression at k = 0, we first evaluate the saddle-point
equations at k = 0. C̃0 = 0 is the valid solution; for this choice the
remaining saddle-point equation becomes

C0(t1, t2) = g2
∫

Dx p[x |C0]x(t1)x(t2) ≡ g2⟨x(t1)x(t2)⟩C0 . (3.68)

With this, we arrive at

µ̂[x] = p[x |C0] ≡
∫

Dη p[x | η]GP[η | 0, C0]. (3.69)

In words: the most likely empirical measure corresponds to the single-
neuron dynamics driven by a zero-mean GP with self-consistent corre-
lation function determined by (3.68).

Let us briefly recapitulate this result. We determined the average
empirical measure µ̂[x]. From λ{k}, we see that its fluctuations are
suppressed with 1/N. Thus, µ̂[x] is representative for the system, i.e.,
the system is self-averaging. Accordingly, we can use µ̂[x] to calculate
arbitrary population-averaged observables.

3.4.2 Applications

Firing Rate Distribution

The empirical measure is a rather abstract quantity. Thus, let us make
the above result more concrete with an example: calculating the dis-
tribution of firing rates of a fully-connected, zero-mean Gaussian
network of GLM neurons with kernel κ(t) = Θ(t) exp(−t/τ) and
exponential nonlinearity λ(t) = c1 exp (V(t)− θ).

First, we need to determine C0, which means we need to solve the
self-consistent colored noise problem posed by (3.68). In the stationary
state, the r.h.s. of (3.68) can be solved explicitly for this model (see
Chapter 6):

C0(τ) = g2
(

νδ(τ) + ν2e(κ̃∗C0)(τ)
)

, (3.70)

where κ̃(t) = τ
2 exp(−|t|/τ) and ν ≡ ⟨x⟩C0 denotes the network-

averaged firing rate which is given by ν = c1 exp
(

1
2 (κ̃ ∗ C0)(0)− θ

)
.

A numerical solution of (3.70) is straightforward to find using a fixed-
point iteration.
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With C0 at hand, we also have the most likely empirical measure
µ̂[x]. From µ̂[x], we can calculate the distribution of firing rates:
p(ν) =

∫
Dx µ̂[x]δ(ν − x̄) with x̄ ≡ limT→∞

1
T

∫ T
0 dt x(t). Inserting

µ̂[x] =
∫
Dη p[x | η]GP[η | 0, C0], we get

p(ν) =
∫

Dη p(ν | η)GP[η | 0, C0]. (3.71)

Thus, we need to calculate the distribution of firing rates of GLM
neurons driven by a stationary GP. Due to the exponential nonlinearity,
this leads to a lognormal distribution (see Chapter 6).

Diffusion Approximation

In spiking networks, an elegant method due to Amit and Brunel (1997)
allows to circumvent the (typically intractable) colored noise problem
if only the firing rate is of interest. For spike trains x(t), ⟨x(t1)x(t2)⟩C0

always contains a Dirac delta contribution scaled by the firing rate
ν(t1)δ(t2 − t1), e.g., the first term on the r.h.s. of (3.70). Neglecting
the remaining colored contribution—approximating the presynaptic
spike trains as Gaussian white noise—we obtain a self-consistency
equation for the firing rate. This approximation is called the diffusion
approximation.

The diffusion approximation enables one to use the Fokker-Planck
equation and its rich toolbox (Risken 1996). For example, it allows
not only to determine the self-consistent rate in balanced networks of
LIF neurons (Amit and Brunel 1997) but also to investigate oscillatory
instabilities which shape the phase diagram (Brunel 2000). A central
prerequisite for these results is that the firing rate of an LIF neuron
driven by white noise is known analytically (Siegert 1951; Ricciardi
1977; Fourcaud and Brunel 2002); indeed, for white-noise-driven LIF
neurons also the linear response function (Brunel and Hakim 1999;
Lindner and Schimansky-Geier 2001; Schuecker, Diesmann, and Helias
2015) and the output power spectrum (Lindner, Schimansky-Geier,
and Longtin 2002) are known analytically. Thus, the white-noise case
is much more amenable to analytical treatment—at the price of self-
consistency on the level of the second order statistics.

3.5 inference

Statistical inference deals with the inverse of the problems considered
thus far: determining the properties of the underlying distribution
from observed data (see for example MacKay 2003; Gelman et al. 2014).
Here, we take a Bayesian point of view.
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The probability of the data {x} ≡ {x1, . . . } for given parameters θ

is determined by the data distribution p({x} | θ) which we assume to
be known. Using Bayes’ theorem, we get

p(θ | {x}) = p({x} | θ)p(θ)
p({x}) . (3.72)

Thus, we immediately get the posterior probability of the parameters
given the data. The only unknown quantity is the prior p(θ) since the
denominator can be expressed as p({x}) =

∫
dθ p({x} | θ)p(θ).

The posterior yields the entire distribution of parameters given the
data. Often, the goal is more modest: to determine a point estimate
of the parameters. (3.72) suggests to simply maximize the posterior:
θ̂ = argmaxθ p(θ | {x}). If the argmaxθ does not affect the prior, we
recover the maximum likelihood estimate θ̂ = argmaxθ p({x} | θ).

If we want to make inferences about a not yet observed datum x∗,
we use the data distribution in combination with the posterior:

p(x∗ | {x}) =
∫

dθ p(x∗ | θ)p(θ | {x}). (3.73)

In cases where the data constrains the parameters well, the posterior
is sharply peaked and we can use a Laplace approximation, leading
to p(x∗ | {x}) ≈ p(x∗ | θ̂).

So far, we assumed the data distribution to be given. However,
we typically don’t know the underlying distribution. Accordingly,
we need to compare different models p({x} | θ,M), i.e., we need to
perform model comparison. Again using Bayes rule, we get

p(M1 | {x})
p(M2 | {x}) =

p({x} |M1)

p({x} |M2)

p(M1)

p(M2)
(3.74)

where p({x} |M) appeared as an innocuous normalization constant
in (3.72) and p(M) is the model prior. Thus, we can compare the
relative probabilities of the models given the data and reject one of
the models if it is much more unlikely.

3.5.1 Bayesian Supervised Learning

Supervised learning can be framed as an inference problem (MacKay
2003). In this framework, the model, e.g., a feedforward network, deter-
mines the distribution of outputs y for given inputs x and parameters
θ, that is p(y | θ, x). The task is to determine the most likely parameters
θ̂ giving rise to the dataset of observed inputs {x} and outputs {y}.
From Bayes’ theorem, we get

p(θ | {y}, {x}) = p({y} | θ, {x})p(θ)
p({y} | {x}) (3.75)

where we used conditional independence of the prior on the input,
p(θ | {x}) = p(θ). Thus, we arrive at an inference problem: the ‘trained’
parameters are determined by θ̂ = argmaxθ p(θ | {y}, {x}).
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For example, let us assume that the model provides a deterministic
mapping of inputs to outputs y = fθ(x) and that the output is cor-
rupted by noise ϵ ∼ N (0, σ2

ϵ ). In addition, let us assume that the prior
is also Gaussian, θ ∼ N (0, σ2

θ ). Taking the logarithm on both sides of
(3.75), we get

θ̂ = argminθ

[
1

2σ2
ϵ

∑
i
(yi − fθ(xi))

2 +
1

2σ2
θ

θ2
]

. (3.76)

Thus, we recover a quadratic loss function with an L2 regularizer
on the parameters. Clearly, different choices of output noise and
parameter priors lead to different loss functions and regularizers,
respectively.

Gaussian Processes

Does one always have to train the models and obtain a point estimate
θ̂? It turns out that there is a neat way around this (MacKay 2003;
Rasmussen and Williams 2006): combining the posterior (3.75) with
the prediction formula (3.73) yields

p(y∗ | x∗, {y}, {x}) = p(y∗, {y} | x∗, {x})
p({y} | {x}) . (3.77)

Thus, all we need is to condition the network prior p({y} | {x}) =∫
dθ p({y} | θ, {x})p(θ) on the training data—if we manage to obtain

the network prior.
Intuitively, the network prior characterizes the distribution of input-

output relations of the model obtained from the prior distribution
of the parameters. For example, one could initialize a network with
many realizations of the weights according to their prior and measure
the input-output function.

An easily tractable example is projection into feature space us-
ing fixed basis functions yn = ∑k θkϕk(xn) with a Gaussian prior

θk
i.i.d.∼ N (0, σ2

θ ). Since y relates linearly to the parameters, the net-
work prior is zero-mean Gaussian with ⟨ynym⟩ = σ2

θ ∑k ϕk(xn)ϕk(xm).
This multivariate Gaussian can be seen as a marginalization of the
zero-mean GP with correlation function (in this context called kernel)

C(x, x′) = σ2
θ ∑

k
ϕk(x)ϕk(x′) (3.78)

to the data. In this case, we see explicitly how the likelihood in combi-
nation with the parameter prior give rise to a GP network prior and
the associated kernel. For more complex models, see Chapter 4 and
references therein.

The final step (3.77) is straightforward for a GP prior since the
conditional of a Gaussian is known analytically, see (3.16). We get

p(y∗ | x∗, {y}, {x}) = N (y∗ | µ∗, σ2
∗) (3.79)
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with parameters µ∗ = ∑m,n C(x∗, xm)C(xm, xn)−1yn, σ2
∗ = C(x∗, x∗)−

∑m,n C(x∗, xm)C(xm, xn)−1C(xn, x∗). From a computational perspec-
tive, the most expensive operation is usually the inversion of the
matrix C(xm, xn) which scales cubically in the size of the dataset. From
a conceptual perspective, GP inference reduces a prediction problem
to simple linear algebra!
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4
U N I F I E D F I E L D T H E O RY F O R D E E P A N D
R E C U R R E N T N E U R A L N E T W O R K S

preamble

We start the main part of this thesis with a focus on rather simple
network models: fully-connected, deep, feedforward networks (DNNs)
and vanilla recurrent networks (RNNs). Owing to their simplicity,
we can go beyond the dynamics and investigate functional aspects.
More concretely, we consider supervised learning from a Bayesian
perspective (see Section 3.5).

There are two necessary ingredients for Bayesian supervised learn-
ing: 1) the likelihood which encodes the input-output relation for
given parameters, and 2) a prior on the parameters. For both RNNs
and DNNs, the likelihood is readily available—it corresponds to a de-
generate distribution which maps inputs to outputs in a deterministic
manner. A natural prior on the parameters is an independent Gaus-
sian, akin to commonly used initialization schemes of such networks
(Glorot and Bengio 2010; He et al. 2015).

The key challenge is to compute the network prior, i.e., to marginal-
ize the parameter prior. For finite networks, this problem is, in general,
intractable. In the limit of infinite network size, however, the situation
changes drastically: the network prior of both DNNs and RNNs be-
comes a Gaussian process (GP). For single-layer networks this is the
result of the seminal work by Neal (1996) and Williams (1998); it was
extended to deep networks by Lee et al. (2018) and Matthews et al.
(2018). For RNNs, this is a recent result by Yang (2019) because weight
sharing impedes a straightforward application of the central limit
theorem. In both cases, the final step—conditioning on the training
data—can be performed analytically owing to the GP limit.

In principle, knowing the infinite-size limit paves the road to a
perturbative computation of finite-size corrections (e.g., Naveh et
al. 2021; Grosvenor and Jefferson 2022; Roberts, Yaida, and Hanin
2022). However, the above results rely on different techniques such
that performing the perturbative expansion is not straightforward.
Hence, in this chapter, we unify the calculation of the network prior
using the language of field theory—dynamic mean-field theory, to
be precise (see Section 3.4)—which comes with a rich toolbox for
finite-size corrections (e.g., Zinn-Justin 1996; Moshe and Zinn-Justin
2003). Furthermore, we systematically compare the resulting GPs for
DNNs and RNNs which has, to the best of our knowledge, not yet
been done.

49
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Abstract. Understanding capabilities and limitations of different network
architectures is of fundamental importance to machine learning. Bayesian
inference on Gaussian processes has proven to be a viable approach for studying
recurrent and deep networks in the limit of infinite layer width, n → ∞. Here
we present a unified and systematic derivation of the mean-field theory for both
architectures that starts from first principles by employing established methods
from statistical physics of disordered systems. The theory elucidates that while the
mean-field equations are different with regard to their temporal structure, they yet
yield identical Gaussian kernels when readouts are taken at a single time point
or layer, respectively. Bayesian inference applied to classification then predicts
identical performance and capabilities for the two architectures. Numerically,
we find that convergence towards the mean-field theory is typically slower for
recurrent networks than for deep networks and the convergence speed depends
non-trivially on the parameters of the weight prior as well as the depth or number
of time steps, respectively. Our method exposes that Gaussian processes are but
the lowest order of a systematic expansion in 1/n. The formalism thus paves
the way to investigate the fundamental differences between recurrent and deep
architectures at finite widths n.
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1. Introduction

Deep learning has brought a dramatic improvement of the state-of-the-art in many
fields of data science, ranging from speech recognition and translation to visual object
classification [1–4]. Any progress in the empirically-driven improvement of algorithms
must be accompanied by a profound understanding of why and how deep learning
works. Such an understanding is needed to provide guarantees, for example about the
accuracy and the robustness of the networks, and will help preventing the frequently
reported failures of deep learning, such as its vulnerability to adversarial examples [5].

A common method to obtain analytical insight into deep networks is to study
the overparametrized limit in which the width n` of all layers ` tends to infinity. In
this limit, it has been shown with mean-field theory that under a Gaussian prior
on the weights W (`) in each layer, the pre-activations follow a Gaussian process
with an iteratively determined covariance [6–9]; in particular, the pre-activations
across different layers and across different neurons become independently Gaussian
distributed. This approach allows one to investigate learning and prediction in the
framework of Bayesian inference [7].

Often, analogies are drawn between deep neural networks (DNNs) and discrete-
time recurrent neural networks (RNNs): Unrolling time in RNNs formally converts
them to DNNs, however with shared weights W (`) ≡ W ∀ ` across layers of identical
size n` ≡ n ∀ `. This led to parallel developments in terms of training strategies for
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both architectures, such as backpropagation [10] and backpropagation through time
[11].

There are, however, a number of open issues when applying mean-field theory to
deep and recurrent neural networks. First of all, the approximation as a Gaussian
process relies on the central limit theorem and is thus strictly valid only in the limit
of infinite layer widths n` → ∞. Moreover, due to weight sharing, pre-activations
for different points in time are not statistically independent in RNNs; the central
limit theorem is thus not applicable and the mean-field approximation becomes
uncontrolled. Several studies still find that the mean-field theories of DNNs and
RNNs appear to be closely related, culminating in ref. [12] which formulates a variety
of network architectures as tensor programs and finds that most common network
architectures, under certain conditions on the non-linearities and piors, converge
in distribution to a Gaussian process. But the relationship between the Gaussian
processes for RNNs and DNNs has so far not been addressed.

Currently, there is no systematic approach that would allow one to simultaneously
study DNNs and RNNs and that would be extendable to finite layer width n`, n <
∞; the agreement of the mean-field predictions with the performance of finite-size
networks is based on numerical evidence so far. Furthermore, in the limit of infinite
width the number of trainable parameters of a DNN,

∑L
`=1 n`+1n` → ∞, and of an

RNN, n2 → ∞, both tend to infinity and do not enter explicitly in the result of
the Gaussian approximation. The Gaussian process thus has limited capability of
quantifying the expressivity of neural networks in relation to the required resources,
such as the number of trained weights. Studies on finite-size corrections beyond the
n` → ∞ limit are so far restricted to DNNs [13–18]. Understanding the limits of the
putative equivalence of DNNs and RNNs on the mean-field level requires a common
theoretical basis for the two architectures that would extend to finite n and finite n`.

To overcome these limitations, we here combine the established view of Bayesian
inference by Gaussian processes [19] with the emerging methods of statistical field
theory applied to neural networks [20–25]. The latter methods have been developed
in the field of disordered systems, which are systems with random parameters, such
as spin glasses [26–28]. These methods are able to extract the typical behavior of a
system with a large number of interacting components. For example, this approach has
recently been used to characterize the typical richness, represented by the entropy, of
Boolean functions computed in the output layer of DNNs, RNNs, and sparse Boolean
circuits [29].

Concretely, in this paper, we present a systematic derivation of the mean-field
theories for DNNs and RNNs that is based on the well-established approach of field
theory for recurrent networks [20, 24, 30], which allows a unified treatment of the two
architectures [29]. This paves the way for extensions to finite n, n`, enabled by a rich
set of systematic methods available in the mathematical physics literature to compute
corrections beyond the leading order [31, 32]. Already to leading order, we find that the
mean-field theories of DNNs and RNNs are in fact qualitatively different with regard to
correlations across layers or time, respectively. The predictive distribution in Bayesian
training is therefore in general different between the two architectures. Nonetheless,
the structure of the mean-field equations can give rise to the same Gaussian processes
kernel in the limit of infinite width for both DNNs and RNNs if the readout in the RNN
is taken from a single time step. This finding holds for single inputs, as pointed out
in ref. [29], as well as input sequences. Furthermore, for a point-symmetric activation
function [29], there is no observable difference between DNNs and RNNs on the mean-
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field level if the biases are uncorrelated in time and the input is only supplied in the
first time step.

2. Theoretical background

2.1. Bayesian supervised learning

First, we briefly review the Bayesian approach to supervised learning [33]. Let
p(y |x,θ) be a model (here DNN or RNN) that maps inputs x ∈ Rnin to outputs
y ∈ Rnout and that depends on a set of parameters θ. Conventional training of
such a model corresponds to finding a particular parameter set θ̂ that maximizes the
likelihood p(Y |X,θ) for some given training data D = {X,Y }, with X ∈ RnD×nin

and Y ∈ RnD×nout . A prediction for the output y∗ caused by an unseen test input
x∗ is then given by p(y∗ |x∗, θ̂). In the Bayesian view, one instead assumes a
prior distribution of parameters p(θ) to obtain, via Bayes’ rule, an entire posterior
distribution of the parameters

p(θ |Y ,X) =
p(Y |X,θ) p(θ)∫
dθ p(Y |X,θ) p(θ)

. (1)

The conditioning on the training data in p(θ |Y ,X) can be interpreted as selecting,
among all possible parameter sets given by the prior p(θ), those parameter sets
that accomplish the mapping X → Y . A Bayesian prediction for some unseen test
input x∗ correspondingly results from marginalizing the likelihood over the posterior
distribution of the parameters

p(y∗ |x∗,Y ,X) =

∫
dθ p(y∗ |x∗,θ) p(θ |Y ,X) . (2)

Inserting Eq. (1) yields the predictive distribution

p(y∗ |x∗,Y ,X) =
p(y∗,Y |x∗,X)

p(Y |X)
(3)

that depends on the model-dependent network priors

p(Y |X) =

∫
dθ p(Y |X,θ) p(θ), (4)

p(y∗,Y |x∗,X) =

∫
dθ p(y∗ |x∗,θ) p(Y |X,θ) p(θ) . (5)

The network priors encompass all input-output relationships which are compatible
with the prior p(θ) and the model. The difference between the two network priors,
Eq. (4) and Eq. (5), is the information on the additional test input x∗ and output y∗.

Note that the Bayesian approach to supervised learning can also be used for input
sequences {x(0), . . . ,x(A)} with x(a) ∈ Rnin . To this end, it is sufficient to replace
x→ {x(0), . . . ,x(A)} and X → {X(0), . . . ,X(A)} in the above formulas.

In the following, we use a field theoretic approach to calculate the network priors
for both deep and recurrent neural networks. Conditioning on the training data,
Eq. (3), then yields the Bayesian prediction of the output.

2.2. Network architectures

Deep feedforward neural networks (DNNs) and discrete-time recurrent neural networks
(RNNs) can both be described by a set of pre-activations h(a) ∈ Rna that are



CONTENTS 5

determined by an affine linear transformation

h(a) = W (a)φ(h(a−1)) +W (in,a)x(a) + ξ(a) (6)

of activations φ(h(a−1)) ∈ Rna−1 . The pre-activations are transformed by an activation
function φ : R → R which is applied element-wise to vectors. For DNNs, W (a) ∈
Rna×na−1 denotes the weight matrix from layer a − 1 to layer a, and ξ(a) ∈ Rna

represents biases in layer a. Inputs x(a) are typically only applied to the first layer
such that the input matrices W (in,a) ∈ Rna×nin vanish for a > 0. For RNNs, the
index a denotes different time steps. The weight matrix, input matrix, and biases are
static over time, W (a) ≡ W , W (in,a) ≡ W (in), and ξ(a) ≡ ξ, and couple activities
across successive time steps. For both architectures, we include an additional input
and output layer

h(0) = W (in,0)x(0) + ξ(0), (7)
y = W (out)φ(h(A)) + ξ(A+1), (8)

with W (out) ∈ Rnout×nA , which allow us to set independent input and output
dimensions. Here, A denotes the final layer for the DNN and the final time point for
the RNN. The set of trainable parameters θ is the collection ofW (in,a),W (out),W (a),
and ξ(a).

2.3. Parameter priors

We use Gaussian priors for all model parameters, that is for the RNN

Wij
i.i.d.∼ N (0, n−1g2), (9)

W
(in)
ij

i.i.d.∼ N (0, n−1
in g

2
0), (10)

ξi
i.i.d.∼ N (0, σ2), (11)

and for the DNN

W
(a)
ij

i.i.d.∼ N (0, n−1
a−1g

2
a), (12)

W
(in,a)
ij

i.i.d.∼ N (0, n−1
in g

2
0), (13)

ξ
(a)
i

i.i.d.∼ N (0, σ2
a), (14)

as well as

W
(out)
ij

i.i.d.∼ N (0, n−1
A g2

A+1), (15)

ξ
(A+1)
i

i.i.d.∼ N (0, σ2
A+1), (16)

for both architectures (where nA = n for the RNN). These priors on the parameters
are used to calculate the network prior p(Y |X).

3. Unified field theory for RNNs and DNNs

The network prior p(Y |X), Eq. (4), is a joint distribution of all outputs yα ∈ Y ,
each corresponding to a single training input xα ∈ X. Its calculation is tantamount
to a known problem in physics, the replica calculation [31, 34]. Here, each replicon
is a copy of the network with the same parameters θ but a different input xα. For
simplicity, in the following we illustrate the derivation of p(y |x) for a single input
x ≡ x(a=0) that is presented to the first layer of the DNN or at the first time point
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for the RNN, respectively. We present the more cumbersome but conceptually similar
general case of multiple inputs, or multiple input sequences, in Appendix 6.1.

The network prior is defined as the probability of the output given the input,

p(y |x) =

∫
dθ p(y |x,θ) p(θ), (17)

marginalized over the parameter prior, where

p(y |x,θ) =

∫
dh(0) . . .

∫
dh(A) δ

(
y −W (out)φ(A) − ξ(A+1)

)

×
A∏

a=1

δ
(
h(a) −W (a)φ(a−1) − ξ(a)

)

× δ
(
h(0) −W (in)x− ξ(0)

)
, (18)

follows by enforcing the set of equations, Eq. (6) to Eq. (8), using Dirac constraints.
Throughout the manuscript, we use the abbreviation φ(a) = φ(h(a)).

3.1. Marginalization of the parameter prior

From Eq. (18), it follows that the computation of the marginalization of the parameters
θ in Eq. (17) can be reduced to

p(y |x) =

∫
dh(0) . . .

∫
dh(A)

×
〈
δ
(
y −W (out)φ(A) − ξ(A+1)

)〉
W (out),ξ(A+1)

×
〈〈 A∏

a=1

δ
(
h(a) −W (a)φ(a−1) − ξ(a)

)〉
{W (a)}

×
〈
δ
(
h(0) −W (in)x− ξ(0)

)〉
W (in)

〉
{ξ(a)}

. (19)

To proceed, it is advantageous to represent the Dirac δ-distributions as Fourier
integrals,

δ(h) =

∫
dh̃ exp(h̃Th) (20)

with the inner product h̃Th =
∑
k h̃khk and

∫
dh̃ =

∏
k

∫
iR

dh̃k
2πi , because it leads to

averages of the form 〈exp(kθ)〉θ which are analytically solvable. Using 〈exp(kθ)〉θ =
exp

(
1
2σ

2k2
)
for θ ∼ N (0, σ2), the network prior for a single replicon, p(y |x), takes

the form (details in Appendix 6.1)

p(y |x) =

∫
dỹ

∫
Dh

∫
Dh̃ exp

(
S(y, ỹ,h, h̃ |x)

)
, (21)

where
∫
Dh ≡ ∏A

a=0

∏
k

∫
R dh

(a)
k and

∫
Dh̃ ≡ ∏A

a=0

∏
k

∫
iR

dh̃
(a)
k

2πi . The exponent S,
commonly called action, is given by

S(y, ỹ,h, h̃ |x) = Sout(y, ỹ |h(A)) + Snet(h, h̃ |x), (22)

where

Snet(h, h̃ |x) :=

A∑

a=0

h̃(a)Th(a) +
1

2

A∑

a,b=0

σ2
a h̃

(a)TMa,bh̃
(b)
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+
1

2

A∑

a,b=1

g2
a

na−1
h̃(a)Tφ(a−1)TMa,bφ

(b−1)h̃(b)

+
g2

0

2nin
h̃(0)TxTxh̃(0) (23)

is the action of the input and the recurrent layer of the RNN or the inner part of the
DNN, respectively, and

Sout(y, ỹ |h(A)) := ỹTy +
σ2
A+1

2
ỹTỹ +

g2
A+1

2nA
ỹTφ(A)Tφ(A)ỹ (24)

is the action for the output layer. Note that S is diagonal in neuron indices with
respect to the explicitly appearing fields h and h̃ and couplings across neurons are
only mediated by terms of the form ∝ φTφ.

For RNNs, the shared connectivity and biases at different time points imply
correlations across time steps; for DNNs, in contrast, the connectivity and biases are
realized independently across layers, so that the action decomposes into a sum of A+2
individual layers. In Eq. (23), this leads to

Ma,b =

{
1 RNN
δa,b DNN

(25)

which is the only difference between DNN and RNN in this formalism.

3.2. Auxiliary variables

An action that is quadratic in h and h̃ corresponds to a Gaussian and therefore to an
analytically solvable integral. However, the post-activations φ ≡ φ(h) in Snet and Sout
introduce a non-quadratic part and the terms ∝ h̃Th̃ φTφ cause a coupling across
neurons. To deal with this difficulty, we introduce new auxiliary variables

C(a,b) := Ma,b

[
σ2
a + 1a≥1,b≥1

g2
a

na−1
φ(a−1)Tφ(b−1)

]

+ 1a=0,b=0
g2

0

nin
xTx, (26)

where 0 ≤ a, b ≤ A+1, a common practice originating from dynamic spin-glass theory
[35] and used for random networks [23–25, 36]. The second term ∝ φTφ in Eq. (26)
contains the sum of post-activations over all neuron indices. Assuming sufficiently
weak correlations among the φi, we expect the sum to be close to its mean value with
decreasing variations as na grows; for large na the sum is thus close to a Gaussian.
This intuition is made precise below by a formal saddle point approximation in C.

Enforcing the auxiliary variables through Dirac-δ constraints, analogous to
Eq. (20) (see Appendix 6.1 for details), leads to the prior distribution

p(y |x) =

∫
dỹ exp

(
ỹTy

)〈
exp

(
1

2
ỹTC(A+1,A+1)ỹ

)〉

C,C̃

, (27)

where the distribution C, C̃ ∼ exp
(
Saux(C, C̃)

)
is described by the action
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Saux(C, C̃) := − n
A+1∑

a,b=0

νa−1 C̃
(a,b)C(a,b) + nWaux(C̃ |C). (28)

Here, νa = na/n with n−1 ≡ nin is the size of a layer in the DNN relative to the size
of the RNN. The recurrent part and the input, which decouple in the neurons, are
together described for the DNN by

WDNN
aux (C̃ |C) =

A+1∑

a=1

νa−1 ln
〈
eC̃

(a,a) g2aφ
(a−1)φ(a−1)

〉
h(a−1)

+ ν−1 C̃
(0,0) g

2
0

nin
xTx+

A+1∑

a=0

νa−1 C̃
(a,a)σ2

a (29)

with h(a) ∼ N (0, C(a,a)) a centered Gaussian with layer-dependent variance
〈h(a)h(a)〉 = C(a,a) and for the RNN by

WRNN
aux (C̃ |C) = ln

〈
e
∑A+1
a,b=1 C̃

(a,b) g2φ(a−1)φ(b−1)
〉
{h(a)}

+ ν−1 C̃
(0,0) g

2
0

nin
xTx+

A+1∑

a,b=0

C̃(a,b)σ2 (30)

with {h(a)} ≡ {h(a)}0≤a≤A and {h(a)}0≤a≤A ∼ N (0, C) a centered Gaussian across
time with covariance matrix 〈h(a)h(b)〉 = C(a,b).

3.3. Saddle-point approximation

The factor n in Eq. (28), which stems from the decoupling across neurons, for large
n leads to a strongly peaked distribution of C and C̃. Therefore we can use a saddle
point approximation to calculate the average over C and C̃ in Eq. (27). In the limit
n→∞ this approximation becomes exact.

We thus search for stationary points of the action, ∂
∂C(a,b)Saux(C, C̃)

!
= 0 and

∂
∂C̃(a,b)

Saux(C, C̃)
!
= 0, which yields a coupled set of self-consistency equations for

the mean values C and C̃, commonly called mean-field equations: C̃
(a,b)

≡ 0, which
follows from the normalization of the probability distribution [37], and

C(a,b) = Ma,b

[
σ2
a + 1a≥1,b≥1 g

2
a〈φ(h(a−1))φ(h(b−1))〉h(a−1),h(b−1)

]

+ 1a=0,b=0
g2

0

nin
xTx (31)

with h(a−1), h(b−1) ∼ N (0, C). Eq. (31) comprises both DNN and RNN; the difference
between Eq. (29) and Eq. (30) leads to the appearance of Ma,b on the r.h.s. The
average on the r.h.s. has to be taken with respect to a theory that only includes two
layers or time points. This is due to the marginalization property of the Gaussian
distribution of the pre-activations h(a−1), which results from inserting the saddle-
point solutions Eq. (31) for C and C̃. Accordingly, we are left with a closed system
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of equations for the saddle-point values C that are the layer- or time-dependent
correlations. These equations need to be solved recursively from the input C

(0,0)
=

σ2
0 +

g20
nin
xTx to the output C

(A+1,A+1)
= σ2

A+1 + g2
A+1〈φ(h(A))φ(h(A))〉h(A),h(A) .

3.4. Network prior

Computing the Gaussian integral over ỹ in the saddle-point approximation of Eq. (27),
one obtains the distribution of the outputs as independent Gaussians across neurons i

p(y |x) =
∏

i

p(yi |x) =
∏

i

N (yi ; 0, C
(A+1,A+1)

) . (32)

An analogous calculation for multiple input sequences {x(0)
α , . . . ,x

(A)
α } (see

Appendix 6.1) yields the equivalent mean-field equations

C
(a,b)

αβ = Ma,b

[
σ2
a + 1a≥1,b≥1 g

2
a〈φ(h(a−1)

α )φ(h
(b−1)
β )〉

h
(a−1)
α ,h

(b−1)
β

+ 1a≤A,b≤A
g2

0

nin
x(a)T
α x

(b)
β

]
(33)

with h(a−1)
α , h

(b−1)
β ∼ N (0, C) and 0 ≤ a, b ≤ A + 1. These lead to the joint network

prior

p(Y | {X(0), . . . ,X(A)}) =
∏

i

p(yi | {X(0), . . . ,X(A)})

=
∏

i

N (yi ; 0,K) (34)

where the covariance matrix is the Gram matrix of the kernel [19],

Kαβ = C
(A+1,A+1)
α,β . (35)

Here yi denotes the i-th row of the output matrix Y that comprises the output of
neuron i to all input sequences {x(0)

α , . . . ,x
(A)
α }.

In principle, it is also possible to use independent biases or input weights across
time steps in the RNN. This would lead to the respective replacements Ma,bσ

2 →
δa,bσ

2 and Ma,b1a≤A,b≤A
g20
nin
x

(a)T
α x

(b)
β → δa,b1a≤A,b≤A

g20
nin
x

(a)T
α x

(b)
β in Eq. (33).

3.5. Predictive distribution

We split X,Y into training data (indexed by subscript D) and test data (indexed
by subscript ∗). The conditioning on the training data via Eq. (3) can here be done
analytically because the network priors are Gaussian [19]. For scalar inputs, this yields
the predictive distribution

p(Y∗ |X∗,YD,XD) =
∏

i

N (y∗i ;µGP ,KGP ) (36)

with
µGP = K∗DK

−1
DDyD, KGP = K∗∗ −K∗DK−1

DDK
T
∗D, (37)

which are fully determined by the kernel matrix K =

(
KDD KT

∗D
K∗D KDD

)
. For

input sequences, it is again sufficient to replace X∗ → {X(0)
∗ , . . . ,X

(A)
∗ } and XD →

{X(0)
D , . . . ,X

(A)
D }.
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Figure 1. Mean-field theory for DNN and RNN with a single input.
a) Average variance in mean-field theory C(a,a) (Eq. (31); solid gray curve)
and estimate 1

na

∑
i h

(a)
i h

(a)
i from simulation, averaged over 100 realizations of

networks, for biases that are uncorrelated across time/layers (blue crosses RNN;
orange dots DNN). b) Cross-covariance C(a,b) as a function of the hidden layer
index a for fixed b ∈ {10, 30} and uncorrelated biases. RNN: Mean-field theory
(solid dark blue and dark magenta). Mean (blue / purple dots) and standard
error of the mean (light blue / light purple tube) of 1

na

∑
i h

(a)
i h

(b)
i estimated

from simulation of 100 network realizations. DNN: Mean (orange dots) and
standard error of the mean of 1

na

∑
i h

(a)
i h

(b)
i estimated from simulation of 100

network realizations. Other parameters g2
0 = g2 = 1.6, σ2 = 0.2, finite layer

width na = 2000, A = 30 hidden layers, ReLU activation φ(x) = max(0, x) and

Gaussian inputs x i.i.d.∼ N (1, 1) with nin = 105. c) Same as a) but for biases that
are static across time/layers. d) Same as b) but for the static bias case.

4. Comparison of RNNs and DNNs

Above, we derived the mean-field equations (33) for the kernel matrixK using a field-
theoretic approach. Here, we investigate differences in the mean-field distributions
of the different network architectures, starting with the kernel and considering the
predictive distribution afterwards.
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4.1. Kernel

The diagonal elements, C(a,a) for the single-input case in Eq. (31) and equivalently
C

(a,a)
α,β for the multiple-input-sequences case in Eq. (33), are identical for RNNs and

DNNs, because Ma,a = 1 for both architectures. This implies that the equal-time
or within-layer statistics, correspondingly, is the same in both architectures. The
reason is that the iterations Eq. (31) and Eq. (33) for equal-time points a = b form
closed sets of equations; they can be solved independently of the statistics for different
time points a 6= b. Formally, this follows from the marginalization property of the
Gaussian, which implies that any subset of a multivariate Gaussian is Gaussian, too,
with a covariance matrix that is the corresponding sector of the covariance matrix
of all variables [19]. The precise agreement of this mean-field prediction with the
average correlation estimated from direct simulation is shown in Figure 1a and c for
the single-input case for both uncorrelated (a) and static biases (c) across time or
layers, respectively.

A notable difference between RNN and DNN is that activity in the RNN is
correlated across time steps due to the shared weights, even if biases are uncorrelated
in time, as shown in Figure 1b. Static biases simply strengthen the correlations
across time steps (see Figure 1d). For DNNs, in contrast, cross-layer correlations
only arise due to biases that are correlated across layers, because weights are drawn
independently for each layer. This is shown in Figure 1b and d: Correlations vanish for
DNNs in the uncorrelated bias case (b) and take on the value σ2, the variance of the
bias, in the static bias case (d). Again, the mean-field theory accurately predicts the
non-zero correlations across time in the RNN as well as the correlations across layers
generated by the correlated biases in the DNN. In the RNN, temporal correlations
show a non-trivial interplay due to the shared weights across time. We observe an
instability that can build up by this mechanism in finite-size RNNs, even in parameter
regimes that are deemed stable in mean-field theory (see Appendix 6.2, Figure 3).

In a particular case, the correlations across time steps also vanish for the RNN:
we show by induction that off-diagonal elements vanish for point-symmetric activation
functions if inputs are only provided in the initial time step, {X(0), 0, . . . , 0} ≡ X,
and the bias is absent, σ = 0 (or uncorrelated across time steps). Assuming that
C

(a−1,b−1)

α,β
a 6=b
= 0, we have

C
(a,b)
α,β = g2 〈φ(h(a−1)

α )〉
h
(a−1)
α
〈φ(h

(b−1)
β )〉

h
(b−1)
β

φ odd
= 0 (38)

with h
(a−1)
α ∼ N (0, C) and h

(b−1)
β ∼ N (0, C). Hence, if the pre-activations

h
(a−1)
α , h

(b−1)
β at points a − 1 and b − 1 are uncorrelated, also h

(a)
α , h

(b)
β will be

uncorrelated. The base case of the induction proof follows from the independence
of the input weights W (in) and the recurrent weights W : correlations between time
point zero and other time points are zero. Therefore, by induction in time, time
points will be uncorrelated at any point, meaning that for odd activations φ and the
considered input layer, the solutions of the mean-field equations are the same for DNNs
and RNNs.

4.2. Predictive distribution

Coming back to the general case, we next ask if the different off-diagonal elements of
the mean-field equations for RNN and DNN have observable consequences. The answer
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Figure 2. Convergence of RNN and DNN towards the mean-field
theory. Maximum mean-discrepancy MMD2 for a radial basis function kernel
with length scale l = 1/2 [38] between the empirical distribution of scalar outputs
yα and the Gaussian distribution with covariance matrix Kαβ = C

(A+1,A+1)
α,β

predicted by MFT Eq. (33). Empirical MMD2 estimation across 2000 realizations

(W, ξ). Average over 40 realizations of {xα}α=1,...,10, xα,i
i.i.d.∼ N (0, 1) and

dim(xα) = 4 (error bars showing standard error of the mean). ReLU activation
φ(x) = max(0, x). a) MMD2 as a function of the width of the network layer n
for g2 = 1.6 and g2 = 1.2 (inset), with A = 15 and σ2 = 0.2 and uncorrelated
biases across time/layers. b) MMD2 as a function of the depth or duration A,
for width n = 500, g2 = 1.6, and σ2 = 0.2 and uncorrelated biases. c) Same as a)
but for biases that are static across time/layers. d) Same as b) but for the static
bias case.

is no if a linear readout is taken at a single time point or layer A, correspondingly
(cf. Eq. (8) for the readout): This is a direct consequence of the identical diagonal
elements of the covariance C

(a,a)

α,β , so that the predictive distribution Eq. (36) for the
RNN and the DNN is identical in mean-field theory; the two architectures have the
same Gram matrix Kαβ = C

(A+1,A+1)
α,β and thus the same predictive distribution

Eq. (36). This means that the two architectures have identical computational
capabilities in the limit of infinite layer width.

To check how quickly the mean-field theory is approached by finite-size networks,
we measure the maximum mean-discrepancy [9, 38] between the Gaussian distribution
with covariance matrix Kαβ and the empirical joint distribution of a set of scalar
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outputs yα, Eq. (8), across realizations ofW and ξ. The inputs xα are random patterns
presented to the first layer or time step, respectively. We find that convergence is
rather fast for both architectures (Figure 2 a and c). For sufficiently deep architectures
A � 1 as well as both uncorrelated and static biases, RNNs systematically show a
slower convergence than DNNs, which could be anticipated due to the smaller number
of independently drawn Gaussian weights, N2 versus AN2. This observation is in
line with the MMD being larger for the RNN than for the DNN for A & 15 (Figure 2
b and d). This is also consistent with the coherent interplay of shared connectivity
and correlated activity across time steps in the RNN (see Appendix 6.2, Figure 3).
Overall, we find a faster convergence for uncorrelated biases than for biases that are
static over time or layers, respectively.

The temporal correlations present in RNNs become relevant in the case of
sequence processing. In such a setting, the network in each time step a receives a time
dependent input x(a)

α with a non-trivial temporal correlation structure x
(a+τ)T
α x

(a)
β

that drives the temporal correlations C(a′+τ,a′)
α,β of the RNN activations for a′ ≥ a, see

Eq. (33). If the latter are read out in each time step, temporal correlations enter the
kernel and thus influence task performance.

We finally note that we here use a separate readout layer. The realization
of readout weights as independent Gaussian variables causes vanishing temporal
correlations between the readouts and the activity in previous layers or time steps,
respectively. For the Gaussian kernel, however, the presence or absence of a readout
layer does not make any difference. Alternatively, the readout of nout signals could
be taken from an arbitrary choice of nout neurons in the last layer or time step,
respectively, leading to the same kernel.

5. Discussion

We present a unified derivation of the mean-field theory for deep (DNN) and recurrent
neural networks (RNN) using field-theoretical methods. The derivation in particular
yields the Gaussian process kernel that predicts the performance of networks trained
in a Bayesian way.

The mean-field theories for the statistics within a layer of the DNN and for the
equal-time statistics of the RNN are identical, even if temporally correlated input
sequences are supplied to the latter network. The reason is that the mean-field
equations (33) form a closed system of equations for this subset of the statistics; they
can be solved independently of the correlations across time or layers, respectively. This
justifies the ‘annealed approximation’ [28] for RNNs where the couplings are redrawn
at each time step—which corresponds to the DNN-prior. It is also compatible with
earlier work [39] which compares simulations of networks with tied weights (RNN)
to the mean-field theory for untied weights (DNN). Intriguingly, the equivalence of
the equal-time statistics implies that the predictive distributions p(y∗ |x∗,Y ,X) of
DNNs and RNNs are identical, given the readout is taken only from the final layer or
the last time step, respectively.

There are qualitative differences between the mean-field theories for the
correlations across time in the RNN and across layers of the DNN: correlations across
layers vanish in the DNN, while the weight sharing in the RNN generally causes
non-trivial correlations across time. For point-symmetric activation functions, these
correlations also vanish in the RNN if the bias is absent (or uncorrelated across time
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steps) and the input is provided only in the first step. In general, a linear readout
from activations that are taken across different time points or layers, respectively,
yields different Gaussian process kernels for the RNN compared to the DNN.

Numerically, the convergence of finite-size networks of both architectures to the
mean-field theory is generally fast. The RNN converges typically slower than the
DNN, at least for long times and correspondingly deep networks. We hypothesize
that the temporally correlated activity in the RNN is the cause: The realization of
the coupling matrix is the same for all time steps. Also, fluctuations of the activity
are coherent over time. Activity and connectivity therefore interact coherently over
multiple time steps, so that variations of the connectivity across realizations may
cause a corresponding variability of activity. In a DNN, in contrast, both activity
and connectivity are uncorrelated across layers, so that variations due to different
realizations of the couplings average out over layers.

Identical mean-field theories in the single-input case and for point-symmetric
activation functions were already presented in ref. [29] in the context of a
characterization of the space of Boolean functions implemented by randomly coupled
DNNs and RNNs. Since our work differs on a conceptual level, the implications of
the results differ: In the Bayesian inference picture, the equivalent mean-field theories
imply identical performance of the trained networks for both architectures at large
width; for the characterization of computed Boolean functions, the equivalent mean-
field theories imply an equivalent set of functions implemented by any two random
instances of the two architectures at large width. The conceptual difference leads to
further differences on the technical level: The inputs and outputs considered here
include analog values and they are presented not only to the first layer or time
step, respectively, but also in a sequential manner at subsequent times or layers.
Finally, the disorder average plays a subtle but fundamentally different role in the two
works: In ref. [29], the disorder average extracts the typical behavior of any single,
sufficiently large, instance of a randomly coupled network. In contrast, in the Bayesian
framework considered in this manuscript, the disorder average naturally arises from the
marginalization of the parameter prior, i.e., one here considers ensembles of random
networks.

The analysis of RNNs and DNNs in this manuscript is based on methods from
statistical field theory and our results are formulated in that language [31]. It is worth
noting that this field-theoretical approach can be connected to a mathematically more
rigorous approach based on large-deviation theory [40].

The main limitation of the presented results is their validity for networks with
large widths. There has been previous theoretical work on networks of finite width
n` < ∞ that is, however, restricted to DNNs: Refs. [13, 14, 17, 41] have presented
approaches based on perturbation theory, while refs. [15, 18] employed an Edgeworth
expansion. The dynamics of the neural-tangent kernel for deep networks with finite
width has been studied in ref. [16]. For specific deep networks of finite width with linear
or ReLU activation functions the single-input prior was computed exactly in terms of
the Meijer G function in ref. [42]. The formalism proposed here paves the way for a
systematic study of generic deep and recurrent networks beyond the leading order in n.
Computing finite-size corrections in the presented formalism amounts to calculating
fluctuation corrections of the auxiliary fields which is a standard task in field theory
[31, 32]. It requires the spectrum of the Hessian ∂2S (C, C̃)/{∂C, ∂C̃}

∣∣
C̄, ¯̃C=0

, evaluated
at the mean-field point. Such an approach yields small non-Gaussian corrections to
the prior that, moreover, depend on n. The corrections therefore provide quantitative
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insight into the limits of the equivalence between RNNs and DNNs at finite widths,
and offer a handle to study the capacity of a network in relation to its resources, the
number of weights.
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6. Appendix

6.1. Unified field theory for multiple input sequences

Here, we show the derivation of the mean-field equations with more than one input
sequence {x(0)

α , . . . ,x
(A)
α }, the generalization of the derivation presented in the main

text. We introduce Greek indices α ∈ {1, . . . , nD} for the different input vectors that
we also call ‘replicas’ in the following. Equations for the single-replicon case in the
main text can be obtained by setting nD = 1; the non-sequential input case follows
by setting x(a)

α = 0 for a > 0 and all α.

6.1.1. Action and auxiliary variables We start from the parameterized likelihood for
multiple replicas

p(Y |X,θ) =

nD∏

α=1

{∫
Dhα δ

(
yα −W (out)φ(A)

α − ξ(A+1)
)

×
A∏

a=1

δ
(
h(a)
α −W (a)φ(a−1)

α −W (in,a)x(a)
α − ξ(a)

)

× δ
(
h(0)
α −W (in,0)x(0)

α − ξ(0)
)}

.

Expressing the Dirac distributions as integrals δ(x) =
∫
iR

dx̃
2πi e

x̃ x, we obtain for the
network prior p(Y |X) =

∫
dθ p(Y |X,θ) p(θ) the expression

p(Y |X) =

nD∏

α=1

{∫
dỹα

∫
Dhα

∫
Dh̃α

}
eỹi,αyi,α+

∑A
a=0 h̃

(a)
i,α h

(a)
i,α

× 〈e−ỹi,αW
(out)
ij φ

(A)
j,α 〉W (out) 〈e−

∑A
a=1 h̃

(a)
i,αW

(a)
ij φ

(a−1)
j,α 〉{W (a)}

× 〈e−
∑A
a=0 h̃

(a)
i,αW

(in,a)
ij x

(a)
j,α〉{W (in,a)}

× 〈e−
∑nD
α=1

∑A
a=0 h̃

(a)
i,αξ

(a)
i −

∑nD
α=1 ỹi,αξ

(A+1)
i 〉{ξ(a)}. (39)
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Here, and throughout this section, we use an implicit summation convention for lower
indices that appear twice in the exponent, e.g., ỹi,αyi,α ≡

∑nD
α=1

∑nout

i=1 ỹi,αyi,α, but
write the sum over time steps explicitly to avoid ambiguities in their limits. Note that
for the DNN, the number of neurons per layer can differ such that formally the upper
limits of the implicit sums over neuron indices i or j depends on the layer index a.
We also used the independence of the different weight matrices and biases to obtain
factorizing expectation values in Eq. (39).

In the following, we compute these expectation values separately, starting with
the output weights and biases. These are independent across neurons and we obtain

〈
exp

(
−

nD∑

α=1

ỹi,αξ
(A+1)
i

)〉
ξ(A+1)

= exp


σ

2
A+1

2

nD∑

α,β=1

ỹi,αỹi,β


 ,

〈
exp

(
−ỹi,αW (out)

ij φ
(A)
j,α

)〉
W (out)

= exp

(
g2
A+1

2nA
ỹi,αφ

(A)
j,α φ

(A)
j,β ỹi,β

)
.

Now, we calculate the respective averages for the RNN and DNN separately. For a
RNN, the weight sharing W (a) ≡W across time steps a leads to a double sum

∑
a,b

appearing in the average over the recurrent part
〈

exp

(
−

A∑

a=1

h̃
(a)
i,αWijφ

(a−1)
j,α

)〉
W

= exp


1

2

A∑

a,b=1

g2

n
h̃

(a)
i,αφ

(a−1)
j,α φ

(b−1)
j,β h̃

(b)
i,β


 , RNN.

In contrast, for a DNN, the analogous calculation leads to a single sum
∑
a

〈
exp

(
−

A∑

a=1

h̃
(a)
i,αW

(a)
ij φ

(a−1)
j,α

)〉
{W (a)}

=

A∏

a=1

〈
exp

(
−h̃(a)

i,αW
(a)
ij φ

(a−1)
j,α

)〉
W (a)

= exp

(
1

2

A∑

a=1

g2
a

na−1
h̃

(a)
i,αφ

(a−1)
j,α φ

(a−1)
j,β h̃

(a)
i,β

)
, DNN.

The calculation for the inputs and biases is analogous; for the RNN it yields
〈

exp

(
−

A∑

a=0

nD∑

α=1

h̃
(a)
i,αξi

)〉
ξ

= exp


σ

2

2

A∑

a,b=0

nD∑

α,β=1

h̃
(a)
i,αh̃

(b)
i,β


 , RNN,

〈
exp

(
−

A∑

a=0

h̃
(a)
i,αW

(in)
ij x

(a)
j,α

)〉
W (in)

= exp


1

2

A∑

a,b=0

g2
0

nin
h̃

(a)
i,αx

(a)
j,αx

(b)
j,βh̃

(b)
i,β


 , RNN.
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For the DNN, we get
〈

exp

(
−

A∑

a=0

nD∑

α=1

h̃
(a)
i,αξ

(a)
i

)〉
{ξ(a)}

=
A∏

a=0

〈
exp

(
−

nD∑

α=1

h̃
(a)
i,αξ

(a)
i

)〉
ξ(a)

= exp


1

2

A∑

a=0

σ2
a

nD∑

α,β=1

h̃
(a)
i,αh̃

(a)
i,β


 , DNN,

〈
exp

(
−

A∑

a=0

h̃
(a)
i,αW

(in,a)
ij x

(a)
j,α

)〉
{W (in,a)}

=
A∏

a=0

〈
exp

(
−h̃(a)

i,αW
(in,a)
ij x

(a)
j,α

)〉
W (in,a)

= exp

(
1

2

A∑

a=0

g2
0

nin
h̃

(a)
i,αx

(a)
j,αx

(a)
j,β h̃

(a)
i,β

)
, DNN.

For the RNN, the replicas as well as the time steps are coupled by the products
φ

(a−1)
j,α φ

(b−1)
j,β and x(a)

j,αx
(b)
j,β , while for the DNN only products of terms within the same

layer occur, φ(a−1)
j,α φ

(a−1)
j,β and x(a)

j,αx
(a)
j,β . As we will show below, this leads to different

layers in the DNN being uncorrelated, while different time steps in the RNN are
correlated.

The products of nonlinearly transformed pre-activations φ(a)
i,α ≡ φ(h

(a)
i,α) render the

integrations in Eq. (39) analytically non-solvable. To find a suitable approximation,
we insert auxiliary variables in time (a, b) and in replica space (α, β), which account
for the replica and time-step coupling. Introducing these, the system decouples in the
neuron indices i. We combine RNN and DNN by defining the auxiliary variables

C
(a,b)
α,β = Ma,b

[
σ2
a +

g2
a

na−1
1a≥1,b≥1 φ

(a−1)
i,α φ

(b−1)
i,β

+
g2

0

nin
1a≤A,b≤A x

(a)
i,αx

(b)
i,β

]
(40)

for 0 ≤ a, b ≤ A+ 1 with Ma,b defined in Eq. (25), ga = g for 1 ≤ a ≤ A in RNN, and
n−1 ≡ nin. The indicator functions 1a≥1,b≥1 and 1a≤A,b≤A ensure that the respective
terms vanish when they are not present, e.g., the recurrent term φ

(a−1)
i,α Ma,bφ

(b−1)
i,β in

the first step a = b = 0. As above, there is an implicit sum over the neuron indices i
on the right hand side.

We introduce these auxiliary variables by means of Dirac distributions expressed
as Fourier integrals

δ[Eq. (40)] =

nD∏

α,β=1

A+1∏

a,b=0

{
na−1

∫

iR

dC̃
(a,b)
α,β

2πi

}

× exp


−

A+1∑

a,b=0

na−1C̃
(a,b)
α,β (C

(a,b)
α,β − σ2

aMa,bJα,β)
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× exp




A+1∑

a,b=1

C̃
(a,b)
α,β g2

a φ
(a−1)
i,α Ma,bφ

(b−1)
i,β )




× exp




A∑

a,b=0

na−1C̃
(a,b)
α,β

g2
0

nin
x

(a)
i,αMa,bx

(b)
i,β


 , (41)

where we inserted Jα,β = 1 for all α and β to imply the summation over α, β that
accounts for the common biases across replicas. Used in the integrand of Eq. (39),
this leads to

p(Y |X) =

nD∏

α=1

{∫
dỹα

∫
Dhα

∫
Dh̃α

} nD∏

α,β=1

{∫
DC̃α,β

∫
DCα,β

}

× exp

(
ỹi,αyi,α +

1

2
ỹi,αC

(A+1,A+1)
α,β ỹi,β

)

× exp




A∑

a=0

h̃
(a)
i,αh

(a)
i,α +

A∑

a,b=0

1

2
h̃

(a)
i,αC

(a,b)
α,β h̃

(b)
i,β




× exp


−

A+1∑

a,b=0

na−1C̃
(a,b)
α,β (C

(a,b)
α,β − σ2

aMa,bJα,β)




× exp




A+1∑

a,b=1

C̃
(a,b)
α,β g2

aφ
(a−1)
i,α Ma,bφ

(b−1)
i,β )




× exp




A∑

a,b=0

na−1C̃
(a,b)
α,β

g2
0

nin
x

(a)
i,αMa,bx

(b)
i,β


 (42)

with DCα,β =
∏A+1
a,b=0 dC

(a,b)
α,β , DC̃α,β =

∏A+1
a,b=0

na−1dC̃
(a,b)
α,β

2πi .

We see in Eq. (42) that there are no auxiliary variables C(a,b)
α,β that couple the

output layer (a = A + 1, second line) with variables h(a)
α , h̃

(a)
α in the rest of the

network (0 ≤ a ≤ A). This is a consequence of the independence of the priors on
the associated weights. We further see in Eq. (42) that no products of variables with
different neuron indices appear. The exponential thus factorizes into na identical
terms for each a. Rearranging the integrations, we obtain

p(Y |X) =

nD∏

α=1

{∫
dỹα

}
eỹi,αyi,α

〈
e

1
2 ỹi,αC

(A+1,A+1)
α,β ỹi,β

〉
C̃,C

(43)

where the expectation value is computed with respect to the action

Saux(C, C̃) = −n
A+1∑

a,b=0

νa−1C̃
(a,b)
α,β C

(a,b)
α,β + nWaux(C̃ |C) (44)

of the auxiliary variables C̃(a,b)
α,β , C

(a,b)
α,β . This action comprises the nontrivial part of

the dynamics of the network in the cumulant generating functional

Waux(C̃ |C) =
1

n
ln
〈
e
∑A+1
a,b=1 C̃

(a,b)
αβ g2aφ

(a−1)
i,α Ma,bφ

(b−1)
i,β

〉
{h(a)
i,α}
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+
A∑

a,b=0

νa−1C̃
(a,b)
α,β

g2
0

nin
x

(a)
i,αMa,bx

(b)
i,β

+

A+1∑

a,b=0

νa−1C̃
(a,a)
α,β σ2

aMa,bJα,β (45)

where {h(a)
i,α} describes the Gaussian statistics of a single pre-activation h

(a)
i,α with

covariance matrix 〈h(a)
i,αh

(b)
i,β〉 = C

(a,b)
α,β δi,j across neurons i, j, time steps or layers a, b,

and inputs α, β. Here νa = na/n denotes the relative layer sizes in the DNN.
To show that

1

n
ln
〈
e
∑A+1
a,b=1 C̃

(a,b)
αβ g2aφ

(a−1)
i,α Ma,bφ

(b−1)
i,β

〉
{h(a)
i,α}

= O(1) (46)

and thusWaux(C̃ |C) = O(1), i.e., thatWaux(C̃ |C) does not scale with n, we consider
RNN and DNN separately. For the RNN, the result immediately follows because the
neurons are uncorrelated, 〈h(a)

i,αh
(b)
i,β〉 = C

(a,b)
α,β δi,j , which factorizes the expectations and

leads to a sum over n identical terms:
1

n
ln
〈
e
∑A+1
a,b=1 C̃

(a,b)
αβ g2aφ

(a−1)
i,α φ

(b−1)
i,β

〉
{h(a)
i,α}

= ln
〈
e
∑A+1
a,b=1 C̃

(a,b)
αβ g2aφ

(a−1)
α φ

(b−1)
β

〉
{h(a)
α }

.

For the DNN, one first notices that, by definition, C(a,b)
α,β = 0 for a 6= b, so different

layers decouple in Eq. (45). Formally this can be seen by solving the integrals over
the corresponding variables C̃(a,b)

α,β with a 6= b. This factorization allows us to study
each layer separately and decouple the na neurons:

1

n
ln
〈
e
∑A+1
a=1 C̃

(a,a)
αβ g2aφ

(a−1)
i,α φ

(a−1)
i,β

〉
{h(a)
i,α}

=
A+1∑

a=1

νa−1 ln
〈
eC̃

(a,a)
αβ g2aφ

(a−1)
α φ

(a−1)
β

〉
{h(a)
α }

.

Consequently, for both architectures Eq. (46) holds and Waux(C̃ |C) = O(1).

6.1.2. Saddle-point approximation The action Saux in the auxiliary fields scales
with the number of neurons n. In the limit n → ∞, a saddle-point approximation of
the integrals over C̃ and C appearing in the expectation value in Eq. (43) becomes
exact. The saddle points are determined by the stationary points of the action Saux

as ∂

∂C̃
(a,b)
α,β

Saux(C, C̃)
!
= 0 and ∂

∂C
(a,b)
α,β

Saux(C, C̃)
!
= 0, leading to

C̃
(a,b)

αβ = 0, (47)

C
(a,b)

αβ = Ma,b

[
σ2
a +

g2
0

nin
1a≤A,b≤Ax

(a)
i,αx

(b)
i,β

+ g2
a1a≥1,b≥1〈φ(h(a−1)

α )φ(h
(b−1)
β )〉{h(a)

α }∼N (0,C)

]
(48)

with indices a, b ∈ {0, . . . , A + 1}. The saddle point C̃
(a,b)

αβ = 0 is a self-consistent
solution because Waux(0 |C) ≡ 0, which is in particular independent of C, so that
∂Waux(0 |C)/∂C

(a,b)
α,β ≡ 0.
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To evaluate the expectation value on the r.h.s. of Eq. (48), we only need the sub-
tensors of C formed by the indices that explicitly appear in the expectation due to the
marginalization property of the Gaussian. In particular, this means the saddle point
equations can be solved iteratively starting from a = 0, which requires the starting
values C

(0,a)

αβ = C
(a,0)

αβ = Ma,0

[
σ2

0 +
g20
nin

∑nin
j=1 x

(a)
j,αx

(0)
j,β

]
for the recursion.

After the saddle-point approximation, the conditional probability Eq. (43)
simplifies to the factorized Gaussian

p(Y |X) =

nA+1∏

i=1

p(yi |X) ,

p(yi |X) = N (0, C
(A+1,A+1)

) ,

with covariance matrix 〈yi,αyi,β〉 = C
(A+1,A+1)
α,β across inputs α, β that is determined

recursively by Eq. (48), starting from the input covariance C
(0,0)

αβ = σ2
0 +

g20
nin

∑nin
j=1 x

(0)
j,αx

(0)
j,β . The diagonal elements C(A+1,A+1)

α,β thus only depends on the equal-

time overlaps
∑nin
i=1 x

(a)
i,αx

(a)
i,β of the inputs with 0 ≤ a ≤ A.

6.2. Finite-size instability of RNNs

In the main text Figure 1, the mean-field theory is compared to network simulations
with hidden layer width n = 2000 and a ReLU nonlinearity for fixed hyperparameters
g2 = 1.6, σ2 = 0.2. Although this appears to be quite wide already, for the RNN the
statistics of the activity in individual networks strongly varies across realizations of
weights. The frequency of deviating realizations increases as one approaches g2 → 2,
the instability threshold above which C

(a,a)
diverges with growing a for the ReLU

nonlinearity. The instability threshold can be obtained from the MFT solution for
a single replicon and a = b, Eq. (50): The theory predicts that g2 > 2 will lead to
exponential increase of the activity, while g2 < 2 results in finite (but possibly very
strong) activity. Beyond this threshold, trajectories of individual neurons diverge
towards ±∞ over time. At finite width and g2 < 2, the activity is typically stable.
But for g2 sufficiently close to 2, the closeness of the instability point is visible in the
system. This is observable as a spread of individual neurons’ trajectories, each hovering
about a non-zero set point. This observation corresponds to a static contribution
(independent of ∆a) to the time-lagged correlation function, as shown in Figure 3b.
The reason for this instability to only occur in the RNN is the coherent interplay
of the activity with the connectivity across time: Since the connectivity is identical
across all time steps, fluctuations of the activity can be amplified coherently across
multiple time steps. Likewise, deviations of the variances C(a,a) are observable in this
case (Figure 3a). The effect is suppressed as the network size increases; the mean-field
theory then becomes accurate also for values of g2 close to 2 (Figure 3a,b).

6.3. Details about numerical experiments

For all experiments, we used NumPy [43] and SciPy [44] which are both released
under a BSD-3-Clause License. Computations were performed on a CPU cluster.
More precisely, the requirements for the experiments are:

• Figure 1 (main): 1h on a single core laptop.
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Figure 3. Mean-field theory of the RNN compared to simulation. a
Average variance in mean-field theory C(a,a) (solid gray curve) and estimate
1
n

∑
i h

(a)
i h

(a)
i from simulation, averaged over 100 realizations of networks with

different widths (symbols, see legend). b Average cross-covariance in mean-field-
theory C(a,a+∆a) and estimate 1

n

∑
i h

(a)
i h

(a+∆a)
i from simulation, averaged over

100 network realizations (mean shown as symbols, same symbol code as in panel
a; standard error of the mean shown as tube), as a function of the temporal
distance ∆a to the hidden layer a = 30. Mean-field theory (gray curve). Other
parameters: g2 = 1.73, σ2 = 0, layer widths na ∈ {1, 3, 5, 10}·103, A = 30 hidden

layers, ReLU activation φ(x) = max(0, x) and Gaussian input x i.i.d.∼ N (1, 1) with
dim(x) = 105.

• Figure 2 (main): 50h on a single node with 24 cores of a CPU cluster for each of
panel a and c, and 2h on a single node with 24 cores of the CPU cluster for each
of panel b and d

• Figure 3 (appendix): 1.5h on a single core laptop.
The code used to produce the figures is stored in a Zenodo archive with the DOI
10.5281/zenodo.5747219.

To solve the mean field theory for a given activation function φ(x) one needs
to calculate the expectation values in Eq. (31), or more general in Eq. (33). These
expectation values can be computed analytically for the ReLU activation φ(x) =
max(0, x) as shown in [45]:

〈φ(x)φ(y)〉x, y∼N (0,C) =
1

2π
ν(sin θ + (π − θ) cos θ) ,

where
ν =

√
CxxCyy ,

θ = cos−1

(
Cxy
ν

)
.

Inserting this into the MFT equations for multiple replicas (33) results in

C
(a,b)

αβ = Ma,b

[
σ2
a + 1a≥1,b≥1

g2
a

2π
ν

(a,b)
αβ (sin θ

(a,b)
αβ + (π − θ(a,b)

αβ ) cos θ
(a,b)
αβ )

+ 1a≤A,b≤A
g2

0

nin
x(a)T
α x

(b)
β

]
, (49)

where

ν
(a,b)
αβ =

√
C

(a−1,a−1)

αα C
(b−1,b−1)

ββ ,
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θ
(a,b)
αβ = cos−1

(
C

(a−1,b−1)

αβ

ν
(a,b)
αβ

)
.

The special case a = b, α = β, and vanishing external input yields

C
(a,a)

= σ2
a +

g2
a

2
C

(a−1,a−1)
. (50)

For time or layer independent ga ≡ g and σa ≡ σ, the activity thus increases
exponentially in time or over layers for g2 > 2 and converges towards an equilibrium
value C(∞) = σ2

1−g2/2 for g2 < 2.
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L A R G E - D E V I AT I O N A P P R O A C H T O R A N D O M
R E C U R R E N T N E U R O N A L N E T W O R K S : PA R A M E T E R
I N F E R E N C E A N D F L U C T UAT I O N - I N D U C E D
T R A N S I T I O N S

preamble

The previous chapter dealt with network models with a discrete
time evolution. In this chapter, we take the step to continuous time.
We furthermore allow for a block-structure in the connectivity to
account, for example, for different populations of neurons. Crucially,
the connectivity of the network is still assumed to be random. In
contrast to the last chapter, however, the focus shifts mostly to the
dynamics.

Random networks with independent weights exhibit a striking
property: they are self-averaging (Helias and Dahmen 2020). Put dif-
ferently, many relevant observables depend only very weakly on the
realization of the connectivity. The canonical approach to capture such
self-averaging observables analytically is dynamic mean-field theory
(DMFT, see Section 3.4).

DMFT was initially formulated by Sompolinsky and Zippelius (1982)
and Sompolinsky, Crisanti, and Sommers (1988) in the language of
field theory (for a comprehensive introduction see Crisanti and Som-
polinsky 2018; Helias and Dahmen 2020). Later, it was subject to
rigorous mathematical investigations by Arous and Guionnet (1995)
using the framework of large deviation theory (see Section 3.1). How-
ever, due to the different approaches, it was not clear if the results of
Sompolinsky, Crisanti, and Sommers (1988) and Arous and Guionnet
(1995) are consistent.

To address this problem, we reformulate the approach of Arous
and Guionnet (1995) in this chapter in a field theoretical language.
A crucial step by Arous and Guionnet (1995) was to introduce the
empirical measure on the space of trajectories and to consider its
distribution across the ensemble of connectivities. We calculate this
distribution using field theory, thereby generalizing the result by
Arous and Guionnet (1995).

Self-averaging follows immediately from the distribution of the
empirical measure because it is sharply peaked, hence all resulting
observables attain a value close to the most likely one. Additionally,
we use the distribution to determined beyond-mean-field fluctuations
of the order parameter. Last, knowledge of the distribution of the em-

75
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pirical measure also allows to address the inverse problem: inferring
network statistics from observed trajectories.
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We here unify the field-theoretical approach to neuronal networks with large deviations theory. For a
prototypical random recurrent network model with continuous-valued units, we show that the effective
action is identical to the rate function and derive the latter using field theory. This rate function takes the
form of a Kullback-Leibler divergence which enables data-driven inference of model parameters and
calculation of fluctuations beyond mean-field theory. Lastly, we expose a regime with fluctuation-induced
transitions between mean-field solutions.

DOI: 10.1103/PhysRevLett.127.158302

Introduction.—Biological neuronal networks are systems
withmany degrees of freedom and intriguing properties: their
units are coupled in a directed, nonsymmetric manner, so that
they typically operate outside thermodynamic equilibrium
[1,2]. The primary analytical method to study neuronal
networks has been mean-field theory [3–8]. Its field-theo-
retical basis has been exposed only recently [9,10]. However,
to understand the parallel and distributed information
processing performed by neuronal networks, the study of
the forward problem—from the microscopic parameters of
themodel to its dynamics—is not sufficient. One additionally
faces the inverseproblemofdetermining theparameters of the
model given a desired dynamics and thus function. Formally,
one needs to link statistical physics with concepts from
information theory and statistical inference.
We here expose a tight relation between statistical field

theory of neuronal networks, large deviations theory,
information theory, and inference. To this end, we general-
ize the probabilistic view of large deviations theory, which
yields rigorous results for the leading-order behavior in the
network size N [11,12], to arbitrary single unit dynamics,
transfer functions, and multiple populations. We further-
more show that the central quantity of large deviations
theory, the rate function, is identical to the effective action
in statistical field theory. This link exposes a second

relation: Bayesian inference and prediction are naturally
formulated within this framework, spanning the arc to
information processing. Concretely, we develop a method
for parameter inference from transient data for single- and
multi-population networks. Lastly, we overcome the inher-
ent limit of mean-field theory—its neglect of fluctuations.
We develop a theory for fluctuations of the order parameter
when the intrinsic timescale is large and discover a regime
with fluctuation-induced transitions between two coexist-
ing mean-field solutions.
First, we introduce the model in its most general form.

Then, we develop the theory for a single population.
Last, we generalize it to multiple populations.
Model.—We consider block-structured random networks

ofN ¼ P
α Nα nonlinearly interacting units xαi ðtÞ driven by

an external input ξαi ðtÞ. The dynamics of the ith unit in the
αth population is governed by the stochastic differential
equation

τα _xαi ðtÞ¼−U0
α(xαi ðtÞ)þ

X
β

XNβ

j¼1

Jαβij ϕ(x
β
j ðtÞ)þξαi ðtÞ: ð1Þ

In the absence of recurrent and external inputs, the units
undergo an overdamped motion with time constant τα in a
potential UαðxÞ. The Jαβij are independent and identically
Gaussian-distributed random coupling weights with zero
mean and population-specific variance hðJαβij Þ2i ¼ g2αβ=Nβ

where the coupling strength gαβ controls the heterogeneity
of the weights. The time-varying external inputs ξαi ðtÞ
are independent Gaussian white-noise processes with
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zero mean and correlation functions hξαi ðt1Þξβj ðt2Þi¼
2Dαδijδαβδðt1− t2Þ. The single-population model corre-
sponds to the one studied in Ref. [4] if the external input
vanishes, D ¼ 0, the potential is quadratic, UðxÞ ¼ 1

2
x2,

and the transfer function is sigmoidal, ϕðxÞ ¼ tanhðxÞ; for
D ¼ 1

2
, UðxÞ ¼ − logðA2 − x2Þ, and ϕðxÞ ¼ x it corre-

sponds to the one in Ref. [11], which is inspired by the
dynamical spin glass model of Ref. [13].
Field theory.—The field-theoretical treatment of Eq. (1)

employs the Martin-Siggia-Rose-de Dominicis-Janssen
path integral formalism [14–17]. We denote the expectation
over paths across different realizations of the noise ξ
as [[18], Section A.1]

h·ixjJ ≡ hh·ixjJ;ξiξ ¼
Z

Dx
Z

Dx̃ · eS0ðx;x̃Þ−x̃TJϕðxÞ;

where h·ixjJ;ξ integrates over the unique solution of
Eq. (1) given one realization ξ of the noise. Here,
S0ðx; x̃Þ ¼ x̃T½_xþU0ðxÞ� þDx̃Tx̃ is the action of the
uncoupled neurons. We use the shorthand notation
aTb ¼ P

N
i¼1

R
T
0 dtaiðtÞbiðtÞ.

For large N, the system becomes self-averaging, a
property known from many disordered systems with large
numbers of degrees of freedom: the collective behavior is
stereotypical, independent of the realization Jij. A self-
averaging observable has a sharply peaked distribution over
realizations of J—the observable always attains the same
value, close to its average. This, however, only holds for
observables averaged over all units, reminiscent of the
central limit theorem. These are generally of the formP

N
i¼1 lðxiÞ, where l is an arbitrary functional of a single

unit’s trajectory. It is therefore convenient to introduce the
scaled cumulant-generating functional

WNðlÞ ≔
1

N
ln hhe

P
N
i¼1

lðxiÞixjJiJ; ð2Þ

where the prefactor 1=N makes sure thatWN is an intensive
quantity, reminiscent of the bulk free energy [24]. In fact,
we will show that the N dependence vanishes in the limit
N → ∞ because the system decouples.
Performing the average over J, i.e., evaluating

he−x̃TJϕðxÞiJ, and introducing the auxiliary field

Cðt1; t2Þ ≔
1

N

XN
i¼1

ϕ(xiðt1Þ)ϕ(xiðt2Þ) ð3Þ

as well as the conjugate field C̃, we can writeWN as [ [18],
Section A.1]

WNðlÞ ¼
1

N
ln
Z

DC
Z

DC̃e−NCTC̃þNΩlðC;C̃Þ;

ΩlðC; C̃Þ ≔ ln
Z

Dx
Z

Dx̃eS0ðx;x̃Þþ
g2

2
x̃TCx̃þϕTC̃ϕþlðxÞ: ð4Þ

The effective action is defined as the Legendre transform
of WNðlÞ,

ΓNðμÞ ≔
Z

DxμðxÞlμðxÞ −WNðlμÞ; ð5Þ

where lμ is determined implicitly by the condition
μ ¼ W0

NðlμÞ and the derivative W0
NðlÞ has to be under-

stood as a generalized derivative, the coefficient of the
linearization akin to a Fréchet derivative [25].
Note that WN and ΓN are, respectively, generalizations

of a cumulant-generating functional and of the effective
action [26] because both map a functional (l or μ) to the
reals. For the choice lðxÞ ¼ jTx, where jðtÞ is an arbitrary
function, we recover the usual cumulant-generating func-
tional of the single unit’s trajectory [ [18], Section A.4] and
the corresponding effective action.
Rate function.—Any network-averaged observable, for

which we may expect self-averaging to hold, can likewise
be obtained from the empirical measure

μðyÞ ≔ 1

N

XN
i¼1

δðxi − yÞ; ð6Þ

since ð1=NÞPN
i¼1 lðxiÞ ¼

R
DyμðyÞlðyÞ. Of particular

interest is the leading-order exponential behavior of the
distribution of empirical measures PðμÞ ¼ hhPðμjxÞixjJiJ
across realizations of J and ξ. This behavior in the large N
limit is described by what is known as the rate function

HðμÞ ≔ − lim
N→∞

1

N
lnPðμÞ ð7Þ

in large deviations theory [see, e.g., [27] ];HðμÞ captures the
leading exponential probability PðμÞ ≃N≫1

exp½ − NHðμÞ�.
For large N, the probability of an empirical measure that
does not correspond to the minimum H0ðμ̄Þ ¼ 0 is thus
exponentially suppressed. Put differently, the system is self-
averaging and the statistics of any network-averaged observ-
able can be obtained using μ̄.
Similar as in field theory, it is convenient to introduce

the scaled cumulant-generating functional of the empirical
measure. Because ð1=NÞPN

i¼1lðxiÞ¼
R
DyμðyÞlðyÞ holds

for an arbitrary functional lðxiÞ of the single unit’s
trajectory xi, Eq. (2) has the form of the scaled cumu-
lant-generating functional for μ at finite N.
Using a saddle-point approximation for the integrals

over C and C̃ in Eq. (4) [ [18], Section A.1], we get

W∞ðlÞ ¼ −CT
lC̃l þΩlðCl; C̃lÞ: ð8Þ

Both Cl and C̃l are determined self-consistently by
the saddle-point equations Cl ¼ ∂C̃ΩlðC; C̃ÞjCl;C̃l

and
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C̃l ¼ ∂CΩlðC; C̃ÞjCl;C̃l
where ∂C denotes a partial func-

tional derivative.
From the scaled cumulant-generating functional, Eq. (8),

we obtain the rate function via a Legendre transformation
[28]: HðμÞ ¼ R

DxμðxÞlμðxÞ −W∞ðlÞ with lμ implicitly
defined by μ ¼ W0

∞ðlμÞ. Note that HðμÞ is still convex
even if μ itself is multimodal. Comparing with Eq. (5), we
observe that the rate function is equivalent to the effective
action: HðμÞ ¼ limN→∞ΓNðμÞ. The equation μ ¼ W0

∞ðlμÞ
can be solved for lμ to obtain a closed expression for the
rate function viz. effective action [ [18], Section A.2], one
main result of our work,

HðμÞ ¼
Z

DxμðxÞ ln μðxÞ
hδð_xþ U0ðxÞ − ηÞiη

; ð9Þ

where η is a zero–mean Gaussian process with a correlation
function that is determined by μðxÞ,

Cηðt1;t2Þ¼2Dδðt1− t2Þþg2
Z

DxμðxÞϕ(xðt1Þ)ϕ(xðt2Þ):

ð10Þ

For D ¼ 1
2
, UðxÞ ¼ − logðA2 − x2Þ, and ϕðxÞ ¼ x, Eq. (9)

can be shown to be equivalent to the mathematically
rigorous result obtained in the seminal work by Ben
Arous and Guionnet [ [18], Section A.3].
The rate function Eq. (9) takes the form of a Kullback-

Leibler divergence. Thus, it possesses a minimum at

μ̄ðxÞ ¼ hδ(_xþU0ðxÞ − η)iη: ð11Þ

This most likely measure corresponds to the well-known
self-consistent stochastic dynamics that is obtained in field
theory [4,9,10,29]. Note that the correlation function of the
effective stochastic input η at the minimum depends self-
consistently on μ̄ðxÞ through Eq. (10). However, the rate
function HðμÞ contains more information. It quantifies
the suppression of departures μ − μ̄ from the most likely
measure and therefore allows the assessment of fluctuations
that are beyond the scope of the classical mean-field result.
Parameter inference.—The rate function opens the way

to address the inverse problem: given the network–
averaged activity statistics, encoded in the corresponding
empirical measure μ, what are the statistics of the con-
nectivity and the external input, i.e., g and D?
We determine the parameters using maximum likelihood

estimation. Using Eq. (7) and Eq. (9), the likelihood of the
parameters is given by

lnPðμjg;DÞ ≃ −NHðμjg;DÞ;

where ≃ denotes equality in the limit N → ∞ and we made
the dependence on g and D explicit. The maximum

likelihood estimate of the parameters g and D corresponds
to the minimum of the Kullback-Leibler divergence H,
Eq. (9), on the right-hand side. Evaluating the derivative of
Hðμjg;DÞ yields [ [18], Section B.1]

∂a lnPðμjg;DÞ ≃ −
N
2
tr

�
ðC0 − CηÞ

∂C−1
η

∂a
�
;

where we abbreviated a ∈ fg;Dg and defined C0ðt1;t2Þ≡R
DxμðxÞð_xðt1ÞþU0(xðt1Þ)Þð_xðt2ÞþU0(xðt2Þ)Þ. The deri-

vative vanishes for C0 ¼ Cη. Assuming stationarity, in the
Fourier domain this condition reads

S _xþU0ðxÞðfÞ ¼ 2Dþ g2SϕðxÞðfÞ; ð12Þ

where SXðfÞ denotes the network-averaged power spec-
trum of the observable X. Using non-negative least squares
[30], Eq. (12) allows a straightforward inference of g andD
(Fig. 1). To determine the transfer function ϕ and the
potential U, one can use model comparison techniques
[[18], Section B.2]. Using the inferred parameters, we can
also predict the future activity of a unit from the knowledge
of its recent past [ [18], Section B.3].

(a)

(c)

(e) (f)

(d)

(b)

FIG. 1. Maximum likelihood parameter estimation for
ϕðxÞ ¼ erfð ffiffiffi

π
p

x=2Þ, potential UðxÞ ¼ 1
2
x2 þ s ln cosh x, and

external noise D. (a) Color-coded sketch of potential and
noise. (b)–(d) Activity of three randomly chosen units for
coupling strengths g indicated in title. (e) Parameter estimation
via non-negative least squares regression (black lines) based on
Eq. (12). (f) Power spectra on the left- (dark, solid curves) and
right-hand sides (light, dotted curves) of Eq. (12) for the
inferred parameters. Further parameters: τ ¼ 1, N ¼ 10 000,
temporal discretization dt ¼ 10−2, simulation time T ¼ 1000,
time span discarded to reach steady state T0 ¼ 100.
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Fluctuations.—The rate function allows us to go beyond
mean-field theory and examine fluctuations of the order
parameter. Here, we use the network-averaged variance
qðtÞ ¼ Cðt; tÞ from Eq. (3) as an order parameter and
restrict the discussion to the case UðxÞ ¼ 1

2
x2.

Figure 2(a) shows the distribution of qðtÞ across time and
across realizations of the connectivity. The fluctuations
across realizations of the connectivity can be computed
from the curvature of the rate function IðCÞ that is obtained
from (9) by the contraction principle [ [18], Section C.1]. In
a stationary state and considering only the fluctuations
across realizations of the connectivity, for slow recurrent
dynamics τc ≫ 1 we obtain the approximation for the
fluctuations of q

hðq − hqiJÞ2iJ ¼
hðϕϕ − hϕϕi0Þ2i0

N½1 − g2ðhϕ00ϕi0 þ hϕ0ϕ0i0Þ�2
: ð13Þ

Here, hfgi0 ≡ hf(xðtÞ)g(xðtÞ)i0 denotes an expectation
with respect to the self-consistent measure (11). For
vanishing noise, D ¼ 0, and g > 1, the dynamics are
slow and the theory matches the empirical fluctuations
very well [Figs. 2(a) and 2(b)]. Deviations in Fig. 2(b)
are caused by two effects: For g↘1, periodic solutions
appear as a finite-size effect; for growing g, the timescale τc
decreases, eventually violating the assumption τc ≫ 1
entering Eq. (13). Rate functions like IðCÞ in general also
allow one to estimate the tail probability Pðq > θÞ≈
exp½−NIðθÞ�, which here shows a quadratic decline for
large departures [Fig. 2(a)].

When the denominator in Eq. (13) vanishes, fluctuations
grow large, indicative of a continuous phase transition. For
ϕ000ð0Þ < 0 the denominator vanishes for g ≥ 1 [Fig. 2(b)],
in line with the established theory, the breakdown of linear
stability of the fixed point x ¼ 0 [4]. For ϕ000ð0Þ > 0,
however, Eq. (13) predicts qualitatively different behavior:
the denominator vanishes at g < 1, in the linearly stable
regime. In fact, we find that this regime features the
coexistence of two stable mean-field solutions (Fig. 2(c),
[[18], Section C.2]) and fluctuation-driven first-order tran-
sitions between them [Fig. 2(d)]. The solution with larger
q corresponds to self-sustained activity; the solution
with smaller q corresponds to the fixed point x ¼ 0 and
is stable [ [18], Section C.2], in contrast to the case of a
threshold-power-law transfer function [6].
Multiple populations.—For multiple populations, any

population-averaged observable can be obtained from the
empirical measure μαðyÞ ¼ ð1=NαÞ

PNα
i¼1 δðxαi − yÞ. The

joint distribution of all population-specific empirical mea-
sures fμ°g is determined by the rate function [ [18],
Section D]

Hðfμ°gÞ ¼
X
α

γα

Z
DxμαðxÞ ln μαðxÞ

hδðτα _xþU0
αðxÞ − ηαÞiηα

;

ð14Þ

where γα ¼ Nα=N and ηα is a zero-mean Gaussian process
with

Cα
ηðt1; t2Þ ¼ 2Dαδðt1 − t2Þ

þ
X
β

g2αβ

Z
DxμβðxÞϕ(xðt1Þ)ϕ(xðt2Þ): ð15Þ

Again, the rate function can be interpreted as a log-
likelihood; its derivative leads to [ [18], Section E.1]

Sα
τα _xþU0

αðxÞðfÞ ¼ 2Dα þ
X
β

g2αβS
β
ϕðxÞðfÞ; ð16Þ

which generalizes Eq. (12) to multiple populations.
Using Eq. (16), the inferred connectivity gαβ matches the

ground truth well; accordingly, two unconnected popula-
tions [Figs. 3(a) and 3(b)] can be clearly distinguished from
a more involved network where one population (α ¼ 1)
is only active due to the recurrent input from the other
population [α ¼ 2, Figs. 3(c) and 3(d)]. The method can
thus distinguish intrinsically generated activity from a
case where activity is driven from outside the network.
However, inference of a unique set of parameters is only
possible if the output spectra Sα

ϕðxÞðfÞ differ sufficiently

across α. If the output spectra match closely, Eq. (16) leads
to a degenerate set of solutions that satisfy

P
β g

2
αβ ¼ const

and are all equally likely given the data [ [18], Section E.2].

(a) (b)

(d)(c)

FIG. 2. Order parameter fluctuations for ϕðxÞ ¼ erfð ffiffiffi
π

p
x=2Þ

[(a),(b)] and metastability for ϕðxÞ ¼ clip½tanðxÞ;−1; 1� [(c),(d)].
(a) Temporal order parameter statistics across ten simulations
(bars) and theory (solid curve) from Eq. (13). (b) Order parameter
variance for 10 realizations of the connectivity with standard error
of the mean (symbols) and theory (solid curve) from Eq. (13).
(c) Mean order parameter for different initial values q0 from
simulations (symbols) and self-consistent theory (solid curves).
(d) Fluctuation-induced bistability of the order parameter for
N ¼ 750, g ¼ 0.95. Further parameters: T ¼ 5000 in (a),(d);
UðxÞ ¼ 1

2
x2 in (a)–(d); other parameters as in Fig. 1.
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Discussion.—In this Letter, we found a tight link
between the field-theoretical approach to neuronal net-
works and its counterpart based on large deviations theory.
We obtained the rate function of the empirical measure for
the widely used and analytically solvable model of a
recurrent neuronal network [4] by field-theoretical meth-
ods. This rate function generalizes the seminal result by
Ben Arous and Guionnet [11,12] to arbitrary potentials,
transfer functions, and multiple populations. Intriguingly,
our derivation elucidates that the rate function is identical to
the effective action and takes the form of a Kullback-
Leibler divergence, akin to Sanov’s theorem for sums of
i.i.d. random variables [27,28]. The rate function can thus
be interpreted as a distance between an empirical measure,
for example given by data, and the activity statistics of the
network model. This result allows us to address the inverse
problem of inferring the parameters of the connectivity and
external input from a set of trajectories and to determine the
potential and the transfer function.
We here restricted the analysis to networks with inde-

pendently drawn random weights with zero mean. Since
correlated weights have a profound impact on the dynamics
that can be captured using both field theory [31] and large
deviations theory [32,33], it is an interesting challenge to
extend the analysis in this direction. Likewise, synaptic
weights with nonvanishing mean, as they appear in sparsely
connected networks, present an interesting extension,
because they promote fluctuation-driven states when feed-
back is sufficiently positive. Motifs are another important
deviation from independent weights in biological neural
networks are motifs [34], which pose a significant

challenge already for the field-theoretical approach [35].
Beyond the weight statistics, we assumed that the dynamics
are governed by the first-order differential equation (1).
Indeed, the field-theoretical approach can be generalized to a
much broader class of dynamics that do not necessarily
possess an action [36]; hence, it seems possible to also derive
large deviations results for more general dynamics. In this
regard, the extension to spiking networks is a particularly
interesting but also challenging future direction. Whether the
model, Eq. (1), with its current limitations—the independent
weights and the first-order dynamics—allows accurate
inference of network parameters from cortical recordings
is an intriguing question for further research.
The unified description of random networks by statistical

field theory and large deviations theory opens the door to
established techniques from either domain to capture
beyond mean-field behavior. Such corrections are impor-
tant for small or sparse networks with nonvanishing mean
connectivity, to explain correlated neuronal activity, and to
study information processing in finite-size networks with
realistically limited resources. We here make a first step by
computing fluctuation corrections from the rate function.
The quantitative theory explains near-critical fluctuations
for g ∈ ½1; 1þ δðNÞ� and we discover that expansive gain
functions, as found in biology [37], lead to qualitatively
different collective behavior than the well-studied contrac-
tive sigmoidal ones: The former feature metastable network
states with noise-induced first order transitions between
them; the latter allow for only a single solution and show
second order phase transitions.
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A. Rate Function (Single Population)

1. Scaled Cumulant Generating Functional

Here, we derive the scaled cumulant generating functional and the saddle-point equations. The first steps of the
derivations are akin to the manipulations presented in [1, 2], thus we keep the presentation concise. We interpret
the stochastic differential equations governing the network dynamics in the Itô convention. Using the Martin–Siggia–
Rose–de Dominicis–Janssen path integral formalism, the expectation ⟨⋅⟩x∣J of some arbitrary functional G(x) can be
written as

⟨⟨G(x)⟩x∣J,ξ⟩ξ = ∫ Dx ⟨δ(ẋ +U ′(x) + Jφ(x) + ξ)⟩ξG(x)
= ∫ Dx ∫ Dx̃ eS0(x,x̃)−x̃TJφ(x)G(x),
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where we used the Fourier representation δ(x) = 1
2πi ∫ i∞−i∞ ex̃xdx̃ in every timestep in the second step and defined the

action

S0(x, x̃) = x̃T(ẋ +U ′(x)) +Dx̃Tx̃.
An additional average over realizations of the connectivity J i.i.d.∼ N (0,N−1g2) only affects the term −x̃TJφ(x) in the
action and results in

⟨e−x̃TJφ(x)⟩J = ∫ DC ∫ DC̃ e−N CTC̃+ g22 x̃TCx̃+φ(x)TC̃φ(x),
where we introduced the network–averaged auxiliary field

C(u, v) = 1

N

N∑
i=1φ(xi(u))φ(xi(v))

via a Hubbard–Stratonovich transformation. The average over the connectivity and the subsequent Hubbard–
Stratonovich transformation decouple the dynamics across units; afterwards the units are only coupled through the
global fields C and C̃.

Now, we consider the scaled cumulant generating functional of the empirical density

WN(`) = 1

N
ln ⟨⟨e∑Ni=1 `(xi)⟩

x∣J⟩J .
Using the above results and the abbreviation φ(x) ≡ φ, it can be written as

WN(`) = 1

N
ln ∫ DC ∫ DC̃ e−N CTC̃+N Ω`(C,C̃),

Ω`(C, C̃) = ln ∫ Dx ∫ Dx̃ eS0(x,x̃)+ g22 x̃TCx̃+φTC̃φ+`(x),
where the N in front of the single–particle cumulant generating functional Ω results from the factorization of the N
integrals over xi and x̃i each; thus it is a hallmark of the decoupled dynamics. Next, we approximate the C and C̃
integrals in a saddle–point approximation which yields

WN(`) = −CT
` C̃` +Ω`(C`, C̃`) +O(ln(N)/N),

where C` and C̃` are determined by the saddle–point equations

C` = ∂C̃Ω`(C, C̃)∣
C`,C̃`

,

C̃` = ∂CΩ`(C, C̃)∣
C`,C̃`

.

Here, ∂C denotes a partial functional derivative. In the limit N → ∞, the remainder O(ln(N)/N) vanishes and the
saddle–point approximation becomes exact.

2. Rate Function

Here, we derive the rate function from the scaled cumulant generating functional. According to the Gärtner-Ellis
theorem [3], we obtain the rate function via the Legendre transformation

H(µ) = ∫ Dxµ(x)`µ(x) −W∞(`µ) (1)

with `µ implicitly defined by

µ =W ′∞(`µ). (2)

Using the Gärtner-Ellis theorem, we implicitly assume that H(µ) is convex [3]. This is, however, not the same as
assuming that µ, or the most likely empirical measure µ̄, is concave. The latter would be a serious restriction as it
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would prohibit for example treating the bistable case we investigate in the manuscript. A concave P (µ), and hence a
convex H(µ), simply corresponds to the situation with a single most likely measure µ̄ but it does not put restrictions
on µ̄ itself. In particular, µ̄ may still be bimodal.

Due to the saddle–point equations, the derivative of the cumulant generating functional in Eq. (2) simplifies to
W ′∞(`µ) = (∂`Ω`)(C`, C̃`)∣`µ where the derivative only acts on the ` that is explicit in Ω`(C`, C̃`) and not on the

implicit dependencies through C`, C̃`. Thus, Eq. (2) yields

µ(x) = ∫ Dx̃ eS0(x,x̃)+ g22 x̃TC`µ x̃+φTC̃`µφ+`µ(x)
∫ Dx ∫ Dx̃ eS0(x,x̃)+ g22 x̃TC`µ x̃+φTC̃`µφ+`µ(x) .

Taking the logarithm and using W∞(`µ) +CT
`µ
C̃`µ = Ω`µ(C`µ , C̃`µ) leads to

`µ(x) = ln
µ(x)

∫ Dx̃ eS0(x,x̃)+ g22 x̃TC`µ x̃ +W∞(`µ) +CT
`µC̃`µ − φTC̃`µφ.

Inserting `µ(x) into the Legendre transformation (1) yields

H(µ) =∫ Dxµ(x) ln
µ(x)

∫ Dx̃ eS0(x,x̃)+ g22 x̃TC`µ x̃ +CT
`µC̃`µ −CT

µC̃`µ

with

Cµ(u, v) = ∫ Dxµ(x)φ(x(u))φ(x(v)).
Identifying µ(x) in the saddle–point equation

C`µ = ∂C̃Ω`(C, C̃)∣
C`µ ,C̃`µ

= ∫ Dx ∫ Dx̃ φφeS0(x,x̃)+ g22 x̃TC`µ x̃+φTC̃`µφ+`µ(x)
∫ Dx ∫ Dx̃ eS0(x,x̃)+ g22 x̃TC`µ x̃+φTC̃`µφ+`µ(x)

yields

C`µ(u, v) = ∫ Dxµ(x)φ(x(u))φ(x(v))
and thus C`µ = Cµ. Accordingly, the last two terms in the Legendre transformation cancel and we arrive at

H(µ) = ∫ Dxµ(x) ln
µ(x)

∫ Dx̃ eS0(x,x̃)+ g22 x̃TCµx̃ (3)

where still Cµ(u, v) = ∫ Dxµ(x)φ(x(u))φ(x(v)).
In the main text, we use the notation

∫ Dx̃ eS0(x,x̃)+ g22 x̃TCµx̃ = ⟨δ(ẋ +U ′(x) − η)⟩η
with Cη = 2Dδ + g2Cµ appearing in the rate function. Indeed, using the Martin–Siggia–Rose–de Dominicis–Janssen
formalism, we have

⟨δ(ẋ +U ′(x) − η)⟩η = ∫ Dx̃ ex̃T(ẋ+U ′(x))⟨ex̃Tη⟩η
= ∫ Dx̃ ex̃T(ẋ+U ′(x))+ 1

2 x̃
TCηx̃,

which shows that the two notations are equivalent since x̃T(ẋ + U ′(x)) + 1
2
x̃TCηx̃ = S0(x, x̃) + g2

2
x̃TCµx̃ for Cη =

2Dδ + g2Cµ.
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3. Equivalence to Ben Arous and Guionnet (1995)

Here, we show explicitly that the rate function we obtained generalizes the rate function obtained by Ben Arous
and Guionnet [4], whose limitation to finite temperature and time was lifted later [5]. We start with Theorem 4.1 in
[4] adapted to our notation: Define

Q(x) ∶= ∫ Dx̃ ex̃T(ẋ+U ′(x))+ 1
2 x̃

Tx̃

and

G(µ) ∶= ∫ Dxµ(x) ln(⟨egyT(ẋ+U ′(x))− g22 yTy⟩y) ,
where ⟨⋅⟩y is the expectation value over a zero–mean Gaussian process y with Cµ(u, v) = ∫ Dxµ(x)x(u)x(v), written
as ⟨⋅⟩y = ∫ Dy ∫ Dỹ (⋅) eỹTy+ 1

2 ỹ
TCµỹ. With the Kullback–Leibler divergence DKL(µ ∣Q), Theorem 4.1 states that the

function

H̃(µ) = ⎧⎪⎪⎨⎪⎪⎩
DKL(µ ∣Q) −G(µ) if DKL(µ ∣Q) <∞+∞ otherwise

is a good rate function.
Now we relate H̃ to the rate function that is derived above, Eq. (3). Using the Onsager–Machlup action, we can

write

DKL(µ ∣Q) = ∫ Dxµ(x) ln
µ(x)

e−SOM(x) + C
with SOM(x) = 1

2
(ẋ +U ′(x))T(ẋ +U ′(x)). Next, we transform gy → y, ỹ/g → ỹ and solve the integral over y in G(µ):

∫ Dy e− 1
2y

Ty+yT(ẋ+U ′(x)+ỹ) ∝ eSOM[x]+ỹT(ẋ+U ′(x))+ 1
2 ỹ

Tỹ.

The Onsager–Machlup action in the logarithm in DKL(µ ∣Q) and G(µ) cancel and we arrive at

H̃(µ) = ∫ Dxµ(x) ln
µ(x)

∫ Dỹ eỹT(ẋ+U ′(x))+ 1
2 ỹ

T(g2Cµ+δ)ỹ
up to an additive constant that we set to zero. Since Cµ(u, v) = ∫ Dxµ(x)x(u)x(v), the rate function by Ben Arous
and Guionnet is thus equivalent to Eq. (3) with φ(x) = x and D = 1

2
.

4. Background on Rate Function

Relation to Sompolinsky, Crisanti, Sommers (1988) Here, we relate the approach that we laid out in the main
text to the approach pioneered by Sompolinsky, Crisanti, and Sommers [6] (reviewed in [2, 7]) using our notation for
consistency. Therein, the starting point is the scaled cumulant–generating functional

ŴN(j) = 1

N
ln ⟨⟨ejTx⟩

x∣J⟩J ,
which gives rise to the cumulants of the trajectories. For the linear functional

`(x) = jTx,
we have ∑Ni=1 `(xi) = jTx and thus WN(jTx) = ŴN(j). Put differently, the scaled cumulant–generating functional of
the trajectories ŴN(j) is a special case of the more general scaled cumulant–generating functionalWN(`) we consider
in this manuscript. Of course one can start from the scaled cumulant–generating functional of the observable of
interest and derive the corresponding rate function. Conversely, we show below how to obtain the rate function of a
specific observable from the rate function of the empirical measure.
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Contraction Principle Here, we relate the rather general rate function of the empirical measure H(µ) to the rate
function of a particular observable I(C). As an example, we choose the correlation function

C(u, v) = 1

N

N∑
i=1φ(xi(u))φ(xi(v))

because it is a quantity that arises naturally during the Hubbard–Stratonovich transformation. The generic approach
to this problem is given by the contraction principle [3]:

I(C) = inf
µ s.t.C=∫ Dxµ(x)φφH(µ).

Here, the infimum is constrained to the empirical measures that give rise to the correlation function C, i.e. those
that fulfill C(u, v) = ∫ Dxµ(x)φ(x(u))φ(x(v)). Writing H(µ) as the Legendre transform of the scaled cumulant–
generating functional, H(µ) = inf`[∫ Dxµ(x)`(x) −W∞(`)], the empirical measure only appears linearly. Using a
Lagrange multiplier k(u, v), the infimum over µ leads to the constraint `(x) = φTkφ and we arrive at

I(C) = inf
k
[kTC −W∞(φTkφ)].

Once again, we see how to relate WN(`) to a specific observable—this time for the choice `(x) = φTkφ.
Up to this point, the discussion applies to any observable. For the current example, we can proceed a bit further.

With the redefinition C̃ + k → C̃, we get

W∞(φTkφ) = extrC,C̃ [−CTC̃ +CTk +Ω0(C, C̃)] ,
Ω0(C, C̃) = ln ∫ Dx ∫ Dx̃ eS0(x,x̃)+ g22 x̃TCx̃+φTC̃φ,

which made Ω0 independent of k. Now we can take the infimum over k, leading to

I(C) = extrC̃ [CTC̃ −Ω0(C, C̃)] . (4)

The remaining extremum gives rise to the condition

C = ∫ Dx ∫ Dx̃ φφeS0(x,x̃)+ g22 x̃TCφx̃+φTC̃φ
∫ Dx ∫ Dx̃ eS0(x,x̃)+ g22 x̃TCφx̃+φTC̃φ ,

i.e. a self–consistency condition for the correlation function.
As a side remark, we mention that the expression in the brackets of Eq. (4) is the joint effective action for C and C̃,

because for N →∞, the action equals the effective action. This result is therefore analogous to the finding that the
effective action in the Onsager–Machlup formalism is given as the extremum of its counterpart in the Martin–Siggia–
Rose–de Dominicis–Janssen formalism [8, Eq.(24)]. The only difference is that here, we are dealing with second order
statistics and not just mean values. The origin of this finding is the same in both cases: we are only interested in the
statistics of the physical quantity (the one without tilde, x or C, respectively). Therefore we only introduce a source
field (k in the present case) for this one, but not for the auxiliary field, which amounts to setting the source field of
the latter to zero. This is translated into the extremum in Eq. (4) over the auxiliary variable [8, Appendix 5].
Tail Probability Large deviations results are often stated for the tail probability P(x > θ) where θ is in the tail.

Since the notion of a tail cannot be unambiguously defined for quantities like the empirical measure or correlation
functions, at least not in an obvious way, we here give an example how to relate the rate function of the empirical
measure to a tail probability.

First, we use the contraction principle to get a rate function for a scalar quantity, e.g. the order parameter
q = ∫ Dxµ(x)φ(x(t))φ(x(t)) where t is large but fixed such that the measure becomes stationary:

I(q) = inf
µ s.t. q=∫ Dxµ(x)φφH(µ).

Since q is a scalar quantity, one obtains the tail probability as lnP(q > θ) ≃ −NI(q = θ).
Below, we calculate both the mean and the variance of q. In general, this would not be sufficient to obtain a tail

estimate. However, the numerics indicate that the tail is indeed Gaussian (Fig. 3D) such that the first two cumulants
are indeed sufficient.
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B. Inference & Prediction (Single Population)

1. Log–Likelihood Derivative

Here, we calculate the derivatives of the log–likelihood with respect to the parameters g and D. In terms of the
rate function, we have

∂a lnP (µ ∣ g,D) ≃ −N∂aH(µ ∣ g,D)
where a denotes either g or D. The parameters appear only in the cross entropy

∂aH(µ) = −∫ Dxµ(x)∂a ln ⟨δ(ẋ +U ′(x) − η)⟩η
through the correlation function Cη(u, v) = 2Dδ(u − v) + g2∫ Dxµ(x)φ(x(u))φ(x(v)). Above, we showed that

⟨δ(ẋ +U ′(x) − η)⟩η = ∫ Dx̃ ex̃T(ẋ+U ′(x))+ 1
2 x̃

TCηx̃.

Because x̃ is at most quadratic in the exponent, the integral is solvable and we get

⟨δ(ẋ +U ′(x) − η)⟩η = e−
1
2 (ẋ+U ′(x))TC−1

η (ẋ+U ′(x))√
det(2πCη) .

Note that the normalization 1/√det(2πCη) does not depend on the potential U . Now we can take the derivatives of
ln ⟨δ(ẋ +U ′(x) − η)⟩η and get

∂a ln ⟨δ(ẋ +U ′(x) − η)⟩η = −1

2
(ẋ +U ′(x))T ∂C−1

η

∂a
(ẋ +U ′(x)) − 1

2
∂atr lnCη

where we used ln detC = tr lnC. With this, we arrive at

∂aH(µ) = 1

2
tr(C0

∂C−1
η

∂a
) + 1

2
tr(∂Cη

∂a
C−1
η )

where the integral over the empirical measure gave rise to C0 = ∫ Dxµ(x)(ẋ + U ′(x))(ẋ + U ′(x)) and we used
∂a lnC = ∂C

∂a
C−1. Finally, using ∂C

∂a
C−1 = CC−1 ∂C

∂a
C−1 = −C ∂C−1

∂a
, we get

∂a lnP (µ ∣ g,D) ≃ −N
2

tr((C0 −Cη)∂C−1
η

∂a
)

as stated in the main text.
The derivative vanishes for C0 = Cη. Assuming stationarity, in Fourier domain this condition reads

Sẋ+U ′(x)(f) = 2D + g2Sφ(x)(f), (5)

where SX(f) denotes the network–averaged power spectrum of the observable X.

2. Model Comparison

Parameter estimation allows us to determine the statistical properties of the recurrent connectivity g and the
external input D. However, this leaves the potential U and the transfer function φ unspecified. Here we determine U
and φ using model comparison techniques [9].

We consider two options to obtain U and φ: comparing the mean squared error in Eq. (5) for the inferred parameters
and comparing the likelihood of the inferred parameters. For the latter option, we can use the rate function from
Eq. (3). Given two choices Ui, φi, i ∈ {1,2}, with corresponding inferred parameters ĝi, D̂i, we have

ln
P (µ ∣U1, φ1, ĝ1, D̂1)
P (µ ∣U2, φ2, ĝ2, D̂2) ≃ −N(H1 −H2) (6)
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Figure 1. Model comparison for φ(x) = erf(√πx/2) and U(x) = 1
2
x2 − s ln coshx. A,B Maximum likelihood estimates of ĝ and

D̂ for given choices of s. True values of g and D indicated as gray lines; estimates at the true value s = 1.5 indicated as gray
symbols. C Mean squared error between left– and right–hand–side of Eq. (5) for given s. D Cross entropy difference between
model with s = 0 and with given s. Further parameters as in Fig. 1 in the main text.

with Hi ≡ H(µ ∣Ui, φi, ĝi, D̂i). The difference H1 −H2 equals the difference of the minimal cross entropies for the
respective choices Ui, φi. Assuming an infinite observation time, this difference can be expressed as an integral that
is straightforward to evaluate numerically (see below).

To illustrate the procedure, we consider the potential

U(x) = 1

2
x2 − s ln coshx,

which is bistable for s > 1 [10] and determine s using the mean squared error and the cross entropy difference (see
Fig. 1). Parameter estimation yields estimates ĝ and D̂ that depend on s (Fig. 1A,B). The mean squared error displays
a clear minimum at the true value s = 1.5 (Fig. 1C) whereas the maximal cross entropy occurs at a value larger than
s = 1.5 (Fig. 1D). The latter effect arises because the cross entropy is dominated by the parameter estimates, thus
the mean squared error provides a more reliable criterion in this case.
Cross Entropy Difference Here, we express the cross entropy difference

H1 −H2 ∶=H(µ ∣U1, φ1, ĝ1, D̂1) −H(µ ∣U2, φ2, ĝ2, D̂2)
in a form that can be evaluated numerically. Using the rate function, we get

H1 −H2 = ∫ Dxµ(x) ln
⟨δ(ẋ +U ′

2(x) − η2)⟩η2⟨δ(ẋ +U ′
1(x) − η1)⟩η1

with Cηi = 2D̂iδ + ĝ2
i ∫ Dxµ(x)φiφi. Again, we use

⟨δ(ẋ +U ′(x) − η)⟩η = e−
1
2 (ẋ+U ′(x))TC−1

η (ẋ+U ′(x))√
det(2πCη)

to arrive at

H1 −H2 = − 1

2
tr (C1C

−1
η1

) − 1

2
tr lnCη1 + 1

2
tr (C2C

−1
η2

) + 1

2
tr lnCη2

with Ci = ∫ Dxµ(x)(ẋ + U ′
i(x))(ẋ + U ′

i(x)). For stationary correlation functions over infinite time intervals, we can
evaluate the traces as integrals over the power spectra:

tr(AB−1)∝ ∫ ∞
−∞

Ã(f)
B̃(f)df,

tr lnA∝ ∫ ∞
−∞ ln(Ã(f))df.
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Figure 2. Prediction of the future single–unit activity. A,B Prediction x̂ with uncertainty σx̂ (light symbols) for two arbitrary
units. Training data (dark symbols) determined by the true trajectory (solid curve). C Network–averaged mean squared error
ε (symbols) and predicted uncertainty σ2

x̂ (solid curve). D The error increases on half of the timescale of the autocorrelation
function: (Cx(0) − σ2

x̂)/Cx(0) (symbols) decreases asymptotically as C exp(−2∆t/τc) (lines). Network parameters φ(x) =
erf(√πx/2), U(x) = 1

2
x2, and D = 0; further parameters as in Fig. 1 in the main text.

With this, we get

H1 −H2 ∝− 1

2
∫ ∞
−∞

Sẋ+U ′
1(x)(f)

2D̂1 + ĝ2
1Sφ1(x)(f)df −

1

2
∫ ∞
−∞ ln(2D̂1 + ĝ2

1Sφ1(x)(f))df
+ 1

2
∫ ∞
−∞

Sẋ+U ′
2(x)(f)

2D̂2 + ĝ2
2Sφ2(x)(f)df +

1

2
∫ ∞
−∞ ln(2D̂2 + ĝ2

2Sφ2(x)(f))df.
Accordingly, the cross entropy difference can be evaluated with integrals over the respective power spectra that can
be obtained using Fast Fourier Transformation.

3. Activity Prediction

If the potential of the model is quadratic, U(x)∝ 1
2
x2, the measure µ̄ that minimizes the rate function corresponds

to a Gaussian process. For Gaussian processes, it is possible to perform Bayes–optimal prediction only based on its
correlation function [9, 11]. Denoting the correlation function of the process as Cx (Appendix B4), the prediction is
given by

x̂ = kTK−1x (7)

with Kij = Cx(ti, tj), ki = Cx(ti, t̂), and xi = x(ti). Here t̂ denotes the time point of the prediction and {ti} a set of
time points where the activity is known. The predicted value x̂ itself is Gaussian distributed with variance

σ2
x̂ = κ − kTK−1k (8)

where κ = Cx(t̂, t̂). The variance σ2
x̂ quantifies the uncertainty associated with the prediction x̂.

We use the self-consistent autocorrelation function from Eq. (3) to predict the future activity of two arbitrary units
using Eq. (7) and Eq. (8) (Fig. 2A,B). The network–averaged mean squared error ε = 1

N ∑Ni=1(x̂i−xi)2 is well predicted
by Eq. (8) as shown in Fig. 2C. The timescale of the error is half of the timescale of the autocorrelation function
(Appendix B5). We plot (Cx(0) − σ2

x̂)/Cx(0) against an exponential decay C exp(−2τ/τc), where Cx(τ)/Cx(0) ∼
exp(−τ/τc), and find a very good agreement (Fig. 2D). Since τc diverges for g ↘ 1 (cf. [6]), the timescale of the error
diverges as well.

4. Self–Consistent Correlation Function

Here, we describe how the self–consistent correlation function can be obtained efficiently for quadratic single–unit
potentials U(x) = 1

2
x2. The first part is a brief recapitulation of the approach in [2, 6], the second part specific to the
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error function is novel to the best of our knowledge.
For quadratic potentials, the most likely (self–consistent) measure reads

µ̄(x) = ⟨δ(ẋ + x − η)⟩η ,
corresponding to the Gaussian process ẋ = −x + η, where η is a zero–mean Gaussian process with self–consistent
correlation function

Cη(t1, t2) = 2Dδ(t1 − t2) + g2Cφ(t1, t2)
with Cφ(t1, t2) = ∫ Dx µ̄(x)φ(x(t1))φ(x(t2)). Using the linearity of the dynamics of x, one obtains an ODE for its
stationary autocorrelation function Cx(τ),

C̈x = Cx − g2Cφ, (9)

with initial conditions Cx(0) = σ2
x and Ċx(0) = −D [2, 6]. Using Price’s theorem, Eq. (9) can be cast into an equation

of motion C̈x = −∂CxV (Cx, σ2
x) in a potential

V (Cx, σ2
x) = −1

2
C2
x + g2CΦ (10)

where CΦ(t1, t2) = ∫ Dx µ̄(x)Φ(x(t1))Φ(x(t2)) and ∂xΦ(x) = φ(x).
Due to the implicit dependence of CΦ on Cx and σ2

x, this is not an initial value problem. To determine σ2
x, we

use energy conservation 1
2
Ċ2
x + V (Cx, σ2

x) = const. We restrict ourselves to solutions where Cx(τ → ∞) = 0 and
Ċx(τ →∞) = 0. With this, energy conservation evaluated at τ = 0 and τ →∞ yields an equation for σ2

x:

1

2
D2 + V (σ2

x, σ
2
x) = V (0, σ2

x). (11)

With σ2
x determined, Eq. (9) becomes an initial value problem that is straightforward to solve numerically.

Instead of solving Eq. (11) for given D to get σ2
x, we can use it to answer the inverse question: Given g and a

desired activity level σ2
x, how strong does the external noise D need to be? The answer directly follows from Eq. (11):

D(σ2
x) = √

2(V (0, σ2
x) − V (σ2

x, σ
2
x)). (12)

We use Eq. (12) to uncover the multiple self–consistent solutions; they correspond to a non–monotonicity of D(σ2
x).

For arbitrary transfer functions, we solve the integrals for CΦ numerically using an appropriate Gaussian quadrature.
Error Function For the transfer function

φ(x) = erf(√πx/2),
we can leverage an analytical expression for Cφ [12, Appendix]:

Cφ(τ) = 2

π
arcsin(πCx(τ)

2 + πσ2
x

) . (13)

For convenience, we introduce the scaled correlation function

y(τ) = πCx(τ)
2 + πσ2

x

, Cx(τ) = 2

π

y(τ)
1 − y0

.

Since y depends linearly on Cx, we get from Eq. (9) an equation of motion for y,

ÿ = y − g2(1 − y0)arcsin (y) , (14)

with y(0) ≡ y0 = πσ2
x

2+πσ2
x
and ẏ(0) = π

2
(1 − y0)D which again can be rewritten as ÿ = −∂yV (y, y0). Using Eq. (13), we

get the explicit expression for the potential

V (y, y0) = −1

2
y2 + g2(1 − y0) (√1 − y2 + y arcsin (y) − 1) .
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We chose the offset of the potential such that V (0, y0) = 0 which reduces Eq. (11) to

π2

8
(1 − y0)2D2 + V (y0, y0) = 0. (15)

We solve Eq. (15) numerically using the Newton–Raphson method implemented in SciPy [13] and Eq. (14) using lsoda
from the FORTRAN library odepack through the corresponding SciPy interface.

From Eq. (14) we can determine the timescale of y or equivalently Cx. Since y(τ →∞) → 0, we linearize Eq. (14)
for τ ≫ 0 to

ÿ = (1 − g2(1 − y0))y +O(y3).
From here, we can directly read off the timescale:

τc = 1√
1 − g2(1 − y0) . (16)

We use Eq. (16) to determine the timescale of the prediction error (see below).

5. Timescale of Prediction Error

We here relate the timescale of the prediction error to the timescale of the autocorrelation function Cx(τ)/Cx(0) ∼
exp(−τ/τc). The predicted variance in the continuous time limit is determined by the corresponding limit of Eq. (8),

σ2
x̂ = Cx(t̂, t̂) − ∫ T

0
∫ T

0
Cx(t̂, u)C−1

x (u, v)Cx(v, t̂)dudv,
where T denotes the training interval. Writing t̂ = T + τ and approximating Cx(T + τ, u) ≈ Cx(T,u)e−τ/τc , we get

σ2
x̂ ≈ Cx(t̂, t̂) − e−2τ/τcCx(T,T ),

where we used ∫T0 C−1
x (u, v)Cx(v, T )dv = δ(u − T ). Using stationarity Cx(u, v) = Cx(v − u), we arrive at

σ2
x̂/σ2

x ≈ 1 − e−2τ/τc
where Cx(0) = σ2

x. Thus, for large τ , the timescale of the prediction error is given by τc/2.
C. Fluctuations (Single Population)

1. Order Parameter Fluctuations

Here, we derive an expression for the fluctuations of the variance valid for slow dynamics τc ≫ 1. According to
Eq. (16), this is valid for g being of order 1 - in practice, we choose g not too close to 1, however, because of the
periodic solutions occurring in finite-size systems in this case [6]. We start with the Legendre transform of the rate
function of C, Eq. (4), which is the scaled cumulant generating functional

W∞(k) = −CT
kC̃k +CT

kk +Ω0(Ck, C̃k),
Ω0(C, C̃) = ln ∫ Dx ∫ Dx̃ eS0(x,x̃)+ g22 x̃TCx̃+φTC̃φ,

Ck = ∂C̃Ω0(C, C̃)∣
Ck,C̃k

,

C̃k = k + ∂CΩ0(C, C̃)∣
Ck,C̃k

,

where we redefined φTkφ → k in the argument of W∞ to simplify the notation a bit. To determine the fluctuations,
we need to calculate the second derivative of the scaled cumulant generating functional W ′′(0).
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We get immediately

W ′(k) = Ck
due to the saddle–point equations. The second derivative is thus simply

W ′′(k) = dCk
dk

.

Using the saddle–point equations, we get

dCk
dk

∣
Ck,C̃k

= dCk
dk

T

∂C∂C̃Ω0(C, C̃)∣
Ck,C̃k

+ dC̃k
dk

T

∂C̃∂C̃Ω0(C, C̃)RRRRRRRRRRRRCk,C̃k ,
dC̃k
dk

∣
Ck,C̃k

= δ + dCk
dk

T

∂C∂CΩ0(C, C̃)∣
Ck,C̃k

+ dC̃k
dk

T

∂C̃∂CΩ0(C, C̃)RRRRRRRRRRRRCk,C̃k .
Evaluated at k = 0 where Ck = C0 and C̃k = 0, we get

dCk
dk

∣
C0,0

= g2

2

dCk
dk

∣T
C0,0

⟨⟨x̃x̃, φφ⟩⟩0 + dC̃k
dk

∣T
C0,0

⟨⟨φφ,φφ⟩⟩0,
dC̃k
dk

∣
C0,0

= δ + g2

2

dC̃k
dk

∣T
C0,0

⟨⟨φφ, x̃x̃⟩⟩0,
where we dropped ⟨⟨x̃x̃, x̃x̃⟩⟩0 = 0. The second equation yields

dC̃k
dk

∣
C0,0

= A−1, A = δ − g2

2
⟨⟨φφ, x̃x̃⟩⟩0,

inserting this in the first we get

dCk
dk

∣
C0,0

= A−1⟨⟨φφ,φφ⟩⟩0B−1, B = δ − g2

2
⟨⟨x̃x̃, φφ⟩⟩0.

We arrive at

W ′′(0) = A−1⟨⟨φφ,φφ⟩⟩0B−1.

To avoid the complication of inverting the operators A and B, which depend on four times, we consider the implicit
equation

AW ′′(0)B = ⟨⟨φφ,φφ⟩⟩0. (17)

Next, we simplify the operators A and B.
First, we note that

⟨⟨φ(t1)φ(t2), x̃(s1)x̃(s2)⟩⟩0 ≡ ⟨φ(t1)φ(t2)x̃(s1)x̃(s2)⟩0 − ⟨φ(t1)φ(t2)⟩0⟨x̃(s1)x̃(s2)⟩0= ⟨φ(t1)φ(t2)x̃(s1)x̃(s2)⟩0
because ⟨x̃x̃⟩0 = 0. Furthermore, because ⟨⋅⟩0 is a Gaussian measure, we have

⟨φ(t1)φ(t2)x̃(s1)x̃(s2)⟩0 = ⟨φ′′(t1)φ(t2)⟩0⟨x(t1)x̃(s1)⟩0⟨x(t1)x̃(s2)⟩0+ ⟨φ′(t1)φ′(t2)⟩0⟨x(t1)x̃(s1)⟩0⟨x(t2)x̃(s2)⟩0+ ⟨φ′(t1)φ′(t2)⟩0⟨x(t2)x̃(s1)⟩0⟨x(t1)x̃(s2)⟩0+ ⟨φ(t1)φ′′(t2)⟩0⟨x(t2)x̃(s1)⟩0⟨x(t2)x̃(s2)⟩0,
which can be derived by expanding φ(x(t1)) and φ(x(t2)) as a Taylor series and applying Wick’s theorem. The
expectation ⟨x(t1)x̃(t2)⟩0 is the response at t1 to an infinitesimal perturbation at t2.



12

0.36 0.38 0.40
0

25

50

pr
ob

. d
en

sit
y

A Realization 1

0.36 0.38 0.40
0

25

50

B Realization 2

0.36 0.38 0.40
q

0

25

50
pr

ob
. d

en
sit

y

C Average

0.36 0.38 0.40
q

101

10 1

D Average

Figure 3. Order parameter fluctuations. A,B Temporal order parameter statistics for a single realization of random connectivity
each. C,D Temporal order parameter statistics across ten simulations with linear and logarithmic y-axis (panel D is identical
to Fig. 2A in the main text).

For quadratic potentials U(x) = 1
2
x2, the linear response function is ⟨x(t1)x̃(t2)⟩0 = −H(t1 − t2)e−(t1−t2). In

particular, its timescale is given by the timescale of the single unit dynamics, i.e. unity in the dimensionless units.
In contrast, the timescale of the other expectations ⟨⋅⟩0 is determined by the timescale of Cx, i.e. τc. For τc ≫ 1,
W ′′(0) hardly changes on the timescale of ⟨xx̃⟩0, thus we can approximate ⟨x(t1)x̃(t2)⟩0 ≈ −δ(t2 − t1). Because we
are only interested in the fluctuations of the variance, we furthermore evaluate Eq. (17) at equal times and consider
the stationary case. This turns the contributions to A and B dependent on φ and its derivatives into constants and,
most notably, renders Eq. (17) independent of time. We therefore suppress the time argument again to arrive at

⟨∆q2⟩ = ⟨⟨φφ,φφ⟩⟩0
N (1 − g2(⟨φ′′φ⟩0 + ⟨φ′φ′⟩0))2

as stated in the main text. The factor 1/N is due to the definition of the scaled cumulant generating functional,

W∞(k) = limN→∞ 1
N

ln ⟨⟨eNCTk⟩
x∣J⟩J , where the factor N in the exponent generates a factor N with each derivative

ofW∞. Conversely, the derivatives ofW∞ yields the n–th cumulant scaled with 1/Nn−1. Lastly, we used ⟨⟨φφ,φφ⟩⟩0 ≡⟨φφφφ⟩0 − ⟨φφ⟩0⟨φφ⟩0 = ⟨(φφ − ⟨φφ⟩0)2⟩0 in the main text.
In the main text, we show the fluctuations of the order parameter across time and realizations of the connectivity in

Fig. 2A. To supplement this, we show the order parameter fluctuations in Fig. 3 for two realizations of the connectivity
(Fig. 3A,B) and averaged across ten realizations of the connectivity (Fig. 3C,D). Using a logarithmic y-axis reveals
that also the tails are Gaussian.

2. Coexisting Mean–Field Solutions

Here, we determine a regime where two mean–field solutions coexist. We restrict ourselves to quadratic potentials
U(x) = 1

2
x2 and start from Eq. (12),

D(σ2
x) = √

2(V (0, σ2
x) − V (σ2

x, σ
2
x)),

which determines the necessary external noise to reach a given activity level σ2
x. Non–monotonicities of D(σ2

x) give
rise to multiple solutions since they indicate a case where the same external noise can lead to different activity levels.

We focus on the linearly stable case g < 1 with antisymmetric φ(x) and φ′(0) = 1. For small σ2
x, we approximate

Φ(x) = 1
2
x2 + α

24
x4 +O(x6). Using Wick’s theorem and Eq. (10), we get

2(V (0, σ2
x) − V (σ2

x, σ
2
x)) = (1 − g2)σ4

x − αg2σ6
x +O(σ8

x).
For g < 1, the leading order term grows monotonically with σx. To introduce a non–monotonicity, the next term has
to shrink which implies α > 0. This excludes sigmoidal functions like φ(x) = erf(√πx/2) or φ(x) = tanh(x). Thus, we
consider non–sigmoidal functions with α > 1 that we keep bounded between −1 and 1 by clipping them to the interval[−1,1].
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In the noiseless case D = 0, the silent fixed point σ2
x = 0 is one of the two solutions. Using the stability criterion

g2⟨φ′(σx)2⟩ < 1 from [14], we get for the transfer function φ(x) = clip(tan(x),−1,1)
g2⟨φ′(σxz)2⟩ = g2 ∫ π/4

−π/4 dzN (z ∣0, σ2
x) cos−4(z) σx→0→ g2,

hence the silent fixed point is stable for g < 1.

D. Rate Function (Multiple Populations)

1. Scaled Cumulant Generating Functional

Here, we derive the scaled cumulant generating functional and the saddle-point equations for networks with multiple
populations. The steps are similar to the single population case, hence we keep the presentation brief. Throughout,
we use greek indices for the populations and latin indices for individual neurons within a given population: xαi denotes
the trajectory of neuron i of population α, xα the trajectories of all neurons in population α, and x the trajectories of
all neurons. The same convention applies to the connectivity: Jαβij governs the connection from neuron j in population
β to neuron i in population α, Jαβ the connections from all neurons in population β to all neurons in population α,
and J all connections. Furthermore, we denote the size of an individual population by Nα and set N = ∑αNα.

The expectation ⟨⋅⟩x∣J of some arbitrary functional G(x) can again be written as

⟨⟨G(x)⟩x∣J,ξ⟩ξ =∏α ∫ Dxα P (x ∣J)G(x),
where we introduced

P (x ∣J) =∏
α

⟨δ(ταẋα +U ′
α(xα) +∑

β

Jαβφ(xβ) + ξα)⟩
ξα

=∏
α
∫ Dx̃α e∑α Sα0 (xα,x̃α)−∑α,β x̃αTJαβφ(xβ).

The action Sα0 now depends on the population,

Sα0 (y, ỹ) = ỹT(ταẏ +U ′
α(y)) +Dαỹ

Tỹ.

The average over realizations of the connectivity Jαβ i.i.d.∼ N (0,N−1
β g2

αβ) only affects the term −∑α,β x̃αTJαβφ(xβ).
Due to the independence of the entries of J , the average factorizes into

⟨e−∑α,β x̃αTJαβφ(xβ)⟩J =∏
α,i

∏
β,j

⟨e−x̃αTi Jαβij φ(xβj )⟩Jαβij =∏
α,i

e
1
2 x̃
αT
i (∑β,j g2αβNβ φ(xβj )φ(xβj )T)x̃αi .

Next, we introduce the population–averaged auxiliary fields

Cα(u, v) = 1

Nα

Nα∑
i=1φ(xαi (u))φ(xαi (v))

via Hubbard–Stratonovich transformations:

⟨e−∑α,β x̃αTJαβφ(xβ)⟩J =∏
α
∫ DCα ∫ DC̃α e−∑αNαCαTC̃α+∑α φ(xα)TC̃αφ(xα)+ 1

2 ∑α x̃αT(∑β g2αβCβ)x̃α .
As in the single-population case, the average over the connectivity and the subsequent Hubbard–Stratonovich trans-
formation decouple the dynamics across units; afterwards, the units are only coupled through the global fields Cα

and C̃α.
Now, we consider the empirical densities of the populations,

µα(y) = 1

Nα

Nα∑
i=1 δ(xαi − y). (18)
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The corresponding scaled cumulant generating functional is

WN({`○}) = 1

N
ln ⟨⟨e∑α∑Nαi=1 `α(xi)⟩

x∣J⟩J , (19)

where we introduced one functional `α for each µα and the collection of all `α, {`○}. Using the above results and the
abbreviation φ(x) ≡ φ, it can be written as

WN({`○}) = 1

N
ln∏

α
∫ DCα ∫ DC̃α e−∑αNαCαTC̃α+∑αNαΩα`α({C○},C̃α),

where we introduced

Ωα` ({C○}, C̃) = ln ∫ Dx ∫ Dx̃ eSα0 (x,x̃)+ 1
2 x̃

T(∑β g2αβCβ)x̃+φTC̃φ+`(x).
Again, the Nα in front of the single–particle cumulant generating functionals Ωα` results from the factorization of
the Nα integrals over xαi and x̃αi each; thus it is a hallmark of the decoupled dynamics. Note that WN({`○}) is still
coupled across populations, because each Ωα` depends on the set of all auxiliary fields, {C○}.

Next, we approximate the Cα and C̃α integrals in a saddle–point approximation which yields

W∞({`○}) = −∑
α

γαC
αT{`○}C̃α{`○} +∑

α

γαΩα`α({C○{`○}}, C̃α{`○}), (20)

where γα = Nα/N . Cα{`○} and C̃α{`○} are determined by the saddle–point equations

Cα{`○} = ∂C̃Ωα`α({C○}, C̃)∣{C○{`○}},C̃α{`○} , (21)

γαC̃
α{`○} =∑

β

γβ ∂CαΩβ
`β

({C○}, C̃)∣{C○{`○}},C̃β{`○} . (22)

Here, the asymmetry in the saddle-point equations reflects the fact that Ωα` depends on a single C̃ but on all {C○}.
2. Rate Function

Here, we derive the rate function from the scaled cumulant generating functional for the multi-population case. We
obtain the rate function via the Legendre transformation

H({µ○}) =∑
α

γα ∫ Dxµα(x)`α{µ○}(x) −W∞({`○{µ○}}) (23)

with `α{µ○} implicitly defined by

γαµ
α = ∂`αW∞({`○})∣{`○{µ○}} . (24)

Due to the saddle–point equations, Eq. (21) and Eq. (22), the derivative of the cumulant generating functional in
Eq. (24) simplifies to

∂`αW∞({`○})∣{`○{µ○}} = γα ∂`αΩα`α({C○{`○}}, C̃α{`○})∣{`○{µ○}} ,
where the derivative only acts on the `α that is explicit in Ωα`α and not on the implicit dependencies through {C○{`○}},
C̃α{`○}. Thus, Eq. (24) yields

µα(x) = ⟨δ(ταẋ +U ′
α(x) − ηα)⟩ηα eφTC̃α{`○}φ+`α(x)

∫ Dx ⟨δ(ταẋ +U ′
α(x) − ηα)⟩ηα eφTC̃α{`○}φ+`α(x)

RRRRRRRRRRRRR{`○{µ○}}
, (25)

where we used

∫ Dx̃ ex̃T(τẋ+U ′(x))+ 1
2 x̃

TCηx̃ = ⟨δ(τ ẋ +U ′(x) − η)⟩η
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to introduce the zero-mean Gaussian process ηα with correlation function

Cαη (u, v) = 2Dαδ(u − v) +∑
β

g2
αβC

β{`○{µ○}}(u, v).
Taking the logarithm of Eq. (25) and using the definition of Ωα` leads to

`α{µ○}(x) = ln
µα(x)⟨δ(ταẋ +U ′
α(x) − ηα)⟩ηα − φTC̃α{`○{µ○}}φ + Ωα`α({C○{`○}}, C̃α{`○})∣{`○{µ○}} .

Inserting `α{µ○}(x) into the Legendre transformation (23) and using Eq. (20) as ∑α γαΩα`α({C○{`○}}, C̃α{`○})−W∞({`○}) =
∑α γαCαT{`○}C̃α{`○} yields

H({µ○}) =∑
α

γα ∫ Dxµα(x) ln
µα(x)⟨δ(ταẋ +U ′
α(x) − ηα)⟩ηα −∑

α

γαC
T
µαC̃

α{`○{µ○}} +∑
α

γαC
αT{`○{µ○}}C̃α{`○{µ○}},

where

Cµα(u, v) = ∫ Dxµα(x)φ(x(u))φ(x(v)).
Identifying µα(x) in the saddle–point equation (21) yields

Cα{`○{µ○}}(u, v) = ∫ Dxµα(x)φ(x(u))φ(x(v))
and thus Cα{`○{µ○}} = Cµα . Accordingly, the last two terms in the Legendre transformation cancel and we arrive at

H({µ○}) =∑
α

γα ∫ Dxµα(x) ln
µα(x)⟨δ(ταẋ +U ′
α(x) − ηα)⟩ηα , (26)

where ηα is a zero-mean Gaussian process with correlation function

Cαη (u, v) = 2Dαδ(u − v) +∑
β

g2
αβ ∫ Dxµβ(x)φ(x(u))φ(x(v)). (27)

Note that although Eq. (26) is a sum over the populations, the individual terms are still coupled through Eq. (27).
The derivation can be generalized further to population-specific transfer functions φα(xαi ). Since this would make

the notation more complicated without any conceptual changes, we just state the result: The rate function is still
given by Eq. (26) but the correlation function of ηα becomes

Cαη (u, v) = 2Dαδ(u − v) +∑
β

g2
αβ ∫ Dxµβ(x)φβ(x(u))φβ(x(v)).

In the main text, we state only the slightly less general result for φα ≡ φ.
E. Inference (Multiple Populations)

1. Log–Likelihood Derivative

Here, we calculate the derivatives of the log–likelihood with respect to the parameters gαβ and Dα for the multi-
population case. We denote the matrix with elements gαβ by g and the vector with elements Dα by D and proceed
similar to the single population case.

In terms of the rate function, Eq. (26), we have

∂aα lnP ({µ○} ∣g,D) ≃ −N∂aαH({µ○} ∣g,D)
where aα denotes either gαβ and Dα. The parameters aα appear only in the cross entropy of population α

∂aαH({µ○}) = −γα ∫ Dxµα(x)∂aα ln ⟨δ(ταẋ +U ′
α(x) − ηα)⟩ηα



16

10 2 10 1 100

100

10 4

(x
)(f

)

A Output spectra
pop. 1
pop. 2

1 1 2 1 1 2 2 2

1.5

3.0

g2

B Parameter

true
inferred

10 2 10 1 100

f

100

10 4

(x
)(f

)

C

1 1 2 1 1 2 2 2

1.5

3.0

g2

D

Figure 4. Maximum likelihood parameter estimation for two populations with equal time constants τ1 = τ2 = 1 and equal
quadratic row sums ∑β g2αβ = 3 ∀α. A Output power spectra Sαφ(x)(f) of two unconnected populations g212 = g221 = 0 with
g211 = g222 = 3. B Estimated (blue) and true (black) parameters corresponding to A. C Output power spectra of two connected
populations with g211 = g222 = 0, g212 = g221 = 3. D Estimated (blue) and true (black) parameters corresponding to C. Further
parameters as in Fig. 3 in the main text.

through the correlation function Cαη (u, v) = 2Dαδ(u − v) +∑β g2
αβ ∫ Dxµβ(x)φ(x(u))φ(x(v)). In the calculation for

the log-likelihood derivative for the single population, we showed that

⟨δ(τ ẋ +U ′(x) − η)⟩η = e−
1
2 (τẋ+U ′(x))TC−1

η (τẋ+U ′(x))√
det(2πCη) .

With this, we can take the derivatives of ln ⟨δ(ταẋ +U ′
α(x) − ηα)⟩ηα and get

∂aα ln ⟨δ(ταẋ +U ′
α(x) − ηα)⟩ηα = −1

2
(ταẋ +U ′

α(x))T ∂(Cαη )−1

∂aα
(ταẋ +U ′

α(x)) − 1

2
∂aαtr lnCαη ,

where we used ln detC = tr lnC. With this, we arrive at

∂aαH({µ○}) = γα
2

tr(Cα0 ∂(Cαη )−1

∂aα
) + γα

2
tr(∂Cαη

∂aα
(Cαη )−1) ,

where the integral over the empirical measure µα gave rise to Cα0 = ∫ Dxµα(x)(ταẋ + U ′
α(x))(ταẋ + U ′

α(x)) and we
used ∂a lnC = ∂C

∂a
C−1. Finally, using ∂C

∂a
C−1 = CC−1 ∂C

∂a
C−1 = −C ∂C−1

∂a
, we get

∂a lnP ({µα} ∣g,D) ≃ −Nα
2

tr((Cα0 −Cαη )∂(Cαη )−1

∂aα
) . (28)

The derivative vanishes for Cα0 = Cαη .
Assuming stationarity, a Fourier transformation of Cα0 = Cαη leads to

Sαταẋ+U ′
α(x)(f) = 2Dα +∑

β

g2
αβSβφ(x)(f) (29)

as stated in the main text.

2. Degeneracy of Inference Equation

Here, we show that parameter inference using Eq. (29) can be degenerate because different models are equally
plausible.

If the empirical estimates of the output spectra agree, Sαφ(x)(f) = Sβφ(x)(f) ≡ Sβφ(x)(f), Eq. (29) reduces to
Sαταẋ+U ′

α(x)(f) = 2Dα + Sφ(x)(f)∑
β

g2
αβ .



17

Clearly, this leads to a degenerate space of solutions with ∑β g2
αβ = const.

For example, we consider the case with τ1 = τ2 = 1 and ∑β g2
αβ = 3 in Fig. 4. The most likely set of empirical measures

for these parameters is µ̄α = µ̄β , hence the most likely empirical output spectra agree. Indeed, the empirical output
spectra of the two populations agree almost perfectly for a given realization of the connectivity (Fig. 4A,C), thereby
rendering the inference degenerate. Accordingly, for two populations without self-connections, g2

11 = g2
22 = 0, g2

12 =
g2

21 = 3, the parameter inference infers the opposite of two almost unconnected populations (Fig. 4C,D). Curiously,
the inferred parameters agree perfectly with the true parameters if the populations are unconnected (Fig. 4A,B). This
is a finite-size effect: For unconnected networks, the estimates of the output spectra are independent, which leads to
different finite-size fluctuations (compare Fig. 4A and Fig. 4C) such that the inference is not degenerate anymore.
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preamble

Up to this chapter, the neuron models were rather abstract and, in
particular, rate-based. In this chapter, we take spikes into account
using either Generalized Linear Models (GLMs) or Leaky Integrate-
and-Fire models (LIFs). Due to this additional complexity, the focus
is now fully constrained to the dynamics. In terms of the network
structure, we stick to block-structured random networks but with the
small addition of a non-vanishing mean.

The main motivation for the work presented in this chapter is
an intriguing experimental observation by Murray et al. (2014): the
intrinsic timescale—the autocorrelation time—increases systematically
across the cortical hierarchy. Importantly, this observation is based on
single-neuron recordings and not the population activity (although
similar trends were recently observed in fMRI data by Manea et al.
2022). This raises the question how network- and neuron-parameters
influence the intrinsic timescale.

To investigate this analytically, dynamic mean-field theory is ideally
suited because it describes the single-neuron statistics (see Section 3.4).
Because the output of the neurons is a point process (see Section 3.3),
determining the relation between input- and output-statistics becomes
the main challenge.

We address this challenge for GLM neurons by deriving analytical
solutions for exponential and error-function nonlinearities. For LIF
neurons, we rely on a level-crossing approach and an approximation
proposed by Stratonovich (1967). In both cases, the resulting theory
yields network-averaged single-neuron correlation functions, which
we validate against empirical data from simulations. In a next step,
we use the correlation functions to investigate the influence of neuron-
and network parameters on the timescale.
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A complex interplay of single-neuron properties and the recurrent network structure shapes the activity of
cortical neurons. The single-neuron activity statistics differ in general from the respective population statistics,
including spectra and, correspondingly, autocorrelation times. We develop a theory for self-consistent second-
order single-neuron statistics in block-structured sparse random networks of spiking neurons. In particular, the
theory predicts the neuron-level autocorrelation times, also known as intrinsic timescales, of the neuronal activity.
The theory is based on an extension of dynamic mean-field theory from rate networks to spiking networks,
which is validated via simulations. It accounts for both static variability, e.g., due to a distributed number of
incoming synapses per neuron, and temporal fluctuations of the input. We apply the theory to balanced random
networks of generalized linear model neurons, balanced random networks of leaky integrate-and-fire neurons,
and a biologically constrained network of leaky integrate-and-fire neurons. For the generalized linear model
network with an error function nonlinearity, a novel analytical solution of the colored noise problem allows us to
obtain self-consistent firing rate distributions, single-neuron power spectra, and intrinsic timescales. For the leaky
integrate-and-fire networks, we derive an approximate analytical solution of the colored noise problem, based on
the Stratonovich approximation of the Wiener-Rice series and a novel analytical solution for the free upcrossing
statistics. Again closing the system self-consistently, in the fluctuation-driven regime, this approximation yields
reliable estimates of the mean firing rate and its variance across neurons, the interspike-interval distribution, the
single-neuron power spectra, and intrinsic timescales. With the help of our theory, we find parameter regimes
where the intrinsic timescale significantly exceeds the membrane time constant, which indicates the influence
of the recurrent dynamics. Although the resulting intrinsic timescales are on the same order for generalized
linear model neurons and leaky integrate-and-fire neurons, the two systems differ fundamentally: for the former,
the longer intrinsic timescale arises from an increased firing probability after a spike; for the latter, it is a
consequence of a prolonged effective refractory period with a decreased firing probability. Furthermore, the
intrinsic timescale attains a maximum at a critical synaptic strength for generalized linear model networks, in
contrast to the minimum found for leaky integrate-and-fire networks.

DOI: 10.1103/PhysRevResearch.3.043077

I. INTRODUCTION

Neural dynamics in the cerebral cortex of awake behaving
animals unfolds over multiple timescales, ranging from mil-
liseconds up to seconds and more [1–5]. Such a heterogeneity
of timescales in the dynamics is a substrate for temporal
processing of sensory stimuli [6] and reflects integration of
information over different time intervals [3,4]. Intriguingly,
in vivo electrophysiological recordings reveal a structure in
the autocorrelation timescales of the activity on the level of
single neurons [2,7]. This structure could arise from system-
atic variations in single-neuron or synaptic properties [8,9],
from the intricate cortical network structure [10], or from a

*avm@physik.hu-berlin.de
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Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

combination of both [11,12]. Furthermore, timescales may be
influenced by the external input to the network, and depend
on the chosen measurement procedure [13]. Thus, while these
timescales are referred to as intrinsic timescales, they are
shaped by intrinsic and extrinsic factors alike.

Explaining the timescales of individual neurons embedded
in a network poses a theoretical challenge: How to account for
a microscopic, neuron-level observable in a macroscopic the-
ory? Clearly, a straightforward coarse-graining of the activity
eliminates the microscopic observable of interest [14]. Dy-
namic mean-field theory (DMFT) [15–17] makes microscopic
observables accessible because, instead of coarse-graining the
activity of the neurons, it coarse-grains their input. Here, the
term “dynamic” specifies that the input is approximated as
a stochastic process that varies in time, in contrast to the
notion of a mean-field theory in physics, which usually de-
scribes processes embedded in a constant field. DMFT has led
to significant insights into the interrelation between network
structure and intrinsic timescales for recurrent networks of
(nonspiking) rate neurons [15–23]. In particular, it has been
shown that very slow intrinsic timescales emerge close to

2643-1564/2021/3(4)/043077(25) 043077-1 Published by the American Physical Society
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a transition to chaos in autonomous networks [15]. Interest-
ingly, simply adding a noisy input to the network significantly
reduces this effect and even leads to a novel dynamical regime
[21]. Furthermore, increasing the complexity of the single-
neuron dynamics reveals that timescales of slow adaptive
currents are not straightforwardly expressed in the network
dynamics [22], and leads to yet another dynamical regime
termed “resonant chaos” [23]. In combination, these results
suggest that the mechanisms shaping the intrinsic timescales
in recurrent networks are highly involved.

A characteristic feature of neural communication in the
brain is the spike-based coupling [24]: the output of a neuron
is a stereotypical pulse, a spike, that is produced once the
internal voltage exceeds a threshold and that travels along
the axon to the target neurons. Consequently, spiking neu-
ral network models have already yielded notable insights
into cortical neural dynamics. Prominent examples are the
excitatory-inhibitory balance mechanism which dynamically
generates strong fluctuations while keeping the activity in a
physiological range [25,26] and the mechanism of recurrent
inhibitory feedback leading to low cross-correlation between
neurons despite the high number of shared inputs [27,28].
From a theoretical perspective, spike-based coupling further
increases the complexity of the dynamics. This calls for an
extension of DMFT to spiking networks. Following early
works where slow synaptic dynamics reduced the spiking net-
works effectively to rate networks [18,29], this was recently
achieved with a model-independent framework [30] (see also
the pioneering work [31]).

Perhaps unintuitively, the main obstacle is not the reduc-
tion of the recurrent dynamics to the DMFT but the colored
noise problem: to obtain the output statistics of the neuron for
temporally correlated input statistics. Previous works relied
on numerical methods to address the colored noise problem
[31–36] because the spiking nonlinearity renders this prob-
lem in general analytically intractable. Such a self-consistent
numerical scheme already revealed an unexpected minimum
instead of a maximum in the intrinsic timescales for spiking
networks at a critical coupling strength [37]. However, nu-
merical solutions have the drawback that they lead to noisy
estimates of the autocorrelation function, which poses addi-
tional challenges on the inference of intrinsic timescales [38]
and other dynamical quantities from the neuronal and net-
work parameters. In addition, such a self-consistent numerical
scheme is computationally intensive.

In this paper, we use analytical approaches to close the self-
consistency equations for spiking networks. First, we transfer
the theory for rate networks to one for spiking networks start-
ing from the characteristic functional of the recurrent input.
This shows that the first two cumulants (mean and variance)
of the connectivity matrix suffice to fully characterize the
effective stochastic input, and automatically take the static
variabilities (firing rate, indegree) in the network into account.
Since it is based on DMFT, the resulting theory indeed ac-
counts for the timescales on the microscopic level, orthogonal
to approaches where the activity of a population of neurons is
reduced to an effective mesoscopic description [39]. Second,
we derive an analytical solution to the colored noise problem
for generalized linear model (GLM) neurons with exponential
and error function nonlinearity. Using these analytical solu-

tions, we validate that the self-consistent DMFT captures both
the static second-order statistics, the distribution of firing rates
across neurons, and the dynamic second-order statistics, the
population-averaged autocorrelation function. Furthermore,
we use the theory to investigate the conditions for longer
intrinsic timescales, like those observed in in vivo electrophys-
iological recordings [2,7], in a balanced random network of
GLM neurons. Due to the analytical tractability, our theory
exposes the factors that shape the intrinsic timescale. Third,
we derive a numerically efficient analytical approximation for
the colored noise problem for leaky integrate-and-fire (LIF)
neurons in the noise-driven regime based on the Wiener-Rice
series and the Stratonovich approximation thereof [40,41]. For
a different approach based on a Markovian embedding, which
leads to multidimensional Fokker-Planck equations with in-
volved boundary conditions that are solved numerically, see
[42]. In contrast, our approximation leads to integrals of which
the computationally most involved ones can be solved analyt-
ically. Lastly, we use these results to explore the parameter
space of a balanced random network of LIF neurons for
long timescales, and apply the theory to a more elaborate
model with population–specific connection probabilities that
are constrained by biological data [43].

We start this manuscript with the derivation of the DMFT
equations from the characteristic functional of the recurrent
input. The remainder of the results is structured according
to the neuron model. First we consider GLM neurons with
exponential and error function nonlinearity, respectively, then
we turn to LIF neurons. For each neuron model, we begin by
deriving the solution or approximation of the colored noise
problem. We then describe the numerical method to solve
the self-consistent DMFT equations for the given neuron type
(GLM or LIF). Subsequently, we use our theory to investigate
the timescale in the respective network models.

II. MICROSCOPIC THEORY OF INTRINSIC TIMESCALES

We consider random network topologies where the entries
of the matrix J containing the synaptic strengths, i.e., the
amplitudes of evoked post-synaptic currents due to incoming
spikes, are independent and identically distributed (i.i.d.). A
synapse from neuron j to neuron i exists (Ji j is nonzero) with
probability p; each nonzero entry Ji j is independently sampled
from the distribution of synaptic strengths with mean μJ and
variance σ 2

J < ∞:

Ji j =
{

Ji j with probability p
0 with probability 1 − p

. (1)

The connectivity is thus taken to be pairwise Bernoulli, yield-
ing maximally one synapse from a given presynaptic to a
given postsynaptic neuron. To account for Dale’s law and
further heterogeneities, we subdivide the network into popula-
tions, e.g., all pyramidal cells in cortical layer V, consisting of
statistically identical neurons and denote the population by a
Greek superscript. Within this generalization, the entries of J
are still i.i.d. random numbers for a given pair of populations
α, β, but pαβ and the distribution of Jαβ

i j can vary for different
pairs of populations [Fig. 1(a)]. For example, if I denotes a
population of inhibitory interneurons, all JαI

i j are negative.
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FIG. 1. Illustration of the theory. (a) We consider populations
of randomly connected neurons (α, β) that communicate via spike
trains xα

i (t ). The neurons of population β are connected to those of
population α with connection probability pαβ . (b) The theory reduces
a population to a single neuron driven by an effective stochastic input
ηα . The first- and second-order statistics μα

η and Cα
η of ηα depend

self-consistently on the output statistics, να and Cα
x . (c) From the sta-

tionary spike train autocorrelation function Cx (τ ) = νδ(τ ) + Ĉx (τ ),
we obtain the correlation time τc, the asymptotic decay τ∞, and
the variability of the rate across neurons, σ 2

ν . (d) Instead of the
stationary autocorrelation function we sometimes consider the power

spectrum Sx ( f ), which saturates at the firing rate, Sx ( f )
f →∞→ ν, and,

for a renewal process, has the zero-frequency limit Sx ( f )
f →0→ νCV2.

Throughout, we consider the population–averaged single-unit statis-
tics (black curve) instead of the statistics of the population-averaged
activity (gray curve).

In this manuscript, we focus on the situation where the
average number of synapses per neuron, the indegree Kαβ =
pαβNβ , is large: Kαβ � 1 due to a large number of presy-
naptic neurons Nβ � 1 in combination with a moderate
connection probability pαβ on the order of 10%, in agree-
ment with the situation in cortical networks [44]. In line
with the theory of balanced networks [45], we assume that
neither single spikes are sufficient to cause firing nor coherent
input from all presynaptic neurons is necessary. Moreover,
we consider networks which are in an asynchronous irregu-
lar state exhibited by cortical networks of awake, behaving
animals [46].

In the following, we first consider a single population for
clarity because the generalization to multiple populations is
straightforward.

A. Input statistics

Dynamic mean-field theory reduces the dynamics of the re-
current network to a set of self-consistent stochastic equations.
Its core idea is to approximate the recurrent input

ηi(t ) =
N∑

j=1

Ji jx j (t ) (2)

by independent Gaussian processes. In Eq. (2), and through-
out this manuscript, x j (t ) = ∑

n δ(t − t j,n) denotes the spikes
emitted at times t j,n by neuron j—the spike train of neuron
j—which are the output of neuron j and contribute to the

input of target neuron i. The sum in Eq. (2) extends over all N
neurons, using that Ji j = 0 for neurons that are not connected.

1. Gaussian process approximation

Here, we sketch the derivation to expose necessary condi-
tions for the DMFT. For the full treatment of the problem, we
refer to the model–independent DMFT developed in Ref. [30],
which is applicable to spiking networks.

We start from the deterministic input Eq. (2) and derive
its approximation as independent Gaussian processes. To this
end, let us consider the characteristic functional of the re-
current input. Because ηi(t ) is a deterministic quantity, its
distribution is a Dirac delta and its characteristic functional,
defined by 	η[u(t )] = 〈exp(i

∫ T
0 u(t )ᵀη(t )dt )〉η, is [40,47]

(see also Appendix A, Eq. (A2))

	η[u(t )] = exp

(
i
∫ T

0

N∑
i, j=1

ui(t )Ji jx j (t )dt

)
. (3)

In Eq. (3), ui(t ) are arbitrary test functions; the derivatives of
	η[u(t )] with respect to the test functions evaluated at ui(t ) =
0 yield the moments of the recurrent input.

Now we assume that the dynamics of the system are, on a
statistical level, very similar for any given realization of the
connectivity, i.e., we assume that the system is self-averaging.
Thus we can consider the average across realizations of J and
neglect the dependence of the spike trains on the realization of
J for this average. For the latter assumption, it is important
to keep in mind that we consider the statistics of the entire
network: while the spike train of a particular neuron is cer-
tainly highly correlated to the realization of the connectivity,
self-averaging means that this does not hold for the statistics
of the activity across the network. Put differently, the input to
the neuron, and hence the neuron itself, “loses its identity” and
becomes a statistical representative for an arbitrary neuron in
the network.

Under these assumptions, the average of the characteristic
functional is

〈	η[u(t )]〉J ≈ ei〈J 〉∑N
i, j=1

∫ T
0 ui (t )x j (t )dt

× e− 1
2 〈
J 2〉∑N

i, j=1(
∫ T

0 ui (t )x j (t )dt )2
,

where we used the independence of the Ji j , their characteris-
tic function 〈exp(iki jJi j )〉Ji j = exp(i〈J 〉ki j − 1

2 〈
J 2〉k2
i j +

. . . ), and neglected the cumulants of Ji j beyond the
second-order cumulant (the variance) 〈
J 2〉. Due to the
independence of the Ji j , the expectation factorizes into
a product

∏N
i, j=1 which leads to the sum

∑N
i, j=1 in

the exponent. Within each factor, the first (second) cu-
mulant leads to a linear (quadratic) term in the expo-
nent. Next, we rewrite the square, (

∫ T
0 ui(t )x j (t )dt )2 =∫ T

0

∫ T
0 ui(t )ui(t ′)x j (t )x j (t ′)dtdt ′, and introduce the network-

averaged auxiliary fields

μη(t ) = 〈J 〉
N∑

j=1

x j (t ), (4)

Cη(t, t ′) = 〈
J 2〉
N∑

j=1

x j (t )x j (t
′). (5)
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Using the auxiliary fields, the characteristic functional fac-
torizes, 〈	η[u(t )]〉J ≈ ∏N

i=1 	̂η[ui(t )], with the individual
factors given by

	̂η[u(t )] = ei
∫ T

0 u(t )μη (t )dt− 1
2

∫ T
0

∫ T
0 u(t )Cη (t,t ′ )u(t ′ )dtdt ′

,

which is the characteristic functional of a Gaussian process
with mean μη(t ) and correlation function Cη(t, t ′) [40,47]
(see Appendix A, Eq. (A3)). The factorization 〈	η[u(t )]〉J ≈∏N

i=1 	̂η[ui(t )] implies that the approximate inputs described
by 	̂η[u(t )] are independent across neurons.

The above sketch of a derivation reveals multiple assump-
tions we make in the DMFT. First, we assumed self-averaging.
This is a necessary assumption if one wants to derive a state-
ment that generalizes beyond a given connectivity matrix to
its statistics only. For a broad class of rate networks, one can
show rigorously that the statistics of the activity across the
network are indeed self-averaging by calculating the distri-
bution of the empirical measure 1

N

∑N
i=1 δ[y(t ) − xi(t )] across

realizations of the connectivity [48,49]. Here, we check this
assumption post–hoc by comparison of the theory with sim-
ulations for a single realization of the connectivity. Second,
we implicitly assumed ḡ := N〈J 〉 and g2 := N〈
J 2〉 do not
scale with N such that the auxiliary fields remain finite for
large networks. Using the mean number of inputs per neuron
K = pN and the properties of J , we get

ḡ = KμJ , g2 = K
(
σ 2

J + (1 − p)μ2
J

)
. (6)

Third, we neglected higher cumulants of the input. Using the
assumption Ji j = O(1/

√
K ) leads to μJ = O(1/

√
K ), σ 2

J =
O(1/K ) and thus ḡ = O(

√
K ), g2 = O(1) as well as O(1/

√
K )

for the neglected higher cumulants. Accordingly, in the regime
K � 1, neglecting the contributions from higher cumulants,
e.g., due to shot noise effects [35], is justified.

2. Self–consistency problem

Given these assumptions, the recurrent inputs ηi(t ) can
be approximated by independent Gaussian processes, which
leads to a coarse-grained description of the dynamics: since
all inputs are statistically equivalent, the neurons become
statistically equivalent as well and the system reduces to N
independent, identical stochastic equations. For N � 1, we
can replace the empirical averages in Eqs. (4) and (5) by en-
semble averages such that we arrive at a set of self-consistency
equations. This step can be made rigorous using the formalism
of Ref. [30], see Eqs. (2) and (3) and Appendix 1 therein.

In the stationary state, the self-consistency equations are
given by

μη = ḡ 〈x〉η, Cη(τ ) = g2 〈xx〉η(τ ). (7)

The averages 〈x〉η ≡ ν and 〈xx〉η(τ ) − ν2 ≡ Cx(τ ) denote the
mean (firing rate) and correlation function of the spike train
produced by a neuron driven by the effective stochastic input
η(t ). Since the input thereby appears on both the left-hand and
the right-hand sides, this poses a self-consistency problem.

To recapitulate, DMFT approximates the input of a single
neuron by an effective Gaussian process with self-consistent
statistics [Fig. 1(b)]. Thus the description, albeit stochastic,
is still on the level of individual neurons. These individual

neurons driven by Gaussian processes form an ensemble with
the same statistics across neurons as the original network.
In particular, this means that population-averaged quantities,
e.g., the autocorrelation function, but also distributions across
the neurons, e.g., the distribution of the firing rate, can be
computed from the DMFT.

3. Static contribution

The networks we consider are heterogeneous even within a
population—each neuron potentially has a different number
of presynaptic partners and thus also a different firing rate
[50]. On a first glance, DMFT neglects this heterogeneity.
However, Eqs. (7) in fact account for such static variabili-
ties: on the right-hand side the second moment of the spike
train appears instead of the correlation function. Rewriting
〈xx〉η(τ ) = Cx(τ ) + ν2 reveals a first static component g2ν2

of the variability of the effective input due to the firing rate of
individual neurons. Moreover, Cx(τ → ∞) ≡ σ 2

ν potentially
saturates on a plateau which accounts for the variability of the
firing rate across neurons [Fig. 1(c)]. To make this explicit, we
sometimes rewrite

η(t ) = ζ + ξ (t ), (8)

where ζ is a Gaussian random variable with μζ = ḡν, σ 2
ζ =

g2(ν2 + σ 2
ν ) and ξ (t ) a zero-mean Gaussian process with

Cξ (τ ) = g2(Cx(τ ) − σ 2
ν ).

B. Multiple populations

Using the expressions Eqs. (7) for a single population,
we can straightforwardly generalize the theory to multiple
populations. Due to the independence of the effective inputs in
DMFT, both mean and correlation function are a simple sum
over the contributions from all populations [18,51]:

μα
η =

∑
β

ḡαβνβ, (9)

Cα
η (τ ) =

∑
β

(gαβ )
2(

Cβ
x (τ ) + (νβ )

2)
, (10)

with the corresponding generalizations of Eqs. (6), ḡαβ =
Kαβμ

αβ
J and (gαβ )

2 = Kαβ ((σαβ
J )

2 + (1 − pαβ )(μαβ
J )

2
). This

leads to one stochastic equation per population [Fig. 1(b)].
As before, we can split the input into static and dynamic
contributions, ηα (t ) = ζ α + ξα (t ).

1. External input

We take the sum
∑

β to include external populations, e.g.,
excitatory neurons that drive the network dynamics with ho-
mogeneous Poissonian spike trains of rate νext. In Eqs. (9) and
(10), such an external Poisson input leads to a term Jα,extνext

and (Jα,ext )2
νextδ(τ ), respectively. If the network is driven by

a constant external input, only Eq. (9) obtains an additional
contribution μα

ext. An external zero-mean, stationary Gaussian
process leads to an additional term Cext (τ ) in Eq. (10).
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C. Output statistics

Approximating the input is only the first step. In a sec-
ond step, the self-consistency problem has to be solved. To
this end, the output statistics of a neuron driven by a non-
Markovian Gaussian process have to be calculated. In other
words, we need a solution for the colored noise problem. The
full non-Markovian problem has to be considered because a
Markovian approximation neglects the quantity of interest: the
temporal correlations. For sufficiently simple rate neurons, the
problem is analytically solvable [15,52]; the case of two spik-
ing neuron models is discussed in the following sections. For
the remainder of this section, let us assume that we are able
to solve the colored noise problem to obtain a self-consistent
solution of Eqs. (9) and (10).

1. Timescale

Given a self-consistent solution, we can calculate the in-
trinsic timescale from the spike-train autocorrelation function
Cα

x (τ ). Since Cα
x (τ ) always contains a delta peak [40], we

consider only the smooth part of the autocorrelation function
Ĉα

x (τ ) ≡ Cα
x (τ ) − ναδ(τ ). To characterize the timescale, we

use the definition of Ref. [40] [Fig. 1(c)]:

τα
c =

∫ ∞

0

∣∣∣∣Ĉα
x (τ ) − Ĉα

x (∞)

Ĉα
x (0) − Ĉα

x (∞)

∣∣∣∣dτ. (11)

Note that the definition of the autocorrelation time
is not unequivocal. Other possible definitions include

τα
c = ∫∞

−∞ | Ĉα
x (τ )−Ĉα

x (∞)
Ĉα

x (0)−Ĉα
x (∞)

|2dτ [37] and τα
c =

∫∞
0 τ |Ĉα

x (τ )−Ĉα
x (∞)|dτ∫∞

0 |Ĉα
x (τ )−Ĉα

x (∞)|dτ

[23]. We observed drastic differences between these defi-
nitions for empirical correlation functions directly obtained
from the simulations. These differences are in part an artifact
from the absolute value: the variance of the empirical estimate
grows with τ [53]; due to the absolute value these fluctuations
add up. The three functional forms carry with them different

fluctuations, e.g., the squared fluctuations | Ĉα
x (τ )−Ĉα

x (∞)
Ĉα

x (0)−Ĉα
x (∞)

|2 are

typically much smaller than | Ĉα
x (τ )−Ĉα

x (∞)
Ĉα

x (0)−Ĉα
x (∞)

| < 1, and hence lead
to different estimates. For theoretically predicted autocorrela-
tions, the difference is less drastic and we choose Eq. (11)
because it is the most simple definition. Due to this difficulty,
we always use the theoretical prediction of the autocorrela-
tion function to determine the timescale—after checking that
it matches the empirical autocorrelation function well apart
from fluctuations.

In addition to τα
c , we will also consider the asymptotic

decay constant [Fig. 1(c)]

Ĉα
x (τ ) − Ĉα

x (∞) ∼ exp
(−τ/τα

∞
)
, (12)

because in special cases τα
∞ directly follows from our the-

ory. For a simple exponential autocorrelation function, the
timescales in Eqs. (11) and (12) coincide. We work from the
assumption that Eq. (12) is a good approximation to Eq. (11)
and verify this assumption post hoc.

In the literature, there are even more definitions of intrinsic
timescales than the ones mentioned above. For example, [2]
assume an exponential correlation function and an offset, sim-
ilar to Eq. (12) but for all time lags and not just asymptotically.
In contrast, Ref. [54] determine the timescale by fitting a

Lorentzian to the power spectrum after removing oscillatory
components. Yet another approach, determining the half width
at half maximum of the autocorrelation function, is advocated
for in Ref. [55]. To avoid these ambiguities, we use the es-
tablished definitions, Eqs. (11) and (12), from the stochastic
processes literature.

Recently, two new approaches have been proposed to esti-
mate the timescale directly from spiking data [38,56]. While
both overcome important challenges, biases in the estimated
timescale related to and independent of subsampling, respec-
tively, we do not use them here because they rely on models
which implicitly assume (a mixture of) exponential correla-
tion functions: Ref. [56] assumes an autoregressive model and
Ref. [38] a mixture of Ornstein-Uhlenbeck processes.

2. Spike train power spectrum

Instead of the autocorrelation function, we sometimes con-
sider the spike train power spectrum [Fig. 1(d)]

Sα
x ( f ) =

∫ ∞

−∞
e2π i f τCα

x (τ )dτ. (13)

Due to the delta peak in the autocorrelation function, the

power spectrum always saturates at the firing rate, Sα
x ( f )

f →∞→
να . For a renewal process, the zero-frequency limit is

Sα
x ( f )

f →0→ ναCV2
α [24], which directly reveals the coefficient

of variation of the interspike-interval (ISI) distribution CVα .

3. Comparison with simulations

In our theory, we consider disorder-averaged quantities and
stationary processes. To compare the theory with a single sim-
ulation, we assume self-averaging in the sense that the activity
distribution across neurons is approximately the same for each
network realization. Since neurons with different indegrees
have different disorder- and time-averaged inputs, in practice
this means that we assume that neurons with comparable
indegree have comparable activity statistics in each network
realization.

The disorder averages preserve the static variability across
neurons, as we consider the same connectivity statistics, and
in particular the same indegree distribution, across realiza-
tions. Self-averaging works well when each neuron (or at least
a sufficiently large proportion of neurons) receives input from
a representative sample of the rest of the network.

Under stationarity, distributions across neurons of instan-
taneous rates at any given time point (but not of instantaneous
rates across time points—which we do not consider here)
equal distributions of time-averaged rates across neurons. To
obtain the rate distributions from the simulations, we use time-
averaged rates to reduce the variance of the corresponding
estimates. Similarly, we use time averages to compute the
single-neuron autocorrelation functions and power spectra.

We focus on the second-order statistics. Since first-order
statistics, i.e., the firing rate, scale the power spectra and
correlation function [24], we plot Sx( f )/ν and Cx( f )/ν2 to
eliminate this trivial dependency. Note that a multiplicative
factor does not influence the intrinsic timescale, Eq. (11).
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III. GENERALIZED LINEAR MODEL NEURONS

First, we consider generalized linear model (GLM) neu-
rons [24,57]. GLM neurons are stochastic model neurons that
spike according to an inhomogeneous Poisson process at a
rate determined by the synaptic input. Due to their simplicity,
GLM neurons are frequently fitted to experimental data [24];
here we consider them because they are analytically tractable.

A. Neuron dynamics

Each neuron generates a spike train according to an inho-
mogeneous Poisson process with intensity (rate)

λα
i (t ) = cα

1 φ
[
cα

2

(
V α

i (t ) − θα
)]

, (14)

where θα denotes the (soft) threshold, φ(V ) is a smooth,
nonnegative, monotonically increasing function, and cα

1 > 0,
cα

2 > 0 are free parameters. The voltage is given by a linear
filtering of the input

V α
i (t ) =

∫ ∞

−∞
κα (t − s)ηα

i (s − dαβ )ds, (15)

where dαβ allows for a transmission delay. For all simulations,
we choose a filter with a single exponential with time constant
τα

m, which corresponds to post-synaptic currents in the form of
delta spikes:

κα (t ) = �(t )e−t/τα
m . (16)

Here, �(t ) denotes the Heaviside function ensuring causality
of the filter. We rescale the synaptic weights Jαβ

i j and the
threshold θα using cα

2 such that cα
2 = 1 throughout the rest of

this section.

1. Colored noise problem

The effective stochastic input ηα (t ) leads to stochastic volt-
age dynamics. Because the voltage is given by a convolution,
the voltage becomes a Gaussian process with

μα
V = κ̄αμα

η , Cα
V (τ ) =

∫ ∞

−∞
κ̃α (τ − s)Cα

η (s)ds, (17)

where the filter determines κ̄α = ∫∞
−∞ κα (t )dt and

κ̃α (t ) = ∫∞
−∞ κα (s)κα (s − t )ds. For the single-exponential

filter that we used in simulations, we have κ̄α = τα
m and

κ̃α (t ) = τα
m
2 e−|t |/τα

m . Note that the transmission delay cancels
in the stationary case considered here.

All cumulants of the resulting spike trains x(t ) can
be obtained from their characteristic functional [40] [see
Appendix A, Eq. (A8)]:

	x[u(t )] = exp

(∫ T

0
(eiu(t ) − 1)λ(t )dt

)
.

From here, we temporarily drop the population index for the
sake of clarity. Averaging over realizations of the rates yields

〈	x[u(t )]〉λ ≈ e
∫ T

0 (eiu(t )−1)μλ(t )dt

× e
1
2

∫ T
0

∫ T
0 (eiu(t )−1)Cλ(t,t ′ )(eiu(t ′ )−1)dtdt ′

,

where μλ(t ) denotes the mean of λ(t ), Cλ(t, t ′) its correlation
function, and we neglect terms of O(u3) since we are only

interested in the first and second cumulants. Expanding also
eiu(t ) − 1 to second order in u(t ), we can simply read off the
stationary cumulants

ν = μλ, Cx(τ ) = μλδ(τ ) + Cλ(τ ), (18)

in agreement with the result of Ref. [58].
We are left with the task of calculating the first two cumu-

lants of λ(t ) from μV and CV (τ ), depending on the choice of
the nonlinearity φ(V ).

2. Exponential nonlinearity

First, we consider the commonly employed exponential
nonlinearity [24]

φ(V ) = exp (V ). (19)

Both cumulants are straightforward to obtain from the charac-
teristic functional of the voltage. We have [see Appendix A,
Eqs. (A4) and (A5)]

〈φ(V (t1))〉V = 〈e
∫ T

0 V (t )δ(t−t1 )dt 〉V

= eμV + 1
2 CV (0)

,

〈φ(V (t1))φ(V (t2))〉V = 〈e
∫ T

0 V (t )[δ(t−t1 )+δ(t−t2 )]dt 〉V

= e2μV +CV (0)+CV (t2−t1 ),

where we used the stationarity of V . Including the prefactor
and the threshold from Eq. (14), we get

μλ = c1 exp
(
μV − θ + 1

2CV (0)
)
, (20)

Cλ(τ ) = μ2
λ exp(CV (τ )) − μ2

λ. (21)

From Eq. (21), it follows that Cλ(τ ) has a static part as long as
CV (∞) > 0. Since Cη(τ ) contains a static part [see Eqs. (8)
and (10)], CV (τ ) and hence Cλ(τ ) and Cx(τ ) indeed also
contain a static contribution and saturate on a plateau.

Rate distribution. The rate distribution across neurons is
lognormal because the (static) input distribution is Gaussian
and the f-I curve is a simple exponential [50]. The theory
yields the mean ν = c1 exp(μV − θ + 1

2CV (0)) and variance
σ 2

ν = Cx(∞) = ν2(eCV (∞) − 1) of the firing rate. We note that
we can obtain the same result from a constant input with mean
μ̃V = μV − θ + 1

2CV (0) − 1
2CV (∞) and variance across neu-

rons σ̃ 2
V = CV (∞). Parameterized in terms of μ̃V and σ̃V , the

firing rate distribution is thus

p(ν) = ν−1 N
(

ln(ν/c1) | μ̃V , σ̃ 2
V

)
(22)

with the normal distribution N (x | μ, σ 2).

3. Error function nonlinearity

A drawback of the exponential function, Eq. (19), is that it
allows for infinite rates. Thus we also consider the bounded
nonlinearity

φ(V ) = 1
2 (1 + erf (V/

√
2)). (23)

The integrals to determine the cumulants can be solved
using the table [59] (details in Appendix B 1); the result
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is

μλ = c1

2
(1 + erf (h/

√
2)), (24)

Cλ(τ ) = c1μλ − 2c2
1T (h, a(τ )) − μ2

λ, (25)

where we again suppressed the population index, abbreviated
h = μV −θ√

1+CV (0)
and a(τ ) = ( 1+CV (0)−CV (τ )

1+CV (0)+CV (τ ) )1/2, and used Owen’s

T function T (h, a) = 1
2π

∫ a
0 dx e− 1

2 h2 (1+x2 )

1+x2 .
Rate distribution. Equivalent to the situation for the ex-

ponential nonlinearity, the input distribution across neurons
is Gaussian. Again, we consider the equivalent static prob-
lem which, in this case, leads to μ̃V = μV −θ√

1+CV (0)−CV (∞)
and

σ̃ 2
V = CV (∞)

1+CV (0)−CV (∞) . Parameterized in terms of μ̃V and σ̃V , the
firing rate distribution is

p(ν) = N
(

probit(ν/c1) | μ̃V , σ̃ 2
V

)
c1 N (probit(ν/c1) | 0, 1)

, (26)

where probit(x) denotes the inverse of the standard normal
cumulative distribution, i.e., probit(φ(V )) = V , and we used
φ′(V ) = N (V | 0, 1).

4. Numerical solution of the self-consistency problem

We solve the self-consistency problem using a fixed-point
iteration [32,35]. To initiate the algorithm, we set να = 1

2 cα
1

and Cα
λ (t ) = 0. Next, we determine the input statistics ac-

cording to Eqs. (9) and (10); then we determine the voltage
statistics according to (17). From the voltage statistics, we
can obtain the statistics of the rate via Eqs. (20) and (21)
[or Eqs. (24) and (25)]. Denoting the rate thus calculated as
μ̂α

λ,n+1, we then update the rate statistics using incremental
steps, μα

λ,n+1 = μα
λ,n + ε(μ̂α

λ,n+1 − μα
λ,n) for the mean rate,

and similarly for all entries of Cα
λ (t ). The new firing rate

statistics lead via (18) to new spike train statistics. Here,
the small update step ε < 1 is crucial because otherwise the
fixed-point iteration is numerically unstable. Now we iterate
and generate new voltage statistics. With the incremental up-
date and the initialization να = 1

2 cα
1 , the algorithm quickly

converged to the fixed point corresponding to the simulation in
the examples we considered. Due to the analytical solutions,
the only bottleneck for the numerics is the convolution in
Eq. (17), which can be solved efficiently using the fast Fourier
transform [60]. Thus, even the parameter scans with 5000
points described in the following run on a laptop in less than
two minutes.

B. Balanced random network

As a first application of the theory, we consider a balanced
random network of excitatory and inhibitory GLM neurons.
The network contains two populations [Fig. 2(a)], α ∈ {E , I},
and it is driven by an excitatory external input which we
incorporate into an effective threshold θeff = θ − μext. Here,
we use a constant external input rather than a Poisson drive be-
cause we are particularly interested in finding long timescales,
which might be hindered by the lack of temporal correlation
of Poisson spike trains. However, the theory can straight-
forwardly be applied to Poisson input. Although four times
more excitatory cells are present in the network, we typically
place it in an inhibition-dominated regime by increasing the
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FIG. 2. Balanced random network of GLM neurons with expo-
nential nonlinearity. (a) Sketch of the network with populations of
excitatory (blue) and inhibitory (red) neurons. (b) Raster plot of
2% of the excitatory (blue) and inhibitory (red) neurons. (c) Fir-
ing rate distribution across all neurons from simulation (gray) and
theory (black) using Eq. (22). (d) Population-averaged single-unit
autocorrelation function from simulation (gray) and self-consistent
theory (black) using Eqs. (20) and (21). Here, we subtracted the
static contribution Cx (∞). Parameters: NE = 10000, NI = 2500,
JE = 0.25 mV, |JI/JE | = 4.5, p = 0.1, τm = 20 ms, θeff = 0 mV,
c1 = 50 s−1, c2 = 0.02 mV−1, and d = 1.5 ms.

synaptic weights of the inhibitory neurons. As well known
[26], this settles the network in the balanced state leading
to asynchronous irregular activity of the neurons [see, e.g.,
Fig. 2(b)].

In line with Brunel’s model A [26], we choose identi-
cal values for the single-neuron parameters. Since we also
choose the same connection probability of 10% for all pairs
of populations, both populations receive statistically identical
input in the DMFT approximation. Due to identical single-
neuron parameters and input statistics, the statistics of the
activity is the same for excitatory and inhibitory neurons [see,
e.g., Fig. 2(b)]; therefore, we do not distinguish between the
populations for the statistics in our plots. In contrast to the
network examined by Brunel, we consider the somewhat more
involved case of a fixed connection probability between a pair
of neurons instead of a fixed number of incoming synapses per
neuron (indegree). The fixed connection probability leads to
a (binomially) distributed indegree across neurons, such that
a strong variability across neurons is present in the network
[see, e.g., Fig. 2(c)]. This variability is already present on the
level of mean firing rates, i.e., there is static variability in the
network.

All simulations were performed using the NEST simulator
version 2.20.1 [61]. In all GLM network simulations, we
simulated 1 min of biological time with a time step of 0.1 ms
and discarded an initial transient of 1 s. For the GLM neurons,
we used the “pp_psc_delta” neuron model. To allow for the
error function nonlinearity, we modified the “pp_psc_delta”
model accordingly.

1. Exponential nonlinearity: absence of long timescales

First, we consider networks with an exponential nonlinear-
ity (Fig. 2). The fixed-point iteration yields a rate distribution
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FIG. 3. Parameter scan for a balanced random network of GLM
neurons with exponential nonlinearity. [(a) and (b)] Firing rate and
intrinsic timescale for varying neuron parameters c1 and c2. Param-
eters used in (c) and (d) and Fig. 2 indicated by orange crosses.
[(c) and (d)] Firing rate and intrinsic timescale for varying effective
threshold θeff and relative inhibitory strength |JI/JE |. Parameters
used in (a) and (b) and Fig. 2 indicated by orange crosses. Further
parameters as in Fig. 2.

and an autocorrelation function that closely match the simula-
tion [Figs. 2(c) and 2(d)]. The theory for the rate distribution
[Fig. 2(c)] is slightly biased towards higher rates; a possible
cause for this is a finite size effect because the mean inhibitory
indegree KI = pNI = 250 is relatively small. Nonetheless,
the theory predicts the autocorrelation function very well
[Fig. 2(d)] and yields a timescale τc ≈ τm = 20 ms.

For the parameters in Fig. 2, the intrinsic timescale is
close to the membrane time constant. This raises the question
whether longer timescales can be achieved in a network of
GLM neurons. To answer this question, we employ our theory
and perform parameter scans. First, we vary the single-neuron
parameters c1 and c2 [Figs. 3(a) and 3(b)]. The rate increases
monotonically with c1 while c2 has as smaller effect up to a
certain threshold [Fig. 3(a)]. Beyond this threshold, the rate
diverges rapidly to infinity in the threshold iteration [white
area in Fig. 3(a)]. The timescale is close to the membrane
time constant throughout the nondivergent regime and only in-
creases slightly towards the threshold where the rate diverges
[Fig. 3(b)]. Next, we vary the strength of the external input
by adjusting the effective threshold θeff and the inhibition
dominance by varying |JI/JE | for constant JE . We find a clear
threshold of |JI/JE | beyond which the rate diverges [Fig. 3(c)].
Again, this threshold corresponds to the regime where the
timescale slowly starts to grow above the membrane time
constant.

Put together, these observations suggest that the rate di-
vergence prevents recurrent dynamics with long timescales in
balanced random networks of GLM neurons with exponential
nonlinearity.

2. Error function nonlinearity: existence of long timescales

In the previous section, the rate divergence prevented
long timescales. To avoid the divergence, we consider the
bounded transfer function Eq. (23) and use our theory for
parameter scans (Fig. 4). The effect of the single-neuron

FIG. 4. Parameter scan for a balanced random network of GLM
neurons with error function nonlinearity. [(a) and (b)] Firing rate
and intrinsic timescale for varying neuron parameters c1 and c2.
Parameters used in (c) and (d) and Fig. 5 indicated by orange crosses.
[(c) and (d)] Firing rate and intrinsic timescale for varying effective
threshold θeff and relative inhibitory strength |JI/JE |. Parameters
used in (a) and (b) and Fig. 5 indicated by orange crosses. Further
parameters as in Fig. 2.

parameters c1 and c2 is similar to the unbounded case but
the rate divergence is absent [Fig. 4(a)]. This allows for a
parameter regime with longer timescales up to approximately
3τm [Fig. 4(b)]. Similarly, varying θeff and |JI/JE | uncovers
a regime with a rate close to the maximum c1 when the
network is not inhibition-dominated [Fig. 4(c)]. Outside the
inhibition-dominated regime, we expect that our theory does
not yield quantitatively accurate predictions. The effect on
the timescale is more subtle: within the inhibition-dominated
regime, for any given |JI/JE | the timescale displays a maxi-
mum whose location depends on the external input [Fig. 4(d)].

What kind of dynamics is displayed by the network at
such a local maximum of the timescale? The corresponding
spike trains show a strong variability of firing rate across
neurons and temporally correlated spikes [Fig. 5(a)]. The
rate distribution reveals that all rates between the minimum
zero and the maximum c1 are present, in excellent agreement
with the theoretical prediction [Fig. 5(b)]. In the example
considered, the empirical estimate of the network–averaged
single-unit autocorrelation displays an intrinsic timescale of
approximately 2τm; again, the empirical estimate and the the-
oretical prediction agree closely [Fig. 5(c)]. From the spike
train power spectrum, a high CV > 2 is apparent [Fig. 5(d)].
All of these characteristics agree with the “heterogeneous
asynchronous state” uncovered in [62].

3. Error function nonlinearity: mechanism of timescale

To uncover the mechanisms that shape the timescale, in
particular the local maximum in Fig. 4(d), we develop a theory
for the asymptotic timescale τ∞, Eq. (12). To this end, we use
that κ̃ (t ) = τm

2 e−|t |/τm is the fundamental solution to the dif-

ferential operator 1 − τ 2
m

d2

dt2 , i.e., (1 − τ 2
m

d2

dt2 )κ̃ (t ) = τ 2
mδ(t ).

Thus we can rewrite Eq. (17) into a differential equation:

τ 2
mC̈V = CV − τ 2

mCη
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FIG. 5. Balanced random network of GLM neurons with error
function nonlinearity. (a) Raster plot of 2% of the excitatory (blue)
and inhibitory (red) neurons. (b) Firing rate distributions across all
neurons from simulation (gray) and theory (black) using Eq. (26).
[(c) and (d)] Population-averaged single-unit autocorrelation func-
tion and power spectrum from simulation (gray) and self-consistent
theory (black) using Eqs. (24) and (25). As in Fig. 2, we sub-
tracted the static contribution Cx (∞). Parameters: c1 = 250 s−1,
c2 = 0.075 mV−1, and further parameters as in Fig. 2.

where the dependence of Cη on CV is determined by Eqs. (10),
(18), and (25). Next, we rescale time such that τm = 1 and lin-
earize this differential equation for small 
V (τ ) ≡ CV (τ ) −
CV (∞) to obtain


̈V =
(

1 − dCη(∞)

dCV (∞)

)

V + O

(

2

V

)
.

This allows for an exponential solution with time constant

τ∞ = 1√
1 − g2 dCλ(∞)

dCV (∞)

(27)

where we used Eqs. (10) and (18) to derive
dCη (∞)
dCV (∞) = g2 dCλ(∞)

dCV (∞) . We see that there are two factors that

determine the timescale: the cumulant of the connectivity g2

and the gain of the rate autocorrelation dCλ(∞)
dCV (∞) . For the latter,

we obtain from Eq. (25)

dCλ(∞)

dCV (∞)
= c2

1

2π

exp
(− (μV −θeff )2

1+CV (0)+CV (∞)

)
√

(1 + CV (0))2 − CV (∞)2
. (28)

Thus, given a self-consistent autocorrelation Cx and the cor-
responding voltage statistics from Eq. (17), the asymptotic
timescale Eq. (27) can be directly evaluated.

We vary θeff and |JI/JE | in Figs. 6(a)–6(c). First,
we plot dCλ(∞)

dCV (∞) alone, which we refer to as the gain
[Fig. 6(a)]. Due to the interplay between the exponential
suppression exp(− (μV −θeff )2

1+CV (0)+CV (∞) ) and the square root factor

1/
√

(1 + CV (0))2 − CV (∞)2 < 1 in Eq. (28), the gain al-
ready exhibits a maximum. The existence of the maximum
is mainly determined by the exponential suppression with
growing |μV − θeff | in Eq. (28): in both the excitation- and
the inhibition-dominated regimes, μV is far from the effec-
tive threshold θeff . The precise location of the maximum is

FIG. 6. Mechanisms that shape the asymptotic timescale.
(a) Asymptotic gain dCλ (∞)

dCV (∞) of the rate autocorrelation w.r.t. changes
in the voltage autocorrelation, Eq. (28). (b) Asymptotic gain multi-
plied by the second cumulant of the connectivity, g2. (c) Asymptotic
timescale according to Eq. (27), τ∞ = (1 − g2 dCλ (∞)

dCV (∞) )−1/2, for vary-
ing effective threshold θeff and relative inhibitory strength |JI/JE |.
(d) Same as c for varying excitatory synaptic strength JE with con-
stant |JI/JE |. Further parameters as in Fig. 5.

not necessarily at μV = θeff as it is also determined by the
square root factor. The latter decays reciprocally to CV (0) and
CV (∞). Both CV (0) and CV (∞) decay for growing effective
threshold and inhibition dominance, which results in a larger
square root factor that shifts the maximum towards the upper
right and broadens it. The cumulant of the connectivity g2

grows with |JI/JE |2, which further broadens the region of
the maximum [Fig. 6(b)]. The resulting asymptotic timescale
[Fig. 6(c)] agrees both qualitatively and quantitatively with the
intrinsic timescale [Fig. 4(d)]. This is likely due to the single-
exponential shape of the autocorrelation function [Fig. 5(c)].

To investigate the interplay of the gain and the connectivity
further, we vary the overall synaptic strengths by varying
the excitatory weight JE while keeping |JI/JE | fixed at an
inhibition-dominated value [Fig. 6(d)]. Increasing JE in the
inhibition-dominated regime shifts μV away from the effec-
tive threshold and decreases the gain; conversely g2 grows
with J2

E . This interplay leads to a broad region in parameter
space with an increased timescale. However, the exponential
decrease of the gain is more pronounced than the quadratic
increase of g2 such that the asymptotic timescale does not con-
tinue to grow with JE but saturates. Thus, although increasing
JE goes together with increased variability across neurons
as in the “heterogeneous asynchronous state” described by
Ostojic [62], this does not map systematically onto longer
single-neuron timescales.

4. Error function nonlinearity: external timescale

Our theory allows arbitrary Gaussian processes as external
input. To investigate the influence of an external timescale
on the intrinsic timescale, we choose a zero-mean Ornstein-
Uhlenbeck process with

Cext (τ ) = σ 2
ext

τm

(
1

τm
+ 1

τext

)
e−|τ |/τext . (29)
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FIG. 7. Influence of colored external input. [(a) and (b)] Firing
rate and intrinsic timescale for varying strength σ 2

ext and timescale
τext of an external Ornstein-Uhlenbeck process. Orange line in (b) in-
dicates the intrinsic timescale without external input. Parameters as
in Fig. 5.

Here, the scaling factors ensure that the external timescale
does not influence the resulting variance of the voltage,
CV (0) = ∫∞

−∞ κ̃ (s)Cext (s)ds = σ 2
ext for κ̃ (t ) = 1

2τme−|t |/τm .
We take the parameters from Fig. 5 where the intrinsic

timescale is maximal in the absence of external input. Increas-
ing the strength of the external input σ 2

ext leads to an increased
firing rate [Fig. 7(a)]. As desired, by construction of Eq. (29),
the external timescale has a negligible effect on the firing rate
at constant σ 2

ext [Fig. 7(a)]. The effect of the external timescale
on the intrinsic timescale is highly intuitive: If τext is smaller
than the intrinsic timescale without external input it decreases
the intrinsic timescale, and vice versa [Fig. 7(b)]. The strength
of this effect grows with the strength of the external input.
In the limit of strong external input, the intrinsic timescale
approaches the external timescale if τext > τm; if τext < τm

the intrinsic timescale approaches the minimum set by the
membrane time constant.

IV. LEAKY INTEGRATE-AND-FIRE NEURONS

Considering GLM neurons is a convenient choice due to
their analytical tractability. However, their intrinsic stochas-
ticity might fundamentally alter the network dynamics. Thus
we consider the frequently used leaky integrate–and–fire neu-
ron model in this section [24]. The synapses are taken to be
current-based with an exponential time course. An analytical
solution to the colored noise problem for LIF neurons is
an open challenge. Here, we focus on the fluctuation-driven
regime and employ an approach based on the Wiener–Rice
series [41,63,64] and the Stratonovich approximation thereof
[40,41]. Below, we briefly introduce both the Wiener–Rice se-
ries and its Stratonovich approximation. For a comprehensive
and pedagogic introduction to this approach, in particular with
a focus on LIF neurons, see Ref. [65] where the approach is
used to investigate LIF neurons driven by nonstationary input.

A. Neuron dynamics

The dynamics of individual neurons are governed by

τα
mV̇ α

i (t ) = −V α
i (t ) + Iα

i (t ), (30)

τα
s İα

i (t ) = −Iα
i (t ) + τα

mηα
i (t − dαβ ), (31)

where V α
i denotes the membrane voltage, Iα

i the synaptic
current, τα

m/s the membrane/synaptic time constant, and the
voltage is reset to V α

r and held constant during the refractory
period τα

ref whenever it reaches the threshold θα . Threshold

crossing triggers a spike which arrives at another neuron after
a delay dαβ . We set the resting potential to zero without loss
of generality and absorb the membrane resistance into the
synaptic current.

1. Effective stochastic dynamics

The effective stochastic input with statistics governed by
Eqs. (9) and (10) leads to a stochastic current with

μα
I = τα

mμα
η, (32)

Cα
I (τ ) =

(
τα

m

τα
s

)2 ∫ ∞

−∞
κ̃α (τ − s)Cα

η (s)ds, (33)

where κ̃α (t ) = τα
s
2 e−|t |/τα

s , similar to Eq. (17). Contrary to the
GLM neurons, the voltage cannot become a stationary process
for LIF neurons due to the fire-and-reset rule. To circumvent
this problem, we use the Wiener–Rice series which relates the
free process without reset to the spiking statistics.

2. Wiener–Rice series and Stratonovich approximation

We consider a LIF neuron after the refractory period and
the voltage dynamics that results if we do not allow for another
fire-and-reset. We denote this free voltage U (t ). Moreover,
we temporarily neglect the static contribution to the input
variability and drop the population index. The process starts
at U (0) = Vr and produces a system of random points {ti}
defined by the upcrossings U (ti ) = θ , U̇ (ti ) > 0. For this sys-
tem of random points, the probability that no point falls in the
interval [0, T ], i.e., the survival probability, is given by [40]

S(T ) = exp

( ∞∑
s=1

(−1)s

s!

∫ T

0
· · ·

∫ T

0
gs(t1, . . . , ts)dt1 . . . dts

)
,

where the gs(t1, . . . , ts) are related to the free upcrossing prob-
abilities ns(t1, . . . , ts) calculated below, similar to the relation
between moments and cumulants. For example, g1(t1) =
n1(t1) and g2(t1, t2) = n2(t1, t2) − n1(t1)n1(t2). Now we ap-
proximate the output process as a renewal process such that
the survival probability is sufficient to describe the statistics.
Instead of the survival probability, it is more convenient to
consider the cumulative hazard H (T ) = − ln S(T ) [24], i.e.,

H (T ) =
∞∑

s=1

(−1)s−1

s!

∫ T

0
· · ·

∫ T

0
gs(t1, . . . , ts)dt1 . . . dts.

This can be regarded as a resummation of the Wiener–Rice se-
ries in terms of the gs(t1, . . . , ts) instead of the free upcrossing
probabilities ns(t1, . . . , ts) [41].

Calculating the free upcrossing probabilities ns(t1, . . . , ts),
and thus the gs(t1, . . . , ts), is tedious. To avoid this difficulty,
Stratonovich proposed the approximation [40]

HS (T ) = −
∫ T

0
n1(t )

ln
(
1 − ∫ T

0 Q(t, t ′)n1(t ′)dt ′)∫ T
0 Q(t, t ′)n1(t ′)dt ′ dt, (34)

where Q(t1, t2) = 1 − n2(t1,t2 )
n1(t1 )n1(t2 ) . Briefly, to derive this approx-

imation, the gs(t1, . . . , ts) for s � 3 are expressed in terms of
n1(t1) and Q(t1, t2) such that both the symmetry of the time
arguments t1, . . . , ts and the equal-time limit gs(t1, . . . , t1) =
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(−1)s−1(s − 1)! n1(t1)s are fulfilled; the resulting approxi-
mated gs(t1, . . . , ts) are inserted into H (T ), which leads to a
series that can be evaluated and yields Eq. (34). The condition
gs(t1, . . . , t1) = (−1)s−1(s − 1)! n1(t1)s holds for a system of
nonapproaching points where ns(t1, . . . , t1) = 0 for s � 2,
hence Eq. (34) is an approximation constructed for such a
system. Although this seems intuitively reasonable because
the voltage dynamics is continuous and differentiable, this
condition is violated for LIF neurons with exponential post-
synaptic currents [65]. Nonetheless, it yields good results, as
shown in the following.

A much simpler alternative to the Stratonovich approxi-
mation would be to set gs(t1, . . . , ts) = 0 for s � 2, leading
to H (T ) = ∫ T

0 n1(t )dt . This approximation is sometimes re-
ferred to as the Hertz approximation. In particular, the Hertz
approximation leads to a closed expression for the hazard
function h(t ) ≡ d

dt H (t ) = n1(t ). Unfortunately, this approxi-
mation is too severe and strongly affects the resulting firing
rate. The main difference between the two approximations
is the asymptotic saturation of the hazard function. Thus
we employ an approximation suggested by Stratonovich for
long times [40]:

∫ T
0 Q(t, t ′)n1(t ′)dt ′ ≈ n0

∫∞
0 Q(t, t ′)dt ′ ≈

n0η with n0 = limt→∞ n1(t ) and η = limt→∞
∫∞

0 Q(t, t ′)dt ′.
Inserting this approximation into Eq. (34) leads to

hS (t ) = κS

n0
n1(t ), κS = −1

η
ln (1 − n0η). (35)

Equation (35) combines the simplicity of the Hertz approxi-
mation with the asymptotic behavior of the Stratonovich ap-
proximation. The asymptotic level is given by limt→∞ hS (t ) =
κS; to leading order in η we have κS = n0 + O(η), which
recovers the Hertz approximation. In the parameter regime
we consider, Eq. (35) yields very similar results to Eq. (34)
(see Appendix D). In all figures in the main text, we use
Eq. (35). Since we approximate the output spike train as a
renewal process, the hazard function Eq. (35) fully describes
its statistics [24].

From the hazard function, we obtain the firing rate

ν−1 =
∫ ∞

0
e− ∫ T

0 h(t )dt dT (36)

as well as the interspike-interval distribution [24]

p(T ) = h(T )e− ∫ T
0 h(t )dt . (37)

From the Fourier transform of the interspike-interval distri-
bution p̃( f ) = ∫∞

0 e2π i f T p(T )dT , we obtain the spike-train
power spectrum using [40]

Sx( f ) = ν
1 − | p̃( f )|2
|1 − p̃( f )|2 . (38)

Thus we are left with the task of calculating n1(t1) and
Q(t1, t2).

3. Free upcrossing probabilities

The free voltage dynamics are governed by Eq. (30)

τmU̇ (t ) = −U (t ) + I (t ),

where I is a Gaussian process determined by Eqs. (32) and
(33), and the initial condition is U (0) = Vr. U is a nonsta-

tionary Gaussian process due to the initial condition. For a
sufficiently smooth Gaussian process, the upcrossing proba-
bility is given by the Kac–Rice formulas [40,63,66]

n1(t ) =
∫ ∞

0
U̇1 p(θ, U̇1 |Vr, U̇0)dU̇1,

n2(t1, t2) =
∫ ∞

0

∫ ∞

0
U̇2U̇1 p(θ, U̇2; θ, U̇1 |Vr, U̇0)dU̇1dU̇2,

where p(θ, U̇1 |Vr, U̇0) denotes the probability that the process
is at the threshold after time t and has velocity U̇1 given that
it started at the reset at t = 0 with velocity U̇0. Similarly,
p(θ, U̇2; θ, U̇1 |Vr, U̇0) denotes the joint probability to be at
the threshold at t1 and t2 with velocities U̇1 and U̇2. All in-
tegrals are over positive velocities only, because we consider
upcrossings.

In both equations, we need to specify the distribution of the
initial velocity U̇0. Here, it is important to take into account
the biased sampling of the initial velocity [67]: at −τα

ref , the
neuron spiked due to an increased input current; hence, the
initial velocity τmU̇0 = −Vr + I0 is likely to be larger than
for an I0 drawn from the stationary current distribution. To
keep the integral in Eq. (39) tractable, we assume that I0

is Gaussian-distributed. To determine the mean and variance
of this distribution, we use that the velocity of a stationary
process at an upcrossing is Rayleigh-distributed [40] (details
in Appendix C).

For n2(t1, t2), we consider only the stationary two-point
upcrossing probability, so that it becomes a function of the
time difference t2 − t1 and loses the dependency on the initial
velocity. After marginalizing the initial velocity in n1(t ), we
obtain

n1(t ) =
∫ ∞

0
U̇1 p(θ, U̇1 |Vr )dU̇1, (39)

n2(t2 − t1) =
∫ ∞

0

∫ ∞

0
U̇2U̇1 p(θ, U̇2; θ, U̇1)dU̇1dU̇2, (40)

where n2(τ ) leads to a stationary Q(τ ) = 1 − n2(τ )
n2

0
. This

makes the integrals in Eq. (34) considerably easier to solve
numerically (details in Appendix D).

Since the free dynamics are linear, p(θ, U̇1 |Vr ) and
p(θ, U̇2; θ, U̇1) can be obtained analytically. Importantly, the
integral in Eq. (39) as well as the double integral in Eq. (40)
are analytically solvable using the table [59] (details in
Appendixes B 2 and C). The closed-form analytical expres-
sion Eq. (B6) for the two-point upcrossing probability of
a stationary Gaussian process is a novel result, to the best
of our knowledge, and considerably simplifies the numerical
evaluation of Eq. (35).

4. Numerical solution of the self-consistency problem

Just as for the GLM networks, we solve the colored noise
problem using a fixed-point iteration. To initiate the algo-
rithm, we set the rates to να = 1/τα

m. We use these rates to
calculate the input mean, variance, and spectrum according to
Eqs. (9) and (10), beginning with the diffusion approximation
Sα

x (t ) = να and σα
ν = 0 across neurons. Despite assuming ini-

tially equal rates across neurons, it is possible to have static
input variability both due to distributed indegrees [see Eq. (8)

043077-11



VAN MEEGEN AND VAN ALBADA PHYSICAL REVIEW RESEARCH 3, 043077 (2021)

FIG. 8. Colored noise problem for LIF neurons. Comparison
between theory, Eq. (35), and LIF neurons driven by Gaussian pro-
cesses (GPs). (a) Mean (blue) and standard deviation across neurons
(orange) of the membrane potential due to the static contribution τmζ .
(b) Noise strength of the effective input measured by the standard
deviation of the membrane potential fluctuations relative to the dis-
tance to threshold σU /(θ − μU ). (c) Absolute difference |
| between
rate from theory and GP-driven LIF neurons. (d) Same as (c) but for
the standard deviation of the rate across neurons. (e) Kolmogorov-
Smirnov distance using 2.5-ms bins between ISI distribution from
theory and GP-driven LIF neurons. (f) Maximal absolute distance
max(|
|) between power spectra from theory and GP-driven LIF
neurons. [(g) and (h)] Example ISI distributions and power spectra
from theory (black) and GP-driven LIF neurons (colored) for the
parameter values indicated by crosses in (c)–(f). Parameters: NE =
40 000, NI = 10 000, JE = 0.1 mV, |JI/JE | = 6.0, p = 0.1, τm =
20 ms, τs = 5 ms, τref = 2 ms, d = 1.5 ms, θ = 20 mV, Vr = 0 mV,
and μext = 22 mV.

and Fig. 8(a)] and due to evolution of the rates during the
fixed-point iteration. To account for the static variability, we
consider an ensemble of inputs μα + ζ α and determine the
corresponding hazard functions hα

S (t | μα + ζ α ), Eq. (35), out-
put rates να (μα + ζ α ), Eq. (36), ISI distributions pα (T | μα +
ζ α ), Eq. (37), and spectra Sα

x ( f | μα + ζ α ), Eq. (38). From
this ensemble, we obtain the final output statistics from a
numerical average over the ensemble:

να =
∫ ∞

−∞
να (μα + ζ α )N

(
ζ α | 0, σ α

ζ

)
dζ α, (41)

(
σα

ν

)2 =
∫ ∞

−∞
[να (μα + ζ α ) − να]2N

(
ζ α | 0, σ α

ζ

)
dζ α, (42)

pα (T ) =
∫ ∞

−∞
pα (T | μα + ζ α )N

(
ζ α | 0, σ α

ζ

)
dζ α, (43)

Sα
x ( f ) =

∫ ∞

−∞
Sα

x ( f | μα + ζ α )N
(
ζ α | 0, σ α

ζ

)
dζ α. (44)

We solve the above Gaussian integrals using Gauss-Hermite
quadrature [60]. Gauss-Hermite quadrature of order k solves
Gaussian integrals of polynomials up to power k exactly by
construction. This allows us to keep the ensemble very small;
throughout we use k = 5. Finally, we update the statistics
using incremental steps, e.g., να

n+1 = να
n + ε(ν̂α

n+1 − να
n ) for

the firing rate, where ν̂α
n+1 denotes the estimated rate based

on the input at the previous step. Here, the small update
step ε < 1 is crucial because otherwise the algorithm is nu-
merically unstable. Now we iterate and generate new input
statistics. Repeated application of this scheme suggests that
the self-consistent problem for the type of networks under
consideration possesses only a single fixed point to which the
algorithm always converges.

B. Balanced random network

First, we consider the same balanced random network as
we did for the GLM neurons [Fig. 2(a)]. In particular, we
place the network in the inhibition-dominated regime, drive
the network with a constant external input, and use iden-
tical single-neuron parameters for excitatory and inhibitory
neurons. In order to obtain a biologically plausible activity
below 10 spks/s, we keep the external input weak to place the
network deep in the fluctuation-driven regime. In this regime,
the mean input to a neuron is far below threshold and only
occasional large fluctuations in the input drive it above the
spike threshold [Figs. 8(a) and 8(b)]. If the mean interspike
interval exceeds the correlation time of the input, the renewal
approximation is admissible. Indeed, since the firing rates are
low by construction, even moderate input correlation times are
smaller than the inverse firing rate.

1. Colored noise problem

First, we isolate the colored noise problem to gauge the
above approximations. To this end, we compare the theory
with a population of unconnected LIF neurons driven by
independent Gaussian processes (GPs). If the colored noise
solution works well for isolated GP-driven LIF neurons, it
will also work well for LIF neurons embedded in a balanced
random network in the asynchronous irregular regime [35].
The reason for considering a population of neurons is to
account for the static input variability that leads to distributed
single-neuron firing rates.

We want to investigate the LIF neurons in a regime compa-
rable to that in the balanced random network. However, we do
not determine the effective input statistics using network sim-
ulation results here, because this would preclude a systematic
scan over the parameters of the input, which consists of both
external and recurrent network contributions. Instead, we fix
the effective external input and determine the statistics of the
effective recurrent input in terms of the input spiking statistics
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νin, σ in
ν = 0 across neurons, and

Sin
x ( f ) = νin

1 − ∣∣(1 − 2π iCV2
in f /νin

)−1/CV2
in
∣∣2∣∣1 − (

1 − 2π iCV2
in f /νin

)−1/CV2
in
∣∣2 , (45)

corresponding to a gamma process with rate νin and CV of
the ISI distribution CVin, cf. Eq. (38). This leaves a two-
dimensional parameter space spanned by νin and CVin. From
the spiking statistics, we obtain the statistics of the effective
input using Eqs. (9) and (10) where ḡ and g are determined
by the parameters of the balanced random network. Note that
although σ in

ν = 0, the static variability of the effective input is
nonzero, σζ > 0, due to the distributed indegree, see Eq. (8)
and Fig. 8(a). Hence, we can compare both the averaged
output statistics and the rate variability in the population. For
the comparison, we simulate 250 GP-driven LIF neurons for
50 s with a time step of 0.05 ms; we use the same interval and
time step for the theory.

Guided by the regime attained in full simulations, we
choose νin ∈ [0.5, 2.5] spks/s and CVin ∈ [0.5, 1.5] (Fig. 8).
The network is in the inhibition-dominated regime; thus
the mean input decreases with νin starting from the value
that brings the membrane potential on average to threshold
[Fig. 8(a)]. In contrast, the static variability increases mono-
tonically with νin [Fig. 8(a)]. To measure the strength of the
dynamic variability, we divide the resulting standard deviation
of the free membrane voltage by the distance of the mean free
membrane voltage to the threshold, σU /(θ − μU ). Since the
numerator grows with

√
νin while the denominator grows lin-

early with νin in inhibition-dominated networks, the standard
deviation relative to the distance to threshold decreases with
increasing νin; in contrast, it slightly increases with increasing
CVin [Fig. 8(b)]. For the entire parameter regime, the abso-
lute difference in the firing rate is smaller than 1 spks/s and
it is maximal at the brink of the fluctuation-driven regime
[Fig. 8(c)]. For the static rate variability, we also consider
the absolute difference, which is below 0.3 spks/s through-
out the parameter space [Fig. 8(d)]. Next, we compare the
ISI distributions using their Kolmogorov-Smirnov distance,
i.e., the maximal absolute difference between the cumulative
distributions. The Kolmogorov-Smirnov distance is maximal
deep in the fluctuation-driven regime where the firing rate is
well below 1 spks/s and the estimate of the ISI distribution is
noisy [Fig. 8(e)]. Finally, we compare the output spectra using
the maximum absolute distance between the scaled spectra
Sx( f )/ν. Here, the deviation is below 0.1 in most parts of the
parameter space except for low CVin � 0.6, high CVin � 1.3,
and at the brink of the fluctuation-driven regime [Fig. 8(f)]. To
give meaning to the quantitative results, we plot two example
ISI distributions [Fig. 8(g)] and spectra [Fig. 8(h)]. For the ISI
distribution, we see the noisy estimate at low rates. For the
spectra, we note that the main difference is a constant offset
caused by a small error in the rate, see Eq. (38), while the
shape is well matched.

To conclude, the above approximations work well
in the fluctuation-driven regime for moderate values
0.6 < CVin < 1.3. Within this regime, the firing rate and its
variability across neurons, the ISI distribution, and the power
spectra are well predicted. Most importantly for the prediction

FIG. 9. Parameter scan for a balanced random network of LIF
neurons using Eq. (35). [(a) and (b)] Firing rate and intrinsic
timescale for varying external input μext and relative inhibitory
strength |JI/JE |. [(c) and (d)] Scaled autocorrelation Cx (τ )/ν2 and
power spectrum Sx ( f )/ν for the parameter values indicated by sym-
bols in (a,b). Further parameters as in Fig. 8.

of the intrinsic timescale, the theory closely predicts the scaled
spectrum Sx( f )/ν.

2. Timescales in balanced random networks of LIF neurons

Having established the validity of the theory, we employ it
to investigate the intrinsic timescale. It is well known that in-
creasing the overall synaptic strength leads to a network state
with long temporal correlations [37,62]. However, this state
comes along with giant fluctuations of the membrane potential
[68] which are well beyond the physiological regime and
which our theory can capture only to a limited extent (in par-
ticular, it underestimates the strong increase in low-frequency
power observed for strong couplings [37,69]). Hence, we
focus on the influence of the external input μext and the inhibi-
tion dominance |JI/JE |, in line with our above investigations
for GLM neurons. We solve the theory on a 
t = 0.05 ms
grid to a maximum of T = 10 s, use an ensemble size of k = 5
for the Gauss-Hermite quadrature, and choose an update step
ε = 0.2.

We investigate the regime |JI/JE | ∈ [4.1, 6] and
μext ∈ [21, 30] mV. Within this regime, the rate is below
approximately 20 spks/s, increases with μext, and decreases
with |JI/JE | [Fig. 9(a)]. In contrast, the intrinsic timescale
decreases with μext, increases with |JI/JE |, and reaches a
maximum of approximately 60 ms = 3τm [Fig. 9(b)]. The
autocorrelation function reveals that the nature of these
longer intrinsic timescales in LIF networks is fundamentally
different to the GLM networks above [Fig. 9(c)]: in the
GLM networks, the autocorrelation function is positive,
which corresponds to an increased probability to spike
in succession; in the LIF networks it is negative, which
corresponds to a prolonged effective refractory period caused
by the fire-and-reset mechanism in combination with the
input statistics. Indeed, in the corresponding power spectra
and their zero-frequency limit, we see that the CV is well
below 1 [Fig. 9(d)]. Hence, the process is more regular than a
Poisson process, as opposed to the high irregularity CV > 1
that would go along with bursty spiking.
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FIG. 10. Balanced random network of LIF neurons. (a) Raster
plot of 2% of the excitatory (blue) and inhibitory (red) neu-
rons. (b) Firing rate distribution across all neurons. [(c)–(e)]
Population-averaged ISI distribution, population-averaged autocor-
relation function, and population-averaged power spectrum from
simulation (gray) and theory (black). (f) Power spectrum of the
population activity. Parameters as in Fig. 8.

3. Simulation of balanced random network of LIF neurons

We validate the theoretical predictions for the balanced
random network of LIF neurons by comparing with a network
simulation. To acquire sufficient statistics, we simulate the
network for T = 2.5 min with time step 
t = 0.1 ms and
discard the first 10 s as an initial transient. After this transient,
the network is in an asynchronous irregular state [Fig. 10(a)].
The rates of individual neurons are mostly below 5 spks/s
with a peak at around 1 spks/s [Fig. 10(b)]. The theory closely
predicts the ISI distribution apart from a slight overestimation
of the tail [Fig. 10(c)]. Thus the resulting autocorrelation func-
tion is also well matched and the predicted intrinsic timescale
of approximately 55 ms is confirmed [Fig. 10(d)]. Also the
scaled spectrum is closely reproduced and reveals a CV2 ≈
0.75 [Fig. 10(e)].

To illustrate the difference between the single-unit and the
population statistics, we furthermore plot the power spectrum
of the population activity y(t ) = 1

N

∑N
i=1 xi(t ) [Fig. 10(f)].

For vanishing cross-correlations, these two spectra would be
proportional to each other. Already weak cross-correlations
can shape the population spectrum since their contribution is
of O(N2) compared to O(N ) contributions from the autocor-
relations, leading to the clear differences we see between the
single-unit and the population spectrum. A notable difference
between the two spectra is the peak around 30 Hz in the
population spectrum, contrasting with the roughly 10-Hz peak
in the single-unit spectrum. Furthermore, the population spec-
trum displays increased power at low frequencies compared to
high frequencies, while the reverse is true for the single-unit
spectrum.

C. Biologically constrained network model

Thus far, we only considered balanced random networks
with identical excitatory and inhibitory neurons that reduce
to a single effective population. Despite this simplification,
these balanced random networks already span a large param-
eter space. Here, we apply our theory to a multipopulation
network model constrained by biological data [43]. Beyond
the aspect of multiple populations, this network model allows
us to highlight two additional features of our theory that we
left out thus far: the possibility to include external Poisson
input and distributed synaptic weights. We solve the theory
on a 
t = 0.05 ms grid to a maximum of T = 10 s, use an
ensemble size of k = 5 for the Gauss-Hermite quadrature,
choose an update step ε = 0.1, and initialize all populations
with a rate of 10 spks/s.

The model represents the neurons under 1 mm2 of surface
of generic early sensory cortex. It comprises eight popula-
tions: layers 2/3, 4, 5, and 6 with a population of excitatory
cells and inhibitory interneurons for each layer [Fig. 11(a)].
In total, this leads to 77 169 neurons connected via approxi-
mately 3 × 108 synapses, with population-specific connection
probabilities pαβ based on an extensive survey of the anatom-
ical and physiological literature. In contrast to the original
model, we directly use the connection probabilities to create
the connectivity such that the total number of synapses can
vary across instantiations of the model, and we draw source
and target neurons without replacement, so that multapses are
not allowed. Transmission delays follow truncated normal dis-
tributions with mean ± standard deviation of 1.5 ± 0.75 ms for
excitatory source neurons and 0.75 ± 0.375 ms for inhibitory
source neurons, both with a cutoff at 0.1 ms. The synaptic
strengths Jαβ

i j are normally distributed with μαI
J = −351.2 pA

for inhibitory source neurons and μαE
J = 87.8 pA for exci-

tatory source neurons except for connections from layer 4
excitatory to layer 2/3 excitatory neurons, which have a mean
strength of 175.6 pA. For all synaptic strengths, the standard
deviation is fixed to 10% of the mean. The network is driven
by external Poisson input with layer-specific rates (for further
details see Ref. [43]).

The intrinsic parameters of the neurons do not vary across
populations. Shaped by the connectivity, a layer-specific ac-
tivity arises [Fig. 11(b)] with mean firing rates between 1 and
10 spks/s [Fig. 11(c)] and a standard deviation across neurons
between 1 and 5 spks/s [Fig. 11(d)]. While the quantitative
agreement is not perfect, our theory captures the specificity of
both mean firing rate and its variability across neurons well.

A prominent feature of the model are oscillations on the
population level [70] which are already visible in the raster
plot of only 2% of the population [Fig. 11(b)]. These oscilla-
tions lead to a clear peak at about 80 Hz in the power spectrum
of the population activity in all layers [70]. Here, we only
show a representative population spectrum [Fig. 11(e)]. These
population-level oscillations clearly violate the independence
assumption of the effective inputs. Thus they could potentially
explain the deviations of the predicted firing rate from the
simulation.

For most populations, the peak in the population-level
oscillations also manifests itself in the population-averaged
single-unit spectra [Figs. 11(f) and 11(g)]. Apart from this
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FIG. 11. Multipopulation network of LIF neurons. (a) Sketch
of the model, figure adapted from [43]. (b) Raster plot of 2% of
the neurons of each population. [(c) and (d)] Neuron-averaged fir-
ing rates and their standard deviation from simulations (bars) and
theoretical predictions (black crosses). (e) Population spectrum of
the layer 4 excitatory population. [(f) and (g)] Spike-train power
spectra obtained from simulations (colored) and theory (black) and
the corresponding intrinsic timescale. Parameters as specified in [43].

peak, our theory closely captures the shape of all spectra
[Figs. 8(f) and 8(g)]. Note that, despite the large heterogeneity
of mean rates, the intrinsic timescale is similar across pop-
ulations. As in the balanced random network, the intrinsic
timescales are on the order of magnitude of the membrane
time constant (here 10 ms); concretely, the intrinsic timescale
is approximately twice as large.

V. DISCUSSION

We developed a self-consistent theory for the second-order
statistics, in particular the intrinsic timescales as defined
by autocorrelation decay times, in block-structured random
networks of spiking neurons in an asynchronous irregular
state. Orthogonal to approaches based on the mean activity
of a population of neurons, we consider population-averaged

single-neuron statistics. To this end, we built on the model-
independent dynamic mean-field theory (DMFT) developed
in Ref. [30] and applied it to networks of spiking neurons.
We sketched the derivation starting from the characteristic
functional of the recurrent input, Eq. (3), to expose the in-
herent assumptions of the DMFT as well as its main result. In
particular, we showed that the mean-field equations, Eqs. (9)
and (10), where the connectivity matrix enters only through
its first two cumulants, account for both (static) interneu-
ron variability and (dynamic) temporal fluctuations. In order
to close the self-consistency problem, we derived a novel
analytical solution for the output statistics of a generalized
linear model (GLM) neuron with error-function nonlinearity
driven by a Gaussian process (GP), Eq. (25), and an ana-
lytical approximation for the output statistics of a GP-driven
leaky integrate-and-fire (LIF) neuron in the fluctuation-driven
regime, Eq. (35). These theoretical results yield firing rate dis-
tributions, spike-train power spectra, and interspike interval
distributions that are close to those obtained from numerical
simulations (Figs. 2, 5, and 10) even for a complex, biologi-
cally constrained network model (Fig. 11).

The excellent agreement between theory and simulations
demonstrates the validity of the DMFT approximation, i.e.,
the approximation of the recurrent inputs as independent
Gaussian processes. The validity of the DMFT approxima-
tion is most clearly demonstrated by the networks of GLM
neurons, since in that case the DMFT assumption constitutes
the only approximation, while the remainder of the solution is
exact; while for the LIF networks, additional approximations
are made, so that the effects of the DMFT assumption can be
less well isolated.

Focusing on balanced random networks, we leveraged our
theory to investigate the influence of network parameters on
the intrinsic timescale for both GLM (Figs. 3 and 4) and LIF
(Fig. 9) neurons. For the former neuron model with error
function nonlinearity, our theory unveils that a product of two
factors determines the intrinsic timescale [Eq. (27), Fig. 6]:
the gain of the rate autocorrelation function with respect to
changes in the membrane voltage autocorrelation function
for τ → ∞, Eq. (28), and the variance of the connectivity,
Eq. (6). Furthermore, providing a temporally correlated ex-
ternal drive causes the intrinsic timescale to monotonically
approach the extrinsic timescale as the input strength is in-
creased (Fig. 7).

For both GLM neurons with error function nonlinearity
and LIF neurons, we find parameter regimes where the in-
trinsic timescale τc is longer than the largest time constant
of the single-neuron dynamics, the membrane time constant
τm (Figs. 5 and 9). This demonstrates that the recurrent dy-
namics shape the intrinsic timescale. Note that we consider a
regime where the inverse firing rate ν−1 is large compared to
τm. In contrast, [18,29] consider the opposite regime where
slow neuronal timescales lead to effective rate dynamics, and
the spiking noise is either left out or treated perturbatively.
Our results show that it is possible to obtain longer intrin-
sic timescales even in a regime where the white component
of the spiking noise contributes non-negligibly to the mem-
brane voltage fluctuations. However, the temporal structure
that causes the prolonged intrinsic timescale is very different
for the two models that we consider: For GLM neurons, the

043077-15



VAN MEEGEN AND VAN ALBADA PHYSICAL REVIEW RESEARCH 3, 043077 (2021)

autocorrelation is positive for a period on the order of τc,
corresponding to an increased spiking probability. For LIF
neurons, the autocorrelation function is negative, correspond-
ing to a prolonged effective refractory period.

Furthermore, LIF networks exhibit a minimum in the in-
trinsic timescale [37], while the corresponding GLM networks
exhibit a maximum (Fig. 6). We hypothesize that this dif-
ference is due to the difference in the temporal structure:
The minimum in the timescale for LIF networks is caused
by a switch from an increased effective refractory period (a
negative autocorrelation function for τ → 0) to an increased
probability for another spike (a positive autocorrelation func-
tion for τ → 0). This hypothesis is consistent with the switch
from decreased low-frequency power, Sx( f → 0) < ν, to in-
creased low-frequency power, Sx( f → 0) > ν, highlighted in
Refs. [37,69]. For GLM networks, this switch and hence the
minimum is absent. Instead, the more subtle interplay between
the gain and the variance of the connectivity leads to the max-
imum. The presence of a maximum rather than a minimum in
the intrinsic timescales renders the GLM networks more simi-
lar to networks of rate units [15]. If similar mechanisms are at
play as in rate networks, the white spiking noise of the input to
the GLM neurons may temper the size of the largest possible
timescale [21]. However, due to the inherent stochasticity of
GLM neurons, it is unclear whether the maximum occurs at a
transition to chaos as it does in rate networks [15].

Considering a more complex block-structured network
model that is constrained by biological data [43] exposes
limits of our theory: while the theory accurately captures the
nonoscillatory components of the power spectra, it misses
a high-frequency oscillation (Fig. 11). These high-frequency
oscillations are caused by correlated activity on the population
level [70]; hence, the peak in the population-averaged single-
neuron spectra demonstrates an interplay between single-unit
and population-level statistics that was absent in the simpler
balanced random network models. By construction, our theory
only accounts for population-averaged single-neuron statistics
and thus misses the high-frequency peak. It is an interesting
challenge to derive a self-consistent theory on both scales
simultaneously.

In general, the limits of DMFT when applied to spiking
networks merit further investigation. For example, assuming
that the network is sparse, K  N or p  1, is not a necessary
condition for a DMFT to apply [18]. Nonetheless, increasing
sparsity reduces the pairwise correlations between the neurons
[26,62,71] such that DMFT is expected to yield better results.
Another important aspect is that for the synaptic weights
scaling as Ji j = O(1/

√
K ), the fluctuations of the mean input

μη(t ) can be O(1), i.e., not scale with K−α , α > 0, as the
network size increases and p is kept constant. In Eq. (7), μη(t )
and Cη(t, t ′) are replaced by their average, neglecting fluctua-
tions; including the fluctuations of the mean input would lead
to an additional term in Cη(t, t ′) [28]. Since these fluctuations
of the mean input reflect pairwise correlations, the latter need
to be small for the theory to be accurate. The above scaling
argument shows that it is nontrivial that the pairwise correla-
tions vanish, even in the large network limit. They only do so
for an asynchronous state in which the pairwise correlations
are small already for finite networks, e.g., due to a sparse
network or due to inhibitory feedback [27]. Conversely, if a

network is in an asynchronous irregular state, which has low
pairwise correlations by definition, DMFT is expected to yield
reliable results.

The heterogeneity of timescales even within a cortical area
[72] suggests another interesting extension, namely to cal-
culate the variability of the timescale within a population.
This requires calculating the variability of the second-order
statistics, which has recently been achieved for linear rate
networks [73] but to the best of our knowledge is an open
challenge even for simple nonlinear rate networks, let alone
for spiking networks.

The microscopic theory presented here enables direct
comparisons with experimental measurements of neuron-
level intrinsic timescales [2], in contrast to previous works
which have considered population rate models [10,74].
It is important to distinguish between neuron-level and
population-level autocorrelations, since the latter are shaped
by O(N2) cross-correlations and can therefore differ substan-
tially from neuron-level autocorrelations, as we have illus-
trated for the balanced random network model [Figs. 10(e)
and 10(f)] and the biologically constrained network model
[Figs. 11(e)–11(g)].

Establishing a direct link between the connectivity and
the emergent intrinsic timescales opens up the possibility of
a thorough investigation of the effect of network architec-
ture. Moreover, within our theory, it is possible to account
for population-specific intrinsic neuron parameters. Thus the
theory also provides an avenue for investigations of the com-
plex interplay between intrinsic parameters [8,9] and the
network structure [10]. In this context, an interesting appli-
cation is clustered networks which feature slow switching
between transiently active clusters [75]. In particular, clus-
tered networks with both excitatory and inhibitory clusters
[76–78] could be of interest because they robustly give rise
to winnerless competition. From a modeler’s point of view,
uncovering mechanisms shaping intrinsic timescales could
be used to fine-tune network models [79–82] to match the
experimentally observed hierarchy of timescales [2]. Focusing
on computational aspects, diverse timescales strongly enhance
the computational capacity of a recurrent network [83–85],
and neurons with long intrinsic timescales carry more infor-
mation in a working memory task [86] (but see [87]). In
this light, the results presented here may also contribute to
improved understanding of aspects of information processing
in the brain.
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APPENDIX A: CHARACTERISTIC FUNCTIONALS

Here, we briefly introduce the characteristic functionals for
both types of stochastic processes we consider: Gaussian pro-
cesses and point processes. We closely follow Stratonovich’s
book [40], in particular Chaps. I.1. and I.6.

1. Stochastic processes

The characteristic functional of a stochastic process ξ (t ) is
defined as

	ξ [u(t )] = 〈ei
∫ T

0 u(t )ξ (t )dt 〉ξ
where u(t ) is an arbitrary test function. In terms of the cumu-
lants kr (t1, . . . , tr ) the characteristic functional can be written
as

	ξ [u(t )] = e
∑∞

s=1
is

s!

∫ T
0 ··· ∫ T

0 ks (t1,...,ts )u(t1 )...u(ts )dt1...dts . (A1)

All properties of a stochastic process are determined by its
characteristic functional.

If all cumulants except for the first vanish, the process is
deterministic and has the characteristic functional

	ξ [u(t )] = 〈ei
∫ T

0 u(t )ξ (t )dt 〉ξ = ei
∫ T

0 u(t )ξ (t )dt . (A2)

In this case, the first cumulant coincides with the process
itself, k1(t ) = ξ (t ). If only the first and the second cumulants
are nonvanishing, the process is a Gaussian process. The cor-
responding characteristic functional reads

	ξ [u(t )] = ei
∫

k1(t1 )u(t1 )dt1− 1
2
∫∫

u(t1 )k2(t1,t2 )u(t2 )dt1dt2 . (A3)

If the Gaussian process is stationary, k1(t1) = k1 and
k2(t1, t2) = k2(t2 − t1), the characteristic functional simplifies

further to 	ξ [u(t )] = eik1
∫

u(t1 )dt1− 1
2
∫∫

u(t1 )k2(t2−t1 )u(t2 )dt1dt2 .
The characteristic functional describes the statistics at all

points in time. It is often useful to relate the characteristic
functional to the distribution of the values of ξ (t ) at fixed
points in time, for instance to compute the statistics of the cur-
rent at upcrossings and after the refractory period, or to obtain
marginal activity statistics which, given stationarity, reflect
time-averaged activity. To this end, we can use the test func-
tions u(t ) = u1δ(t − t1) and u(t ) = u1δ(t − t1) + u2δ(t − t2)
to obtain

	ξ (u1) = eik1(t1 )u1− 1
2 k2(t1,t1 )u2

1 , (A4)

	ξ (u1, u2) = ei(k1(t1 )u1+k1(t2 )u2 )

× e− 1
2 (k2(t1,t1 )u2

1+2k2(t1,t2 )u1u2+k2(t2,t2 )u2
2 ). (A5)

These are the characteristic functions of a Gaussian with
cumulants determined by k1 and k2. Knowing these char-
acteristic functions for all times t1 and t2 provides the full
picture; this is the marginalization property of Gaussian
processes [88].

2. Point processes

The equivalence to the characteristic functional for a
point process is the generating functional. For a spike train
{t1, . . . , tn} (a “system of random points” in Stratonovich’s
naming) with ti ∈ [0, T ] for all i, the generating functional is
defined by

LT [v(t )] =
〈

n∏
j=1

[1 + v(t j )]

〉
.

Here, the number of spikes n is itself a random variable
because the average is taken with respect to all possible re-
alizations of the spike train [89].

For point processes, the role of the moments is taken
by the “distribution functions” nr (t1, . . . , tr ) which denote
the probability of having at least one point in each interval
[ti, ti + dt]. The role of the cumulants is taken by the functions
gr (t1, . . . , tr ), which are related to the distribution functions
as the cumulants of a stochastic process are related to its mo-
ments. In terms of the gr (t1, . . . , tr ), the generating functional
can be written as [89]

LT [v(t )] = e
∑∞

s=1
1
s!

∫ T
0 ··· ∫ T

0 gs (t1,...,ts )v(t1 )...v(ts )dt1...dts . (A6)

The generating functional is directly related to a few useful
quantities: The characteristic function of the number of spikes
n in the interval [0, T ] is given by 〈einu〉 = LT [eiu − 1]; the
probability that no point falls into [0, T ], i.e., the survival
probability, is given by LT [−1]. The simplest case of a point
process where only g1 is nonvanishing is a Poisson process.
The corresponding generating functional reads

LT [v(t )] = exp

(∫ T

0
g1(t1)v(t1)dt1

)

with survival probability S(T ) = LT [−1] = e− ∫ T
0 g1(t1 )dt1 .

The generating functional is directly related to the charac-
teristic functional of the stochastic process ξ (t ) = ∑n

j=1 δ(t −
t j ):

	ξ [u(t )] = 〈ei
∑n

j=1 u(t j )〉 = LT [eiu(t ) − 1]. (A7)

This relation links the distribution functions nr through the gr

to the cumulants of the spike train. For example, the charac-
teristic functional of a Poisson spike train is

	ξ [u(t )] = exp

(∫ T

0
g1(t1)(eiu(t1 ) − 1)dt1

)
. (A8)

Note that by convention, g1(t ) is typically called λ(t ) for a
Poisson process—we adopted this convention in the main text,
in particular in Eq. (14). Expanding the exponent on the right-
hand side of Eq. (A7) to second order in u(t ), we obtain the
relations

k1(t1) = g1(t1),

k2(t1, t2) = g1(t1)δ(t1 − t2) + g2(t1, t2)

between the gr and the first two cumulants of the spike train.
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3. Gaussian integrals

We solve several Gaussian integrals using the impressive
table by Owen [59]. First, we introduce his notation

G(x) = 1

2
(1 + erf (x/

√
2)), g(x) = 1√

2π
e−x2/2

for the standard normal CDF and PDF. Furthermore, we need
Owen’s T function

T (h, a) = 1

2π

∫ a

0

e− 1
2 h2(1+x2 )

1 + x2
dx.

All formulas were numerically validated using numerical in-
tegration routines implemented in SCIPY [90].

a. GLM error function

Here, we derive Eqs. (24) and (25). In the notation of
Eq. (23), we have φ(x) = G(x).

For the mean, we need the expectation 〈φ(z)〉 where z is
Gaussian with mean μ and variance σ 2. Equivalently, we can
calculate 〈φ(μ + σx)〉 where x is standard normal. Expressing
the standard normal Gaussian expectations using g(x), we
have

〈φ〉 =
∫ ∞

−∞
g(x)G(μ + σx)dx.

Using Eq. (10,010.8) from Ref. [59], we get

〈φ〉 = G

(
μ√

1 + σ 2

)
.

Equation (24) follows after taking the multiplying factor c1

and μ = μV − θ from Eq. (14) into account.
For the second moment, we need 〈φ(z1)φ(z2)〉 were z1 and

z2 are jointly Gaussian with mean μ, variance σ 2 and cor-
relation coefficient ρ. Equivalently, we can calculate 〈φ(μ +
βx − αy)φ(μ + βx + αy)〉 where x and y are standard normal
and α = σ

√
(1 − ρ)/2, β = σ

√
(1 + ρ)/2. Again using g(x)

to express the standard normal Gaussian expectations, we get

〈φφ〉 =
∫ ∞

−∞
g(x)I (x)dx with

I (x) =
∫ ∞

−∞
g(y)G(μ + βx − αy)G(μ + βx + αy)dy.

Now, we use Eq. (20,010.3) in Ref. [59] for I (x) to obtain

〈φφ〉=
∫ ∞

−∞
g(x)(G(a + bx)−2T (a + bx, c))dx

with a = μ/
√

1 + σ 2(1 − ρ)/2, b =
σ
√

1 + ρ/
√

2 + σ 2(1 − ρ), c =
√

1 + σ 2(1 − ρ), and
Owen’s T function T (h, a). For the final integral, we use
Eqs. (10,010.8) and (c00,010.1) from Ref. [59] to derive

〈φφ〉=G

(
μ√

1 + σ 2

)
−2T

(
μ√

1 + σ 2
,

√
1 + σ 2(1 − ρ)

1 + σ 2(1 + ρ)

)
.

Equation (25) follows after subtracting 〈φ〉2.

b. Free upcrossing probabilities

For the free two-point upcrossing probability, we need
integrals of the form

In(a, b) =
∫ ∞

0
xng(x)G(ax + b)dx.

For arbitrary n, Eq. (10,01n.4) from Ref. [59] provides the
solution

In(a, b) = �((n + 1)/2)2(n−1)/2

√
2π

Fn+1,−b(
√

n + 1a),

where Fν,μ(x) denotes the cumulative distribution function
of noncentral t-distribution with ν degrees of freedom and
noncentrality parameter μ. Analytical expressions for Fν,μ(x)
in terms of g(x), G(x), and T (h, a) can be found in Ref. [91]
(the ones in Ref. [59] contain typos). Using these expressions,
the solutions for n = 0, 1, and 2 are

I0(a, b) = 1

2
G(bB) + T (bB, a),

I1(a, b) = 1√
2π

G(b) + M0(a, b),

I2(a, b) = I0(a, b) + M1(a, b)

where we used the shorthand notation B = 1/
√

1 + a2 and

M0(a, b) = aB g(bB) G(−abB),

M1(a, b) = B2(−abM0(a, b) + ag(b)/
√

2π ).

Since we consider only up to n = 2, we are spared the increas-
ingly cumbersome expressions for n > 2.

APPENDIX B: FREE UPCROSSING PROBABILITIES

The dynamics of the free membrane voltage and the current
for the LIF neuron model are given by

U̇ = −U + I, (B1)

τs İ = −I + η, (B2)

where we measure time in units of the membrane time con-
stant τm, i.e., we set τm = 1. Furthermore, we set 〈η〉 = 0,
i.e., we measure U and I relative to the mean input. Lastly,
we define t = 0 to be the end of the refractory period, i.e., the
time when the free dynamics start evolving.

First, we need the distribution of the voltage and the cur-
rent. Since η is a Gaussian process, both are Gaussian for
arbitrary time arguments. Thus it is sufficient to calculate the
first two conditional cumulants. Throughout, we assume a
correlation-free preparation [92], i.e., we assume that η and
I are uncorrelated prior to t = 0.

1. Nonstationary mean and variance of U and I

We need the nonstationary mean and variance of U and
I to calculate the free upcrossing probability. For a given
initial current and initial voltage, Eqs. (B1) and (B2) lead
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to

I (t ) = I0e−t/τs + 1

τs

∫ t

0
e−(t−s)/τsη(s)ds,

U (t ) = U0e−t +
∫ t

0
e−(t−s)I (s)ds.

This leads immediately to the mean

μI (t ) = I0e−t/τs ,

μU (t ) = U0e−t + τs

1 − τs
I0(e−t − e−t/τs ).

To obtain the variances numerically, we use that they follow
linear differential equations: taking the temporal derivatives
of I (t )2, I (t )U (t ), and U (t )2, using Eqs. (B1) and (B2), and
averaging leads to

τs

2
σ̇ 2

I = −σ 2
I + σ 2

Iη,

τsσ̇
2
IU = −(1 + τs)σ 2

IU + τsσ
2
I + σ 2

Uη,

1

2
σ̇ 2

U = −σ 2
U + σ 2

IU .

The initial conditions for all of the above differential equations
are σ 2

I (0) = σ 2
IU (0) = σ 2

U (0) = 0. They are straightforward
to solve numerically in the order that they appear, but they
require two additional quantities:

σ 2
Iη(t ) = 1

τs

∫ t

0
e−s/τsCη(s)ds,

σ 2
Uη(t ) = 1

1 − τs

∫ t

0
(e−s − e−s/τs )Cη(s)ds,

which can be numerically computed using a composite trape-
zoidal rule. If Cη(τ ) contains a Dirac delta, Cη(τ ) = Ĉη(τ ) +
2Dδ(τ ), we have to separate it analytically in σ 2

Iη(t ):

σ 2
Iη(t ) = σ̂ 2

Iη(t ) + D

τs
.

Note the factor 1/2 because we only integrate “half” of the
Dirac delta. In σ 2

Uη(t ), the Dirac delta does not contribute
because the integrand vanishes at zero, i.e., σ 2

Uη(t ) = σ̂ 2
Uη(t ).

Ultimately, we need the cumulants of U and U̇ instead of
U and I . To relate the respective quantities, we use Eq. (B1).
For the initial conditions, we have

U̇0 = I0 − U0.

The first cumulants are

μU (t ) = U0e−t + (U̇0 + U0)A(t ),

μU̇ (t ) = −μU (t ) + (U̇0 + U0)e−t/τs

= −U0e−t + (U̇0 + U0)B(t ),

where we used Eq. (B1) for μU̇ (t ) and abbreviated

A(t ) = τs

1 − τs
(e−t − e−t/τs ), B(t ) = e−t/τs − A(t ).

The second cumulants do not depend on the initial conditions
and we get from Eq. (B1):

σ 2
UU̇ (t ) = −σ 2

U (t ) + σ 2
IU (t ),

σ 2
U̇ (t ) = σ 2

U (t ) − 2σ 2
IU (t ) + σ 2

I (t ).

Finally, we need to marginalize the initial velocity.
We assume that U̇0 is Gaussian distributed with mean μU̇0

and variance σ 2
U̇0

. Marginalizing U̇0 again results in a Gaus-

sian distribution because p(U̇0) and p(U1, U̇1 | U0, U̇0) are
Gaussian. Hence, we only need to compute the cumulants. For
the mean, we simply have to replace U̇0 → μU̇0

. The second
cumulants are

σ̃ 2
U (t ) = σ 2

U (t ) + σ 2
U̇0

A(t )2,

σ̃ 2
UU̇ (t ) = σ 2

UU̇ (t ) + σ 2
U̇0

A(t )B(t ),

σ̃ 2
U̇ (t ) = σ 2

U̇ (t ) + σ 2
U̇0

B(t )2.

With this, we can evaluate the mean and the variance numeri-
cally from the statistics of η(t ) and U̇0.

2. Initial velocity distribution

For the distribution of initial velocities, we assume that
the voltage has reached a stationary distribution by the time
it crosses the threshold. The velocity at an upcrossing of
a stationary Gaussian process is Rayleigh distributed [40].
Because at the threshold we have U̇up = −θ + Iup (remember
that t = 0 denotes the end of the refractory period, that the
membrane resistance is absorbed into the current, and time
is rescaled such that τm = 1), the current is also Rayleigh
distributed,

p(Iup) =
{

(Iup−θ )
σ 2

I
exp

( − (Iup−θ )2

2σ 2
I

)
for Iup � θ

0 otherwise
,

where σ 2
I = −C̈U (0) with the stationary autocorrelation

CU (τ ) of the free voltage. We assume that the further de-
velopment of the current is also stationary, and neglect
the conditional dependencies of the transition probability
p(I0 | Iup) on the threshold crossing beyond Iup, e.g., on
İup and Ïup. This transition probability can thus be obtained
from the unconstrained (“free”) stationary statistics of the
current—not conditioned on a threshold crossing—which are
Gaussian: p(I0 | Iup) = pfree(I0, Iup)/pfree(Iup). The uncon-
strained joint and instantaneous distributions here function
as auxiliary quantities for computing p(I0 | Iup). The uncon-
strained joint distribution is a Gaussian with variance σ 2

I and
covariance σ 2

I RI (τref ) where RI (τ ) = −C̈U (τ )/σ 2
U . We derive

CU (τ ) most conveniently by Fourier transforming Eqs. (B1)
and (B2), which leads to SU ( f ) = Sη( f )/(1 + (2π f )2)/(1 +
(2πτs f )2), and using the Wiener-Khinchin theorem to ob-
tain the autocorrelation. From the unconstrained joint and
instantaneous distributions, we obtain the transition probabil-
ity p(I0 | Iup), which is again a Gaussian with [88]

μ̃I (τref ) = IupRI (τref ), σ̃ 2
I (τref ) = σ 2

I (1 − RI (τref )2).
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Combining this with the Rayleigh-distributed p(Iup) yields

p(I0) =
∫ ∞

θ

p(I0 | Iup)p(Iup)dIup,

which is not a Gaussian anymore. We only calculate the first
two cumulants,

μ̂I (τref ) = 〈μ̃I (τref )〉I0 =
(√

π

2
σ 2

I + θ

)
RI (τref ),

σ̂ 2
I (τref ) = σ̃ 2

I (τref ) + 〈(μ̃I (τref ) − 〈μ̃I (τref )〉I0 )2〉I0

= σ̃ 2
I (τref ) + 4 − π

2
σ 2

I RI (τref )2,

and neglect the higher cumulants to arrive at a Gaussian ap-
proximation. Finally, after the refractory time we have U̇0 =
−Vr + I0. Combining the above equations leads to

μU̇0
=
(√

π

2
σ 2

I + θ

)
RI (τref ) − Vr, (B3)

σ 2
U̇0

= σ 2
I

(
1 − π − 2

2
RI (τref )2

)
, (B4)

which determine the Gaussian approximation of the initial
velocity distribution.

3. One-point upcrossing probability

Here, we calculate the upcrossing probability Eq. (39),

n1(t ) =
∫ ∞

0
U̇1 p(θ, U̇1 | Vr )dU̇1.

Due to the linearity of Eqs. (B1) and (B2), the distribution
p(θ, U̇1 | Vr ) is a Gaussian with the cumulants we calculated
above [92]. Hence, it takes the form

p(θ, U̇1 | Vr )= 1√
det(2πC)

exp

(
−1

2
(u − μ)T C−1(u − μ)

)
,

where uT = (θ, U̇1) and the mean and the correlation matrix
are given by

μ =
(

μ̃U (t )
μ̃U̇ (t )

)
, C =

(
σ̃ 2

U (t ) σ̃ 2
UU̇

(t )

σ̃ 2
UU̇

(t ) σ̃ 2
U̇

(t )

)
.

Inverting C leads to

C−1 = 1

det(C)

(
σ̃ 2

U̇
(t ) −σ̃ 2

UU̇
(t )

−σ̃ 2
UU̇

(t ) σ̃ 2
U (t )

)
,

det(C) = σ̃ 2
U (t )σ̃ 2

U̇ (t ) − σ̃ 4
UU̇ (t ).

The exponent of p(θ, U̇1 | Vr ) takes the form

(u − μ)T C−1(u − μ) = 1

det(C)

[
aU̇ 2

1 − 2bU̇1 + c2]
with a = σ̃ 2

U (t ), b = μ̃U̇ (t )σ̃ 2
U (t ) + (θ − μ̃U (t ))σ̃ 2

UU̇
(t )

and c2 = μ̃U̇ (t )2σ̃ 2
U (t ) + 2(θ − μ̃U (t ))μ̃U̇ (t )σ̃ 2

UU̇
(t ) + (θ −

μ̃U (t ))2σ̃ 2
U̇

(t ).
Putting it together, n1 is given by

n1(t ) = 1√
det(2πC)

∫ ∞

0
U̇1 exp

(
−aU̇ 2

1 − 2bU̇1 + c2

2 det(C)

)
dU̇1.

The integral can be solved in terms of an error function:∫ ∞

0
U̇1e− aU̇2

1 −2bU̇1+c2

2 det(C) dU̇ = det(C)

a
e−c̃2

+ det(C)

a
e−c̃2√

π b̃eb̃2
(1 + erf (b̃)),

where b̃ = b/
√

2a det(C) and c̃ = c/
√

2 det(C). Thus we get

n1(t ) =
√

det(C)

2πσ̃ 2
U (t )

e−c̃2
(1 + √

π b̃eb̃2
(1 + erf (b̃))) (B5)

for the free upcrossing rate.

4. Stationary correlation function of U and U̇

For the stationary two-point upcrossing probability, we
need the stationary correlation functions of U , U̇ , and between
U and U̇ . The power spectrum of U follows from the power
spectrum of η using

SU ( f ) = Sη( f )

(1 + (2π f )2)(1 + (2π f τs)2)
.

An inverse Fourier transform leads to the stationary correla-
tion function CU (τ ). For stationary processes, the formulas

CUU̇ (τ ) = −CU̇U (τ ) = ĊU (τ ), CU̇ (τ ) = −C̈U (τ )

yield the remaining correlation functions. The first
formula follows from 〈U (t )U̇ (t + τ )〉 = d

dτ
〈U (t )U (t + τ )〉

and 〈U̇ (t )U (t + τ )〉 = 〈U̇ (t − τ )U (t )〉 = − d
dτ

〈U (t −
τ )U (t )〉, the second from 〈U̇ (t )U̇ (t + τ )〉 = d

dτ
〈U̇ (t )U (t +

τ )〉 = d
dτ

〈U̇ (t − τ )U (t )〉 = − d2

dτ 2 〈U (t − τ )U (t )〉.

5. Stationary two-point upcrossing probability

Here, we calculate the stationary two point upcrossing
probability Eq. (40),

n2(τ ) =
∫ ∞

0

∫ ∞

0
U̇2U̇1 p(θ, U̇2; θ, U̇1)dU̇1dU̇2.

The joint density p(U2, U̇2;U1, U̇1) takes the form

p(U2, U̇2;U1, U̇1) = 1√
det

(
2πσ 2

U C
) exp

(
− 1

2σ 2
U

uT C−1u
)

,

where uT = (U1, U̇1,U2, U̇2) and σ 2
U = CU (0). The correla-

tion matrix is given by

C =

⎛
⎜⎜⎝

1 0 R(τ ) Ṙ(τ )
0 −R̈(0) −Ṙ(τ ) −R̈(τ )

R(τ ) −Ṙ(τ ) 1 0
Ṙ(τ ) −R̈(τ ) 0 −R̈(0)

⎞
⎟⎟⎠,

where we introduced CU (τ ) = σ 2
U R(τ ) and used ĊU (0) = 0

for stationary processes with a differentiable correlation func-
tion. Inverting C is cumbersome and eventually leads to

C−1 = 1

det(C)

⎛
⎜⎝

α β γ δ

β ε −δ ζ

γ −δ α −β

δ ζ −β ε

⎞
⎟⎠ with

α = R̈(0)2 + Ṙ(τ )2R̈(0) − R̈(τ )2,
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β = R(τ )Ṙ(τ )R̈(0) − Ṙ(τ )R̈(τ ),

γ = −R(τ )R̈(0)2 + R(τ )R̈(τ )2 − Ṙ(τ )2R̈(τ ),

δ = Ṙ(τ )R̈(0) − R(τ )Ṙ(τ )R̈(τ ) + Ṙ(τ )3,

ε = −R̈(0) + R(τ )2R̈(0) − Ṙ(τ )2,

ζ = R̈(τ ) − R(τ )2R̈(τ ) + R(τ )Ṙ(τ )2.

The determinant of C is given by

det(C) = [1 − R(τ )2][R̈(0)2 − R̈(τ )2]

+ Ṙ(τ )2[2R̈(0) − 2R(τ )R̈(τ ) + Ṙ(τ )2].

Now, we have to solve the integrals. The exponent of
p(U2, U̇2;U1, U̇1) takes the form

uT C−1u = 1

det(C)

[
ε
(
U̇ 2

1 + U̇ 2
2

) + 2ζU̇1U̇2

+ 2(δ − β )θ (U̇2 − U̇1) + 2(α + γ )θ2].
With the transformation v1 = 1√

2
(U̇2 − U̇1) and v2 =

1√
2
(U̇2 + U̇1), we have U̇ 2

1 + U̇ 2
2 = v2

1 + v2
2 , U̇1U̇2 =

1
2 (v2

2 − v2
1 ) and thus

n2(τ ) = e
− (α+γ )θ2

σ2
U det(C)

2
√

det
(
2πσ 2

U C
)
∫ ∞

0
e
− (ε+ζ )v2

2
2σ2

U det(C)

×
∫ v2

−v2

(
v2

2 − v2
1

)
e
− (ε−ζ )v2

1 +2
√

2(δ−β )θv1
2σ2

U det(C) dv1dv2.

The substitution ṽi = vi/
√

2σ 2
U det(C) simplifies the integrals

to

n2(τ ) = det(C)3/2

2π2
e
−
(

(α+γ )− (β−δ)2
(ε−ζ )

)
θ2

σ2
U det(C)

∫ ∞

0
e−(ε+ζ )ṽ2

2

×
∫ ṽ2

−ṽ2

(
ṽ2

2 − ṽ2
1

)
e
−(ε−ζ )

(
ṽ1− β−δ

ε−ζ
θ√

σ2
U det(C)

)2

d ṽ1d ṽ2.

The inner integrals over ṽ1 can be solved in terms of error
functions:

I0(ṽ2; a, b) ≡
∫ ṽ2

−ṽ2

e−a(ṽ1−b)2
d ṽ1

=
[

1

2

√
π

a
erf (ṽ1)

]√
a(b+ṽ2 )

√
a(b−ṽ2 )

,

I1(ṽ2; a, b) ≡
∫ ṽ2

−ṽ2

ṽ2
1e−a(ṽ1−b)2

dx

=
[

1 + 2ab2

4a3/2

√
π erf (ṽ1)

]√
a(b+ṽ2 )

√
a(b−ṽ2 )

+
[
− 1

2a3/2
ṽ1e−ṽ2

1 + b

a
e−ṽ2

1

]√
a(b+ṽ2 )

√
a(b−ṽ2 )

,

where a = ε − ζ and b = β−δ

ε−ζ
θ√

σ 2
U det(C)

. Some of the outer

integrals over ṽ2 can also be solved in terms of error functions:

I2(a, b, c) ≡ −b

a

∫ ∞

0
e−cṽ2

2 [e−ṽ2
1 ]

√
a(b+ṽ2 )√
a(b−ṽ2 )

d ṽ2

= b

a

√
π

a + c
e−ab2+ a2b2

a+c erf

(
ab√
a + c

)
,

I3(a, b, c) ≡ 1

2a3/2

∫ ∞

0
e−cṽ2

2 [ṽ1e−ṽ2
1 ]

√
a(b+ṽ2 )√
a(b−ṽ2 )

d ṽ2

= 1

2a(a + c)
e−ab2

−
bc
√

π
a+c

2a(a + c)
e−ab2+ a2b2

a+c erf

(
ab√
a + c

)
,

with c = ε + ζ . The remaining integrals over ṽ2, i.e.

I4(a, b, c) ≡ −1 + 2ab2

4a3/2

√
π

∫ ∞

0
e−cṽ2

2 [erf (ṽ1)]
√

a(b+ṽ2 )√
a(b−ṽ2 )

d ṽ2,

I5(a, b, c) ≡ 1

2

√
π

a

∫ ∞

0
ṽ2

2e−cṽ2
2 [erf (ṽ1)]

√
a(b+ṽ2 )√
a(b−ṽ2 )

d ṽ2,

can be solved in terms of Owen’s T function T (h, a) =
1

2π

∫ a
0

1
1+x2 e− 1

2 h2(1+x2 )dx (Ref. [59], see Appendix B 2). Com-
bining everything, we obtain

n2(τ ) = det(C)3/2

(2π )2ac
Iana(ã, b̃, c̃, d̃ ),

Iana(ã, b̃, c̃, d̃ ) = e−d̃2 + √
π (1 + c̃)b̃eb̃2−d̃2

erf
(
b̃
)

+ 2π
√

c̃(1/c̃ − 2ã2 − 1)eã2−d̃2

× T (
√

2c̃b̃, 1/
√

c̃), (B6)

with ã = √
ab = β−δ√

ε−ζ

θ√
σ 2

U det(C)
, b̃ = a√

a+c
b =

β−δ√
2ε

θ√
σ 2

U det(C)
, c̃ = c

a = ε+ζ

ε−ζ
, d̃ = √

α + γ θ√
σ 2

U det(C)
. From

n2(τ ), we obtain

Q(τ ) = 1 − n2(τ )

n2
0

and η = 2
∫ ∞

0
Q(τ )dτ

which allow us to evaluate the Stratonovich approximation.

APPENDIX C: STRATONOVICH APPROXIMATION

Here, we compare the full Stratonovich approximation
Eq. (34),

HS (T ) = −
∫ T

0
n1(t )

ln
(
1 − ∫ T

0 Q(t, t ′)n1(t ′)dt ′)∫ T
0 Q(t, t ′)n1(t ′)dt ′ dt,

with its approximation Eq. (35),

hS (t ) = κS

n0
n1(t ), κS = −1

η
ln (1 − n0η).

Importantly, both lead to equivalent hazard functions for infi-
nite times [40].

To see this, we need two properties of n1 and n2. First,
the upcrossing probability saturates at a finite value once the
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FIG. 12. Comparison of the full Stratonovich approxima-
tion with its approximation Eq. (35). (a) ISI distribution from
Stratonovich approximation (colors) and Eq. (35) (black). (b) Same
for the power spectra. Parameters as in Figs. 8(g) and 8(h).

transient effect of the voltage reset is over, n0 = limt→∞ n1(t ).
Second, Q(t1, t2) = 1 − n2(t1,t2 )

n1(t1 )n1(t2 ) decays to zero for |t2 −
t1| → ∞ because the upcrossings decorrelate, n2(t1, t2) →
n1(t1)n1(t2). Thus one can approximate

∫ T
0 Q(t, t ′)n1(t ′)dt ′ ≈

n0
∫∞

0 Q(t, t ′)dt ′ ≡ n0η for 0  t  T . Then, neglecting the

contributions of
∫ T

0 Q(t, t ′)n1(t ′)dt ′ − n0η for t close to 0 or

T leads to HS (T ) ≈ ∫ T
0

κS
n0

n1(t )dt . Neglecting these contribu-
tions is justified for large T because the integral is dominated
by the contributions in between these boundaries. Hence, we
arrive at limT →∞ d

dT HS (T ) = limt→∞ hS (t ) = κS or, in terms
of the ISI distribution, p(T ) ∼ exp(−κST ) for t → ∞.

Since the long-time asymptotics are the same, differences
can only occur at short times. In Fig. 12, we compare the full
Stratonovich approximation with Eq. (35) for two representa-
tive examples. Fortunately, both the resulting ISI distributions
[Fig. 12(a)] and the power spectra [Fig. 12(b)] agree closely
for all times. Solving the full Stratonovich is numerically
challenging (see below); thus, we use the simpler and more
efficient approximation throughout in the main text.

1. Numerics

Here, we develop a numerical implementation of the
Stratonovich approximation that is feasible for long time in-
tervals without excessive demands on the working memory.

For stationary Q(t, t ′) = Q(|t ′ − t |), the Stratonovich ap-
proximation Eq. (34) reads

HS (T ) = −
∫ T

0
n1(t )

ln
[
1 − ∫ T

0 Q(|t ′ − t |)n1(t ′)dt ′]∫ T
0 Q(|t ′ − t |)n1(t ′)dt ′ dt .

With the definition

f (T, t ) =
∫ T

0
Q(|t ′ − t |)n1(t ′)dt ′,

we have

HS (T ) = −
∫ T

0
n1(t )

ln[1 − f (T, t )]

f (T, t )
dt .

Since Q(τ → ∞) → 0, i.e., it vanishes for long time lags, we
can introduce an associated timescale: Q(τ ) ≈ 0 for all τ >

τQ. Similarly, n1(t → ∞) → n0 on the timescale τn such that
n1(t ) ≈ n0 for all t > τn.

The main problem in computing HS (T ) is that a large three-
dimensional grid is necessary for the three time arguments t ,
t ′, and T . To circumvent this problem, we split the domain
of integration such that the full grid is only needed in small
subdomains. In the remainder of the domain, the integrals can
be solved by successive one-dimensional integration.

We consider f (T, t ) first. Because Q(|t ′ − t |) vanishes for
|t ′ − t | > τQ, we know that the integrand only contributes in
the vicinity of t . Thus we can extend the upper limit to infinity,
f (T, t ) ≈ f (∞, t ) if t < T − τQ. Accordingly, we split the
integral where possible:

HT �τQ

S (T ) = −
∫ T

0
n1(t )

ln[1 − f (T, t )]

f (T, t )
dt,

HT >τQ

S (T ) ≈ −
∫ T −τQ

0
n1(t )

ln[1 − f (∞, t )]

f (∞, t )
dt

+ RT >τQ (T ),

RT >τQ (T ) = −
∫ T

T −τQ

n1(t )
ln[1 − f (T, t )]

f (T, t )
dt .

The remainder RT >τQ (T ) becomes constant for T > τn + 2τQ

because n1(t ) ≈ n0 in both integrals in this regime and we
can set RT >τn+2τQ (T ) ≈ RT >τn+2τQ (τn + 2τQ). Hence, we only
have to calculate the full integral for HT �τQ

S (T ) and for
RT >τQ (T ) until it is constant.

The remaining integrals in HT >τQ

S (T ) can be solved suc-
cessively. First, we solve the convolution integral

f (∞, t ) =
∫ ∞

0
Q(|t ′ − t |)n1(t ′)dt ′

using Fourier transformation. Then, we can insert the result
in HT >τQ

S (T ) and solve the integral over t . All integrals are
approximated by their respective Riemann sum.
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U B I Q U I T O U S L O G N O R M A L D I S T R I B U T I O N O F
N E U R O N D E N S I T I E S A C R O S S M A M M A L I A N
C E R E B R A L C O RT E X

preamble

While the previous chapter followed a gradient of increasing model
complexity, this chapter strongly deviates from this organizing princi-
ple. Here, we investigate how neurons are distributed across cerebral
cortex. Uncovering statistical regularities in the cortical organization
is a necessary ingredient for large-scale, data-driven models like the
one developed in Chapter 8.

We characterize the distribution of neuron densities both within and
across areas for several mammalian species. The main finding is that
they are log-normally distributed. More precisely, we cannot exclude
the possibility that they are log-normally distributed and we do not
find a model which outperforms the log-normal distribution.

This finding calls for an explanation. To this end, we develop a
simple model of noisy cell division which leads to log-normal neuron
densities within areas, akin to models of noisy synapse formation (e.g.
Ziv and Brenner 2018).
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Abstract

Numbers of neurons and their spatial variation are fundamental organizational fea-

tures of the brain. Despite the large corpus of data available in the literature, the

statistical distributions of neuron densities within and across brain areas remain

largely uncharacterized. Here, we show that neuron densities are compatible with

a lognormal distribution across cortical areas in several mammalian species. We

find that this also holds true for uniformly sampled regions across cortex as well as

within cortical areas. Our findings uncover a new organizational principle of cor-

tical cytoarchitecture. The ubiquitous lognormal distribution of neuron densities

adds to a long list of lognormal variables in the brain.

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2022. ; https://doi.org/10.1101/2022.03.17.480842doi: bioRxiv preprint 



Introduction

Neurons are not uniformly distributed across the cerebral cortex; their density varies strongly

across areas and layers [1]. The neuron density directly affects short-range as well as long-range

neuronal connectivity [2, 3]. Elucidating the distribution of neuron densities across the brain

therefore provides insight into its connectivity structure and, ultimately, cognitive function.

Additionally, statistical distributions are essential for the construction of computational models,

which rely on predictive relationships and organizational principles where the experimental data

are missing [4, 5]. Previous quantitative studies have provided reliable estimates for cell den-

sities across the cerebral cortex of rodents [6, 7, 8], non-human primates [8, 9, 10, 11, 12, 13],

large carnivores [14], and humans [15, 1]. However, to the best of our knowledge, the univari-

ate distribution of neuron densities across and within cortical areas has not yet been statistically

characterized. Instead, most studies focus on qualitative and quantitative comparisons across

species, areas, or cortical layers. Capturing the entire distribution is necessary because long-

tailed, highly skewed distributions are prevalent in the brain [16] and invalidate the intuition—

guided by the central limit theorem—that the vast majority of values are in a small region of a

few standard deviations around the mean.

Here, we for the first time characterize the distribution of neuron densities ρ across mam-

malian cerebral cortex. Based on the sample histograms (Figure 1) we hypothesize that ρ

follows a lognormal distribution, similar to many other neuroanatomical and physiological

variables such as synaptic strengths, axonal widths, and cortico-cortical connection densities

[16, 17, 18]. Using neuron density data from mouse (Mus musculus), marmoset (Callithrix jac-

chus), macaque (Macaca mulatta), human (Homo sapiens), galago (Otolemur garnettii), owl

monkey (Aotus nancymaae), and baboon (Papio cynocephalus anubis) we confirm this hypoth-

esis for the given species (see Cell density data for a detailed description of the data). Going
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beyond the distribution across cortical areas, we furthermore show that neuron densities within

most areas of marmoset cortex are also compatible with a lognormal distribution. Moreover,

we show that the lognormal distribution can emerge during neurogenesis from a simple cell

division model with variability. Finally, we compare with several other distributions and find

that none outperform the lognormal distribution as a model of the data within and across cortex.

Results

To test for lognormality, we take the natural logarithm, ln(ρ), which converts lognormally dis-

tributed samples into normally distributed samples (Figure 1B). We then test for normality of

ln(ρ) using the Shapiro-Wilk (SW) test, the most powerful among a number of commonly

applied normality tests [19]. Large outliers (|z-scored ln(ρ)| ≥ 3; marked with a red cross in

Figure 1C) were excluded from the normality test. The removed outliers are area V1 in macaque

and marmoset, which have densities far outside the range for all other areas in both species, and

area APir in marmoset, which has a noticeably distinct cytoarchitecture with respect to the rest

of the cerebral cortex [9]. We denote different data sets for the same species with subscript

indices (see Cell density data). The SW test concludes that the normality hypothesis of ln(ρ)

cannot be rejected for mouse, marmoset, macaque1, human, galago1, owl monkey, and baboon

(see Figure 1B). For the data sets macaque2 and galago2 the normality hypothesis is rejected

(p < 0.05); however, in these data sets, the densities were sampled neither uniformly nor based

on a cytoarchitectonic parcellation. The normality hypothesis for the distribution across cy-

toarchitectonic areas is further supported by Figure 1C, which shows that the relation between

theoretical quantiles and ordered samples is almost perfectly linear except for macaque2 and

galago2. Next, we test the z-scored ln(ρ) from the different species and data sets against each

other and find that they are pairwise statistically indistinguishable (α = 0.05 level; two-sample

two-sided Kolmogorov-Smirnov test, see Figure S1 for full test results).
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Additionally, we control for cell types in the distributions of the mouse, galago1, owl mon-

key, and baboon data. In the mouse data, different types of neurons and glia were labeled with

specific genetic markers and their respective densities were reported separately for all cell types

[7]. In the galago1, owl monkey, and baboon data sets, the total numbers of cells and neurons

were reported separately [11]. We show that all subtypes of neurons in the mouse are com-

patible with a lognormal distribution (Figure S2; SW test on ln(ρ), p > 0.05) while glia are

not—with the notable exception of oligodendrocytes. When neurons and glia are pooled to-

gether (Figure S2C,D), the distribution of ln(ρ) still passes the SW normality test, likely due to

the distribution being dominated by the neurons. Similar observations are made in the baboon

data, where the glia do not pass the lognormality test, but the neurons do. In the cases of galago1

and owl monkey both the neurons and glia pass the lognormality test (Figure S2), which may,

however, be partly due to the small number of density samples (N=12 in both cases). Thus, the

mouse and baboon data—with large samples sizes (N=42 and N=142, respectively)—suggest

that it is the neuron densities that follow a lognormal distribution but not necessarily the glia

densities.

Furthermore, we also perform a control test on the different types of staining—Nissl and

NeuN—using the macaque1 data. The staining methods differ in their treatment of glia: NeuN

tends to label neuronal cell bodies only while Nissl indiscriminately labels both neurons and

glia. We show that regardless of staining type the cell densities pass the lognormality test

(Figure S3; SW test on ln(ρ) with p > 0.05), suggesting that counting some glia in the cell

densities does not confound our analysis of the macaque1 data.

Taken together, the normality test, the quantiles plots, the pairwise tests, the cell type com-

parison, and the staining method comparison provide compelling evidence that the logarith-

mized neuron densities are normally distributed across cytoarchitectonic areas. This also holds

for uniformly sampled neuron densities (baboon) but not for a sampling that is neither uniform
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nor based on a cytoarchitectonic parcellation (macaque2, galago2). Thus, the neuron densi-

ties are consistent with a lognormal distribution across the different cortical areas, as long as

sampling is not irregular.

To investigate whether the lognormal distribution holds within cortical areas, we lever-

age numerical estimates of neuron density in marmoset [9]. Neurons were counted within

150 × 150 µm counting frames for four strips per cortical area, all originating from the same

subject. The neuron densities within the counting frames ρs are the within-area samples; their

sample distributions in three representative areas (MIP, V2, and V3; Figure 2A) again suggest a

lognormal distribution. As before, we test for lognormality by testing ln(ρs) for normality with

the SW-test (for full test results see Table S2). At significance level α = 0.05, the normality

hypothesis is not rejected for 86 out of 116 areas; whereas at α = 0.001, this is the case for

112 out of 116 areas (Figure 2B,C). Thus, regardless of the precise significance threshold, the

lognormality hypothesis cannot be rejected within most cortical areas in the marmoset cortex.

This finding raises the question how the intricate process of neurogenesis [20] culminates in

lognormally distributed neuron densities in almost all areas. A simple model shows that there

is no need for a specific regulatory mechanism: assuming that the proliferation of the neural

progenitor cells is governed by a noisy rate

λ(t) = µ(t) + ξ(t), (1)

where µ(t) denotes the mean rate and ξ(t) is a zero-mean Gaussian process, the resulting popu-

lation of progenitor cells, and eventually neurons, is lognormally distributed (see Model of pro-

genitor cell division with variability). Thus, the lognormal neuron density distribution within

areas could be a hallmark of a cell division process with variability. The model furthermore

predicts that the mean and variance of ln(ρ) increase with proliferation time. Since the prolif-

eration time varies up to twofold between areas [20], mean and variance of ln(ρ) are correlated
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across areas according to the model—indeed, they are significantly correlated in the marmoset

data (Pearson r = 0.32, p < 10−3, Figure S4).

To complement the statistical hypothesis tests on the logarithmic densities, we compared

the lognormal model with six other statistical distributions based on the relative likelihood (see

Statistical model comparison). We included statistical distributions with support in R+ since

neuron densities cannot be negative: lognormal, truncated normal, inverse normal, gamma,

inverse gamma, Lévy, and Weibull. Of those distributions the lognormal, inverse normal, and

inverse gamma stand out as the distributions with the highest relative likelihoods, both across

the entire cortex and within cortical areas (Figure S5A, Figure S6A). A visual inspection of

the fitted distribution reveals that the lognormal, inverse normal, and inverse gamma produce

virtually indistinguishable probability densities (Figure S5B, Figure S6C); indeed, the relative

likelihoods of the three models are above 0.05 in all cases. This suggests that the data could

theoretically be distributed according to either the lognormal, inverse normal, or inverse gamma

distribution. However, out of these, the lognormal distribution could arise from a simple model

of cell division (equation (1))—while no interpretable mechanisms leading to inverse normal

or inverse gamma distributions are known in this context. Thus, the similar likelihood and a

simple biophysical explanation together argue for a lognormal rather than an inverse normal or

inverse gamma distribution of neuron densities.

Discussion

In conclusion, we show that neuron densities are compatible with a lognormal distribution

across cortical areas in multiple mammalian cortices and within most cortical areas of the mar-

moset, uncovering a previously unexplored organizational principle of cerebral cortex. Further-

more, we propose a simple model, based on a cell division process of the progenitor cells with

variability, that accounts for the emerging lognormal distributions within areas. Lastly, we show
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that none of an extensive list of statistical models outperform the lognormal distribution. Our

results are in agreement with the observation that surprisingly many characteristics of the brain

follow lognormal distributions [16]. Moreover, this analysis highlights the importance of char-

acterizing the statistical distributions of brain data because simple summary statistics—such as

the mean or standard deviation—lack nuance and are not necessarily a good representation of

the underlying distribution.

The distributions of neuron and cell densities in general depend on the underlying spatial

sampling. We found that neuron densities follow a lognormal distribution within cytoarchitec-

tonically defined areas, across such areas, and when averaged within small parcels uniformly

sampled across cortex, but not when sampled in a highly non-uniform manner not following

cytoarchitectonic boundaries. The observation of lognormality both within and across cytoar-

chitectonic areas as well as across small uniformly sized parcels suggests an interesting topic for

further research: uncovering whether the neuron densities obey an invariance principle across

scales.

In principle, cortex-wide organizational structures might be by-products of development or

evolution that serve no computational function [21]—but the fact that we observe the same

organizational principle for several species and across most cortical areas suggests that the

lognormal distribution serves some purpose. Heterogeneous neuron densities could assist com-

putation through their association with heterogeneity in other properties such as connectivity

and neuronal time constants [4, 22]; indeed, such heterogeneity is known to be a valuable asset

for neural computation [23, 24]. Alternatively, localized concentration of neurons in certain

areas and regions could also serve a metabolic purpose [25], because centralization supports

more efficient energy usage. This is particularly relevant since approximately half of the brain’s

energy consumption is used to support the communication between neurons [26]. Also from the

perspective of cortical hierarchies it makes sense to have few areas with high neuron densities
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and many areas with lower neuron densities: Low-density areas contain neurons with large den-

dritic trees [27] receiving convergent inputs from many neurons in high-density areas lower in

the hierarchy. The neurons with extensive dendritic trees in higher areas are involved in differ-

ent, area-specific abstractions of the low-level sensory information [28, 29]. There is probably

not a single factor that leads to lognormal neuron densities in the cortex; further research will

be needed to refine our findings and uncover the functional implications.
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[16] G. Buzsáki, K. Mizuseki, Nature Reviews Neuroscience 15, 264 (2014).

[17] N. T. Markov, et al., Cerebral Cortex 24, 17 (2014).

[18] P. A. Robinson, X. Gao, Y. Han, Biological Cybernetics 115, 121 (2021).

[19] N. M. Razali, B. W. Yap, Journal of Statistical Modeling and Analytics 2, 21 (2011).

[20] P. Rakic, Nature Reviews Neuroscience 3, 65 (2002).

[21] A. G. Otopalik, A. C. Sutton, M. Banghart, E. Marder, eLife 6, e23508 (2017).

[22] W. Rall, Biophysical Journal 9, 1483 (1969).

[23] R. Duarte, A. Morrison, PLOS Computational Biology 15, e1006781 (2019).

[24] N. Perez-Nieves, V. C. H. Leung, P. L. Dragotti, D. F. M. Goodman, Nature Communica-

tions 12, 5791 (2021).

[25] M. Bélanger, I. Allaman, P. Magistretti, Cell Metabolism 14, 724 (2011).

[26] S. B. Laughlin, T. J. Sejnowski, Science 301, 1870 (2003).

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2022. ; https://doi.org/10.1101/2022.03.17.480842doi: bioRxiv preprint 



[27] G. N. Elston, M. Rosa, Cerebral Cortex 8, 278 (1998).

[28] S. Kumar, K. E. Stephan, J. D. Warren, K. J. Friston, T. D. Griffiths, PLoS Computational

Biology 3, e100 (2007).

[29] S. L. Brincat, M. Siegel, C. von Nicolai, E. K. Miller, Proceedings of the National

Academy of Sciences 115 (2018).

[30] E. S. Lein, et al., Nature 445, 168 (2007).

[31] H. W. Dong, The Allen reference atlas: A digital color brain atlas of the C57Bl/6J male

mouse. (John Wiley & Sons inc., 2008).

[32] G. Paxinos, C. R. R. Watson, M. Petrides, M. G. Rosa, H. Tokuno, The Marmoset Brain

in Stereotaxic Coordinates (2012).

[33] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, 2007),

third edn.

[34] C. A. Braumann, Mathematical Biosciences 206, 81 (2007).

Acknowledgements

We thank Günther Palm for useful discussions, Alexandre René for useful discussions and help
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Figure 1: Neuron and cell densities ρ follow a lognormal distribution across cortical areas for
multiple species. A Histogram of ρ (bars) and probability density function of a fitted lognormal
distribution (line). B Z-scored ln(ρ) histogram (bars), standard normal distribution (line), and
result of the Shapiro-Wilk normality test. C Probability plot of z-scored ln(ρ). Discarded
outliers marked with a red cross.
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Figure 2: Neuron densities ρs follow a lognormal distribution within most areas of marmoset
cortex. A Sample histograms of ρs and fitted lognormal distributions for three areas representing
different degrees of lognormality. B Log10 of p-value of Shapiro-Wilk normality test of ln(ρs)
on a flattened representation of the marmoset cortex [9]. C Number of areas with p-values in
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Materials and methods

Cell density data

Estimates of neuron density for the available cortical areas across the mouse (Mus musculus),

marmoset (Callithrix jacchus), macaque (Macaca mulatta), human (Homo sapiens), galago

(Otolemur garnettii), owl monkey (Aotus nancymaae), and baboon (Papio cynocephalus anu-

bis) cerebral cortex were used in this study.

In the cases of mouse, marmoset, macaque1, human, galago1, and owl monkey the data

were sampled from standard cytoarchitectonic parcellations; abbreviated names for all areas are

listed in Table S1. Note that we use subscript indices to distinguish between different data sets

on the same model animal, e.g. macaque1 and macaque2.

Neuron density estimates for the mouse were published in [7], and were measured from

Nissl-body-stained slices, where genetic markers were used to distinguish between cell types.

The data were provided in the Allen Brain Atlas parcellation [30, 31].

Neuron density estimates for the marmoset cortex were published in [9], and were measured

from NeuN-stained slices. The data were provided in the Paxinos parcellation [32]. Neuron

densities within each counting frame used in the original publication [9] (their Figure S1) were

obtained via personal communication with Nafiseh Atapour, Piotr Majka, and Marcello G. Rosa.

The neuron density estimates in the first macaque data set, macaque1, were previously pub-

lished in visual form in [10], and were obtained from both Nissl-body- and NeuN-stained brain

slices. Counts based on Nissl-body staining were scaled according to a linear relationship with

the counts from NeuN staining obtained from selected areas where both types of data were

available [10]. The data follow the M132 parcellation [17] and numerical values were provided

by Sarah F. Beul and Claus C. Hilgetag via personal communication.

Cell density estimates for the human cortex were previously published in [1], and were
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measured from Nissl-body-stained brain slices. The human data therefore most likely reflect

combined neuron and glia densities. The data were provided in the von Economo parcellation

[1].

Cell and neuron density estimates for galago1&2, owl monkey, baboon, and macaque2 were

previously published in [11], and were measured using the isotropic fractionator method. The

data are sampled from common parcellation schemes in galago1 and owl monkey, approxi-

mately equal-size samples in the baboon, and irregular non-uniform samples in macaque2 and

galago2.

Statistical model comparison

In order to assess which model is most compatible with the data, we compared the relative

likelihood of different distributions against each other. We included an extensive list of distri-

butions with support on R+, estimated the distributions’ parameters using maximum likelihood,

and calculated the Akaike Information Criterion (AIC)

AIC = 2k − 2 lnL (2)

where k is the number of estimated parameters of the model and L is the estimated maximum

likelihood. We further compare the models using the relative likelihood (Lr)

Lr = e(AICmin−AICi)/2 (3)

where AICmin is the minimum AIC across all models and AICi is the AIC for the ith model.

Note that the relative likelihood is equal to the relative likelihood if the number of estimated

parameters is the same in both models. The relative likelihood indicates the probability that,

from among the tested models, the ith model most strongly limits the information loss. We take

a significance threshold of α = 0.05 on the relative likelihood to determine whether a model is

significantly worse than the best possible model.
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Model of progenitor cell division with variability

We assume that the proliferation of the neural progenitor cells is governed by a noisy rate

λ(t) = µrate + σrateξ(t), (4)

where µrate denotes the mean rate, ξ(t) is a zero-mean Gaussian white noise process, and σrate

controls the strength of the noise. During proliferation, we assume that the population size of

the progenitor cells grows exponentially with rate λ, i.e., it obeys d
dt
N = λN . Dividing by a

reference volume and inserting equation (4), we obtain a stochastic differential equation (SDE)

for the density of progenitor cells ρ:

d

dt
ρ = (µrate + σrateξ(t))ρ (5)

We here use the Stratonovich interpretation, i.e., we assume that the noise process has a small

but finite correlation time before taking the white-noise limit [33].

Working in the Stratonovich interpretation, we can transform the SDE to d
dt
ln ρ = µrate +

σrateξ(t) with the solution [34]

ln ρ(t) = ln ρ0 + µratet+ σrate

∫ t

0

ξ(s)ds. (6)

Since ξ(t) is Gaussian and equation (6) is linear, ln ρ(t) is Gaussian and hence ρ(t) is log-

normally distributed. The parameters of this lognormal distribution are µ(t) = ⟨ln ρ(t)⟩ and

σ2(t) = ⟨∆(ln ρ(t))2⟩. Using equation (6), ⟨ξ(s)⟩ = 0, and ⟨ξ(s)ξ(s′)⟩ = δ(s − s′), we obtain

[34]

µ(t) = ln ρ0 + µratet and σ2(t) = σ2
ratet. (7)

Thus, the neuron densities resulting from the model of cell division with variability, equation

(5), are lognormally distributed with parameters µ(t) and σ2(t) specified in equation (7). In

particular, equation (7) predicts that both parameters increase with the proliferation time t.
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The model can be generalized while still leading to a lognormal distribution of neuron den-

sities: 1) The mean rate can be time-dependent, µrate = µrate(t). 2) The noise process can be

an arbitrary zero-mean (a non-zero mean can always be incorporated into µrate(t)) Gaussian

process with correlation function Cξ(t, t
′). Both generalizations allow one to incorporate a time

dependence of mean and noise strength during the proliferation. Assuming an absence of corre-

lation between noise and neuron density prior to t = 0, the above steps lead to the generalized

solution

ln ρ(t) = ln ρ0 +

∫ t

0

µrate(s)ds+

∫ t

0

ξ(s)ds. (8)

Here, ln ρ(t) is still a Gaussian process, because it is a linear transformation of the Gaussian

process ξ(t). Due to the marginalization property of Gaussian processes, ln ρ(t) is normally

distributed for any fixed time t with parameters

µ(t) = ln ρ0 +

∫ t

0

µrate(s)ds and σ2(t) =

∫ t

0

∫ t

0

Cξ(s, s
′)dsds′. (9)

Thus, ρ(t) is lognormally distributed with parameters µ(t) and σ2(t) specified in equation (9).

Note that in equation (9), in contrast to equation (7), µ(t) and σ2(t) do not necessarily grow

linearly with time but may exhibit a more intricate temporal dependence. Nonetheless, equation

(9) predicts that µ(t) and σ2(t) are related through the proliferation time.
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Supplementary tables

Table S1: Cortical areas included in this study.

Species Area abbreviations

Mouse FRP, MOp, MOs, SSp, SS-n, SSp-bfd, SSp-ll, SSp-m, SSp-ul, SS-tr, SSs, VISC, AUDd,
AUDp, AUDpo, AUDv, VISal, VISam, VISl, VISp, VISpl, VISpm, ACAd, ACAv,
ACAv, ACAv, ORBl, ORBm, ORBvl, AId, AIp, AIv, RSPagl, RSPd, RSPv, AONd,

AONe, AONl, AONm, AONpv, TTd, TTv

Marmoset A10, A9, A46V, A46D, A8aD, A8b, A8aV, A47L, A47M, A45, A47O, ProM, A11,
A13b, A13a, A13L, A13M, OPAl, OPro, Gu, A32, A32V, A14R, A14C, A25, A24a,
A24b, A24c, A24d, A6DR, A6Vb, A6Va, A8C, A6M, A6DC, A4c, A4ab, PaIM, AI,
PaIL, DI, GI, IPro, TPro, S2PR, A3a, S2PV, A3b, S2I, S2E, A1-2, AuRTL, AuRT,

AuRPB, AuRTM, AuR, AuRM, AuAL, AuA1, AuCM, AuCPB, AuML, AuCL, TPPro,
STR, TE1, TPO, ReI, TE2, PGa-IPa, TPt, TE3, TEO, Pir, APir, Ent, A36, A35, TF, TL,

TH, TLO, TFO, A23c, A23a, A29d, A30, A23b, A29a-c, A23V, ProSt, PF, PE, PFG,
A31, AIP, PG, PEC, VIP, LIP, PGM, V6A, OPt, MIP, MST, FST, V5, V4T, A19M, V3A,

V4, V6, A19DI, V3, V2, V1

Macaque1 2, 5, 9, 10, 11, 12, 13, 14, 23, 25, 32, 24a, 24c, 24d, 46d, 46v, 7A, 7B, 7m, 8B, 8l, 8m,
8r, 9-46d, 9-46v, DP, ENTO, F1, F2, F3, F4, F5, F6, F7, LIP, MT, OPAI, OPRO, PERI,

STPi, TEad, TEav, TEO, TH-TF, V1, V2, V3A, V4

Human FA, FB, FC, FCBm, FD, FD∆, FDt, FE, FF, FG, FH, FJ, FK, FL, FM, FN, LA1, LA2,
LC1, LC2, LC3, LD, LE1, LE2, IA, IB, OA, OB, OC, PA, PB1, PB2, PC, PD, PE, PF,

PG, PH, HA, HB, HC, HD, HE, HF, TA, TB, TC, TD, TE, TF, TG

Galago1 &
Owl Monkey

V1, V2, dV3, vV3, S1, M1, A1, MT, premotor, DL, Remain Ctx, Surr Ctx
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Table S2: Results of the Shapiro-Wilk test for normality of ln(ρs) in marmoset cortical areas.
Values rounded to two significant digits.

Area S p-value Area S p-value Area S p-value
V1 0.97 0.39 AI 0.95 0.0043 TH 0.97 0.66

A10 0.95 0.19 PaIL 0.95 0.33 TLO 0.96 0.18
A9 0.98 0.51 DI 0.97 0.098 TFO 0.97 0.26

A46V 0.98 0.56 GI 0.97 0.67 A23c 0.97 0.36
A46D 0.98 0.49 Ipro 0.97 0.66 A23a 0.99 0.98
A8aD 0.97 0.34 TPro 0.97 0.77 A29d 0.95 0.21

A8b 0.96 0.16 S2PR 0.92 0.006 A30 0.98 0.73
A8aV 0.96 0.17 A3a 0.95 0.04 A23b 0.97 0.45
A47L 0.96 0.052 S2PV 0.93 0.014 A29a-c 0.97 0.70

A47M 0.97 0.30 A3b 0.96 0.20 A23V 0.96 0.15
A45 0.96 0.18 S2I 0.97 0.33 ProSt 0.93 0.018

A47O 0.98 0.70 S2E 0.94 0.0046 PF 0.94 0.00083
ProM 0.97 0.21 Area1-2 0.97 0.37 PE 0.94 0.00065

A11 0.97 0.41 AuRTL 0.97 0.40 PFG 0.92 0.0046
A13b 0.96 0.58 AuRT 0.97 0.031 A31 0.97 0.31
A13a 0.91 0.048 AuRPB 0.98 0.89 AIP 0.96 0.063
A13L 0.97 0.45 AuRTM 0.97 0.73 PG 0.99 0.37

A13M 0.99 0.97 AuR 0.98 0.0093 PEC 0.91 0.0032
OPAl 0.99 0.99 AuRM 0.9 0.017 VIP 0.92 0.0044
OPro 0.98 0.75 AuAL 0.94 0.12 LIP 0.95 0.042

GU 0.95 0.058 AuA1 0.98 0.48 PGM 0.98 0.78
A32 0.97 0.20 AuCM 0.97 0.33 V6A 0.95 0.068

A32V 0.96 0.51 AuCPB 0.93 0.037 OPt 0.91 0.0015
A14R 0.98 0.77 AuML 0.97 0.44 MIP 0.9 0.00091
A14C 0.79 5.5e-06 AuCL 0.94 0.045 MST 0.98 0.53

A25 0.89 0.022 TPPro 0.98 0.91 FST 0.95 0.10
A24a 0.96 0.35 STR 0.96 0.44 V5 0.98 0.68
A24b 0.97 0.41 TE1 0.96 0.17 V4T 0.95 0.082
A24c 0.97 0.54 TPO 0.97 0.31 A19M 0.98 0.80
A24d 0.92 0.017 ReI 0.95 0.40 V3A 0.91 0.006

A6DR 0.97 0.23 TE2 0.96 0.15 V4 0.97 0.064
A6Vb 0.97 0.32 PGa/IPa 0.97 0.45 V6 0.96 0.017
A6Va 0.98 0.56 TPt 0.94 0.033 A19DI 0.95 0.074
A8C 0.95 0.055 TE3 0.93 0.026 V3 0.95 0.0076
A6M 0.99 0.98 TEO 0.95 0.087 V2 0.96 0.29

A6DC 0.91 0.002 A36 0.98 0.54 Ent 0.99 0.99
A4c 0.97 0.43 A35 0.97 0.31 APir 0.94 0.24

A4ab 0.96 0.076 TF 0.96 0.021 Pir 0.97 0.53
PaIM 0.93 0.20 TL 0.98 0.084
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Supplementary figures
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Figure S1: The z-scored log neuron density distributions of the four species are statistically
indistinguishable at the 0.05 level based on pairwise Kolmogorov-Smirnov two-sample two-
sided tests. P-values and S-statistics displayed below and above the diagonal, respectively.
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Figure S2: Comparison of neuron and glia lognormality. A–C Histogram of z-scored log den-
sity and result of Shapiro-Wilk test for neurons (A), glia (B), and all cells combined (C). D
Barplot of p-values resulting from Shapiro-Wilk normality test for all cell types. Panel A is
equivalent to the data shown in Figure 1.
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Figure S3: Lognormality of cell densities from different staining types in macaque cortex based
on the macaque1 data set. A-C Histogram of z-scored log density and result of Shapiro-Wilk
test for NeuN staining only (A), Nissl staining only (B) and all measurements combined (C).
The Nissl data were scaled down based on the linear relationship with the NeuN data [10]. Red
crosses indicate outliers (|z-scored ln(ρ)| ≥ 3, which were excluded from the test. Panel C is
equivalent to the data shown in Figure 1.
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Figure S4: Neuron densities in the marmoset are compatible with our model of progenitor cell
division with variability. µ and σ2 are the mean and variance of ln(ρ), respectively; and are
significantly correlated with each other, as predicted by the model.
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Figure S5: Statistical model comparison across the entire cortex of different animals. A Relative
likelihood for seven compatible statistical models for all available area-level neuron density data
sets; numerical values indicated for each model and animal. The red color indicates a relative
likelihood < 0.05 with respect to the model with the highest likelihood. B The three best
statistical models (according to the relative likelihood) fitted to the neuron density histograms
in each animal; the three models produce visually nearly indistinguishable fits.
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Figure S6: Statistical model comparison within the marmoset cortical areas. A Relative like-
lihood for seven compatible statistical models for all areas of the marmoset; a red cross (x)
indicates a relative likelihood < 0.05 with respect to the model with the highest likelihood. B
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preamble

In this final chapter, we return to the gradient of increasing model
complexity and consider a large-scale, data-driven, spiking model
of human cortex. While the underlying connectivity is still block-
structured random, we are leaving the realm of analytically tractable
models and rely mostly on simulations. Because of the sheer size
of the network, these simulations utilize the highly optimized NEST
simulator (Gewaltig and Diesmann 2007) and are run on the JURECA-
DC supercomputer at the Jülich Supercomputing Centre.

One of the major contributions of such data-based models is to
collect the data and to bring it into a coherent framework (Pulvermüller
et al. 2021). This exercise exposes gaps in the current knowledge and
might lead to relevant follow-up work. Indeed, the results presented
in Chapter 7 originated from an investigation of the relation between
laminar origin of connections and cytoarchitecture which enters the
model described in this chapter.

Historically, a variety of large-scale, data-driven models have been
built (see Section 2.4 and Shimoura et al. 2021). The model presented
in this chapter builds on the work by Schmidt, Bakker, Hilgetag, et al.
(2018) and Schmidt, Bakker, Shen, et al. (2018). The distinctive feature
of the model by Schmidt et al. is that it comprises all scales from single
neurons through local circuits to networks of cortical areas. While the
model by Schmidt et al. is based on macaque data, we take human
data into account.

The final goal is to create a model which reproduces features of
cortical activity and which, ideally, makes insightful predictions. For
the first goal, we employ both single-neuron electrophysiological
recordings and fMRI data to cover the full range from single neurons
to all cortical areas. This is the current state of the project: we collected
the data and aggregated it into a model which can be simulated and
validated against activity data.

A major challenge is to attain a network state with strong inter-
area interactions on slow timescales (compared to the single-neuron
timescale) while keeping the firing rate in a physiological range. We
have not yet achieved this goal. Thus, the manuscript in this chapter
is unpublished and, potentially, subject to significant changes and
extensions.
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Abstract Although the structure of cortical networks provides the necessary substrate for the
neuronal activity, the structure alone does not suffice to understand it. Leveraging the increasing
availability of human data, we developed a multi-scale, spiking network model of human cortex
to investigate the relationship between structure and dynamics. In this model, each area in one
hemisphere of the Desikan-Killiany parcellation is represented by a 1mm2 column with a layered
structure. The model aggregates data across multiple modalities, including electron microscopy,
electrophysiology, morphological reconstructions, and DTI, into a coherent framework. It predicts
activity on all scales from single-neuron spiking activity to the area-level functional connectivity.
We compared the model activity against human electrophysiological data and human resting
state fMRI data. This comparison reveals that further model adjustments are needed to account
for the slow fluctuations in spiking activity and the inter-area functional connectivity observed
experimentally.

Introduction
The brain is characterized by a multitude of spatial and temporal scales: from the molecular level
to whole-brain networks, from sub-millisecond processes to memories that last decades (Kandel
et al., 2000). Impressive technological advancements have made almost all these scales accessi-
ble through specialized techniques, which leads to a comprehensive but fragmented picture (Se-
jnowski et al., 2014). Models have the potential to integrate the diverse data modalities into a
unified framework and to bridge across the scales (Pulvermüller et al., 2021).

Large-scale, data-drivenmodels at cellular resolution have been constructed for sensory cortex
(Reimann et al., 2013; Markram et al., 2015; Girardi-Schappo et al., 2016; Arkhipov et al., 2018;
Billeh et al., 2020), prefrontal cortex (Hass et al., 2016), hippocampus (Hendrickson et al., 2012;
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Figure 1. Model overview. The model comprises all 34 areas of the Desikan-Killiany parcellation (Desikanet al., 2006) in one hemisphere of human cerebral cortex. Each area is modeled by a column with 1mm2cortical surface. Within each column, the full number of neurons and synapses based on cytoarchitectonicdata is included. Both the intrinsic and the cortico-cortical connectivity are layer- and population-specific.

Bezaire et al., 2016; Ecker et al., 2020), and the olfactory bulb (Migliore et al., 2014, 2015), among
others. These models reproduce resting-state activity (e.g. Potjans and Diesmann, 2014;Markram
et al., 2015; Hass et al., 2016; Bezaire et al., 2016) and stimulus responses (e.g. Arkhipov et al.,
2018; Billeh et al., 2020) on various levels of detail. Advances in the simulation technology for large
networks of point neurons (Einevoll et al., 2019; Jordan et al., 2018; Pronold et al., 2022) have
enabled the step beyond single areas to a multi-area network of vision related areas in macaque
cortex (Schmidt et al. 2018a,b; see also Izhikevich and Edelman 2008 for a pioneering study).

Due to the lack of available data in comparison with other species, only a single multi-scale
human brain network model has been built so far (Izhikevich and Edelman, 2008). Leveraging the
increasing availability of human data (e.g. Mohan et al., 2015; Minxha et al., 2020; Cano-Astorga
et al., 2021; Berg et al., 2021; Shapson-Coe et al., 2021), we build and simulate a model that en-
compasses the scales from the single-neuron level to the network of areas in one hemisphere of
the human brain. The model aggregates data across many scales, from electron microscopy data
for the density of synapses (DeFelipe et al., 2002; Cano-Astorga et al., 2021) to whole-brain DTI
and fMRI data, supplements it through predictive connectomics (e.g. Barbas and Rempel-Clower,
1997; Ercsey-Ravasz et al., 2013; Beul et al., 2017; Hilgetag et al., 2019; van Albada et al., 2022),
and yields activity data on all scales from single-neuron spiking activity to area-level correlation
patterns.

First, we describe the data integration into a mesoscale connectome and its validation against
features that were not explicitly built in. Then, we analyze the spiking activity of the model. Finally,
we compare the model’s activity to electrophysiological single-neuron spiking statistics and area-
level correlation patterns based on fMRI.
Results
Human Mesoscale Connectome
The model comprises all 34 areas of one hemisphere of human cortex in the Desikan-Killiany par-
cellation (Desikan et al., 2006). Each area is modeled by a 1 mm2 column and the columns are
connected through long-range projections (see Fig. 1).

We distinguish two classes of neurons, excitatory and inhibitory, and account for the layered
structure of cortex. We determine the number of neurons from their volume density, the layer
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Figure 2. Data and predictive connectomics. (A) Within-area connectivity blueprint (average number ofsynapses per pair of neurons). (B) Cortico-cortical connectivity based on DTI (number of streamlines); seeTable 1 for acronyms. (C) Probability for cortico-cortical synapses in a given layer to be established onneurons with cell body in a given layer, estimated from human neuron morphologies. (D) Relation of neurondensities of source area B and target area A with laminar source pattern (fraction of supragranular labeledneurons, SLN) in macaque. (E) Predicted source pattern (SLN) in human. (F) Layer- and population-resolvedmesoconnectome (number of synapses).
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Full name Acronym Full name Acronym
bankssts BSTS parsorbitalis PORB

caudalanteriorcingulate CAC parstriangularis PTRI
caudalmiddlefrontal CMF pericalcarine PCAL

cuneus CUN postcentral PSTS
entorhinal ENT posteriorcingulate PC
fusiform FUS precentral PREC

inferiorparietal INFP precuneus PCUN
inferiortemporal IT rostralanteriorcingulate RAC
isthmuscingulate ISTC rostralmiddlefrontal RMF
lateraloccipital LOCC superiorfrontal SF

lateralorbitofrontal LORB superiorparietal SP
lingual LIN superiortemporal ST

medialorbitofrontal MORB supramarginal SMAR
middletemporal MT frontalpole FP
parahippocampal PARH temporalpole TP

paracentral PARC transversetemporal TT
parsopercularis POPE insula INS

Table 1. All 34 areas in one hemisphere of the Desikan-Killiany parcellation with corresponding acronyms.

thickness, and the surface area of the column (Von Economo, 2009; cf. Sec. Neuron number).
The parameters of the neurons are derived from the Allen Cell Types Database (https://celltypes.
brain-map.org/; cf. Sec. Further Parameters of the Model). At this level of modeling, the connectivity
statistics between neurons in both classes and all layers are needed, which are impossible to obtain
with the current experimental techniques. Accordingly, we combine available data with predictive
connectomics to arrive at a human mesoconnectome at a layer- and population-resolved level.

The lack of data on the connectivity is the main reason for considering only two classes of neu-
rons. While a recent study defines 45 inhibitory and 24 excitatory neuron types in human (Hodge
et al., 2019), including this diversity would require 69 × 69 = 4761 connection probabilities per pair
of layers. This is not yet feasible because no connectivity data is available at such a fine granularity;
hence, we restrict the model to two classes of neurons, as done in earlier studies (Potjans and
Diesmann, 2014; Schmidt et al., 2018a,b).

To derive the mesoconnectome, we start from a synapse-centric perspective. We approximate
the volume density of synapses �synapse = 6.6 × 108 synapses∕mm3 (Cano-Astorga et al., 2021) as con-
stant across cortex (DeFelipe et al., 2002; Sherwood et al., 2020), which allows us to compute the
total number of synapses per layer based on their respective thickness (Von Economo, 2009). The
task that remains is to determine the pre- and post-synaptic neurons of these synapses.
Data Aggregation & Predictive Connectomics
In a first step, we separate the synapses into local (within-area) connections and long-range pro-
jections by extrapolating the value of 79% local connections based on tracing data in macaque
(Markov et al., 2011) to 86% in human using the power-law relation between local connections and
total number of neurons (Herculano-Houzel et al., 2010; cf. Sec. Fraction of Cortico-Cortical Con-
nections). For the local connections, we use the connection probabilities derived by Potjans and
Diesmann (2014) (Fig. 2A and Local Connectivity) as a blueprint. The relative connection probabili-
ties across source and target populations are kept constant, and they are only scaled by a constant
factor to achieve the desired total number of local synapses in each area. The cortico-cortical con-
nectivity on the area level is specified by DTI data from the Human Connectome Project (Goulas
et al., 2016, which is based on the data from Van Essen et al., 2013; Fig. 2B and Long-range pro-
jections). Synapses associated with long-range projections are assigned to postsynaptic neurons
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Figure 3. Connectivity validation. (A) Histogram of the number of synapses between pairs of populations(gray bars) and a log-normal fit (black line). (B) Logarithmic number of synapses between a pair of areasversus distance between these areas (gray symbols) and an exponential fit (black line). (C) Average outdegreeof a neuron in any given population to any postsynaptic area in either feedforward (FF) or feedback (FB)direction. (D) Average number of target areas of a neuron in any given population to any postsynaptic areawith average outdegree larger than 100 in either feedforward (FF), lateral (LAT), or feedback (FB) direction.

based on morphological reconstructions of human neurons (Mohan et al., 2015; Fig. 2C and Long-
range projections).

The laminar origin of long-range projections is based on predictive connectomics. Retrograde
tracing data in macaque shows that the laminar origin is systematically related to the cytoarchitec-
ture (Hilgetag et al., 2019; Fig. 2D). Assuming that the same relation also holds in human, we use
the fit in combination with the human cytoarchitecture to determine the laminar origin (Fig. 2E).
For the laminar target, we assume that the relation between laminar origin and target derived in
(Schmidt et al., 2018a) also holds in human.

Combining this data, we arrive at a human mesoconnectome which specifies the number of
synapses between excitatory and inhibitory neurons for all areas in the Desikan-Killiany parcella-
tion on a layer- and population-specific level (Fig. 2F).
Connectivity Validation
To validate the derived mesoconnectome, we compare it with anatomical features which were
observed in other species but which were not explicitly built in.

The density of connections between areas is highly heterogeneous, spanning five orders ofmag-
nitude, and approximately log-normally distributed in mouse (Gămănuţ et al., 2018), marmoset
(Theodoni et al., 2021), and macaque (Ercsey-Ravasz et al., 2013). Similarly, in our model the num-
ber of synapses between pairs of populations span five orders of magnitude (Fig. 3A) and they
are approximately log-normally distributed. Furthermore, the connection density decays exponen-
tially with distance in mouse (Horvát et al., 2016), marmoset (Theodoni et al., 2021), and macaque
(Ercsey-Ravasz et al., 2013). In our model, the number of synapses between pairs of areas also de-
cays exponentially (Fig. 3B) with a decay constant of 45.7mm. Thus, two salient features of tracing
data are captured by our model.

From anterograde tracing, it is known that feedback axons arborize more strongly than their
feedforward counterparts (Rockland, 2019). This suggests a larger outdegree of feedback projec-
tions compared to feedforward projections. In our model, the average outdegree from neurons in
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Figure 4. Simulated spiking activity. (A-C) Raster plots for three representative areas; subsampled to 2.5% ofthe excitatory (blue) and inhibitory (red) neurons. (D-F) Layer- and population-resolved distribution ofpopulation-averaged statistics across areas; boxes show quartiles, whiskers are within 1.5 times theinterquartile range, symbols show outliers outside of the whiskers. (D) Firing rate. (E) Coefficient of variationof the interspike interval of neurons with at least 10 spikes. (F) Correlation coefficient of a random subsampleof 2000 neurons.

a given population to a given target area varies systematically between feedforward and feedback
projections (Fig. 3C); here, feedforward and feedback were classified based on the predicted SLN
value (Schmidt et al., 2018a): SLN > 65% (feedforward), 35% ≤ SLN ≤ 65% (lateral), and SLN < 35%
(feedback). The average outdegree in our model in the feedforward direction is 349 compared to
580 in the feedback direction.

Finally, fully reconstructed axons (Winnubst et al., 2019) suggest that many projecting neurons
target multiple areas. To exclude weak connections, we restrict ourselves in the model to connec-
tions with an average outdegree larger than 100. Using again the predicted SLN value to separate
feedforward, lateral, and feedback connections, we obtain a broad distribution of the number of
target areas (Fig. 3D). In addition to the larger outdegree in the feedback direction, feedback pro-
jections also target more areas: on average 3.66 compared to 2.42 for lateral and 1.92 for feedback
projections.
Micro- and Macroscopic Dynamics
Simulated Spiking Activity
The simulated spiking activity of the model is asynchronous and irregular with low firing rates
across all areas (Fig. 4). There is a pronounced structure of the activity across populations, layers,
and areas (Fig. 4A-C). Due to the distributed neuron parameters, the activity is furthermore hetero-
geneous within the populations with some neurons displaying persistent activity and others being
inactive (Fig. 4A-C).

To quantify the spiking activity further, we consider population-averaged statistics (Fig. 4D-F).
The firing rate of the inhibitory neurons is higher than the firing rate of the excitatory neurons with
the highest activity in layer VI (Fig. 4D). The activity of some excitatory populations is very low, in
particular in layers II/III and V (Fig. 4B-D). In terms of the irregularity of the spike trains, quantified
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by the coefficient of variation CV of the interspike interval, all populations are in the regime of
CV ≈ 0.5 (Fig. 4E), i.e., in an intermediate regime between a Poisson process and a periodic process.
Lastly, the average pairwise correlation between the neurons is close to zero across all populations
(Fig. 4F).
Comparison with Experimental Activity Data
We compare the activity of the model with experimental activity data on two levels: on the neuron
level, we use the electrophysiological recordings byMinxha et al. (2020) fromhumanmedial frontal
cortex (cf. Sec. Spiking data); on the cortex level, we use resting state fMRI data from nineteen
subjects (cf. Sec. fMRI data).

The electrophysiological data was recorded in dorsal anterior cingulate cortex as well as pre-
supplementarymotor area; we compare the data with themodel activity in area caudalanteriorcin-
gulate (comparisonwith area superiorfrontal, which comprises pre-supplementarymotor area but
also more frontal regions, leads to qualitatively similar results). Since the recordings are not layer-
or population-specific, we combine the spike trains of all layers and populations in caudalanteri-
orcingulate for this analysis. For the firing rate, we consider only neurons with at least 0.5 spikes/s;
for the irregularity we consider only neurons with at least 10 spikes in the respective interval. Both
in ourmodel (Fig. 5A) and in the experimental data (Fig. 5D), the firing rates are broadly distributed.
However, in the experimental data the distribution is less broad with a maximal rate of approxi-
mately 50 spikes/s while the model activity reaches to up to 75 spikes/s. Similarly, the CV shows
clear differences between recordings and model activity: in the model, the CV is narrowly dis-
tributed around a sub-Poissonian average (Fig. 5B); in the recordings, the CV is broadly distributed
around a Poissonian average (Fig. 5E). Thus, the recorded spike trains aremore irregular than their
simulated counterparts.

To obtain a proxy of the BOLD signal from our model, we use the absolute value of the area-
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level synaptic currents (Schmidt et al., 2018b). We compute the functional connectivity using the
Pearson correlation coefficient of this BOLD proxy (simulation) or the BOLD signal (experiment).
To facilitate the comparison, we group the areas into different resting state networks following
Kabbara et al. (2017). While the experimental functional connectivity shows a clear structure with
increased correlations among the areas in the resting state networks (Fig. 5F), the simulated func-
tional connectivity shows only very weak correlation and almost no structure (Fig. 5C).
Discussion
We aggregated data across multiple modalities to construct a multi-scale spiking network model
of human cortex. This data encompasses, among others, electron microscopy, electrophysiology,
morphological reconstructions, and DTI. We filled gaps in the data using statistical regularities
found in other species, in particular to determine the laminar origin and target of cortico-cortical
connections.

Simulations of the model reveal asynchronous and irregular activity. The activity is heteroge-
neous across areas, layers, and populations as well as within populations. We compared themodel
activity against electrophysiological recordings in human medial frontal cortex and human resting
state fMRI. On both levels, we observed strong deviations. On the single-neuron level, the firing
rate distribution in the model is wider than the observed one while the irregularity is too narrow
and too low. On the network level, the activity is hardly correlated which is in stark contrast to the
salient structure in the fMRI data.

Addressing these discrepancies is the necessary next step. In a previous multi-scale model of
the vision-related areas inmacaque, increasing the synaptic weights of cortico-cortical connections
led to inter-area correlations in agreement with experimental data (Schmidt et al., 2018b). In the
current version of the model, however, strengthening the cortico-cortical connections leads to a
sudden transition to a high activity state (Schuecker et al., 2017). One way to address this prob-
lem are scaling factors of specific connections (cf. Sec. Further Parameters of the Model). Using
mean-field theory (cf. Sec. Mean-Field Theory), the scaling factors can be adjusted such that the
activity does not diverge into the high activity state (for a more principled approach see Schuecker
et al. 2017). But in addition to the high activity, the network synchronizes and displays almost per-
fectly coherent activity. Such oscillations are not captured in the current theory; thus, an approach
based on linear response theory akin to the work by Bos et al. (2016) might be necessary. Another
way to address this problem is a brute-force parameter search. While this is computationally very
expensive, it is not entirely prohibitive because the time required to simulate a second of activity
outside of the high activity state is on the order of a minute.
Materials & Methods
Mesoconnectome Construction
Neuron number
The number of neurons per layer follows frommultiplying their volume density �neuron with the layerthickness ℎlayer and the surface area Acolumn asNneuron = �neuronℎlayerAcolumn. We use the volume density
and the layer thickness provided in the seminal work of von Economo and Koskinas (Von Economo,
2009). This data distinguishes the layers into finer categories than the ones we use in our model.
Therefore, we sum the corresponding “layer thickness overall” and average the corresponding “cell
content” values weighted by the relative layer thickness.

Furthermore, the data is provided in the parcellation of von Economo and Koskinas; we use
the mapping to the Desikan-Killiany parcellation constructed by Goulas et al. (2016, Table 1). In
the given mapping, one or more von Economo and Koskinas areas are assigned to each Desikan-
Killiany area. For the layer thicknesses, we take the average across the corresponding areas in
the parcellation by von Economo and Koskinas (using that the mapping was constructed based on
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cytoarchitectonic similarity, such that the average is across architectonically similar areas); for the
volume densities, we weight the average by the relative thickness of the layers.

To separate the neurons in a given layer into inhibitory and excitatory neurons, we use the
layer-resolved relative size of the two populations from Shapson-Coe et al. (2021, Supplementary
Figure 5); quantitative values were extracted using WebPlotDigitizer (Rohatgi, 2021) and the values
for layer II and III were averaged. The population sizes follow bymultiplying the relative population
size with the total number of neurons in the layer determined above.
Fraction of Cortico-Cortical Connections
We separate theN long−range

synapse cortico-cortical synapses from theN local
synapse = N

total
synapse −N

long−range
synapse synapses

coming from within the area or from subcortical regions (see Data Aggregation & Predictive Con-
nectomics). To determine the fraction of cortico-cortical synapses, we use the scaling rule by
Herculano-Houzel et al. (2010)

N long−range
neuron

N total
neuron

∝ 1
(N total

neuron)0.16
; (1)

i.e., the relative number of neurons connected through the white matter decreases with increas-
ing total number of neurons in the gray matterN total

neuron. We determine the proportionality constant
using the value N long−range

neuron ∕N total
neuron = 0.21 from tracing data in macaque (Markov et al., 2011) in com-

bination with Ngray matter
neuron = 1.4 × 109 gray matter neurons in macaque (Collins et al., 2010). With the

number of gray matter neurons in human,Ngray matter
neuron = 16×109 (Herculano-Houzel, 2009), we arrive

at the estimateN long−range
neuron ∕N total

neuron = 0.14 orN local
neuron∕N

total
neuron = 0.86. Finally, we assume that the fraction

of neurons connected through the white matter equals the fraction of cortico-cortical synapses.
Local Connectivity
The N local

synapse local synapses need a further distinction: N internal
synapse synapses where the presynaptic neu-ron is part of the simulated column andN external

synapse synapses where the presynaptic neuron is outsideof the simulated column, i.e., in the remainder of the area or in a subcortical region. To split these
two categories, we use the spatial connection probability p(x1 |x2) between a neuron located at
x1 and another neuron at x2, which we assume to be a spatially homogeneous three-dimensional
exponential distribution p(x1 |x2) ∝ exp(−|x1 − x2|∕�conn) with decay constant �conn = 160�m (Packer
and Yuste, 2011; Perin et al., 2011). From p(x1,x2) = p(x1 |x2)p(x2) where p(x2) is assumed to be
constant, we obtain the average connection probability Pinternal within the column as

Pinternal ∝ ∫column dx1 ∫column dx2 exp(−|x1 − x2|∕�conn) (2)
where the proportionality factor is the normalization constant of p(x1,x2). We calculate the aver-
age connection probability assuming cylindrical columns. In cylindrical coordinates, using dx =
rdrd�dz and ∫ a

0 dx1 ∫ a
0 dx2 f (|x2 − x1|) = 2 ∫ a

0 dy (a − y)f (|y|) simplifies this integral to
Pinternal ∝ 4∫

rcolumn

0
dr1 ∫

rcolumn

0
dr2 ∫

2�

0
d� ∫

ℎ

0
dz r1r2(2� − �)(ℎ − z) exp(−d(r1, r2, �, z)∕�conn) (3)

with d(r1, r2, �, z) =
√
r21 − 2r1r2 cos� + r

2
2 + z2, the radius of the column rcolumn, and the total height

of the column ℎ. For the probability Pexternal that the postsynaptic neuron is in the column but
the presynaptic neuron outside of it, the domain outside of the column has to be integrated:
∫column dx1 → ∫¬column dx1. Approximating the entire area as a cylinder, this leads to the replacement
∫ rcolumn
0 dr1 → ∫ rarea

rcolumn
dr1 where rarea is the radius of the larger cylinder, i.e.,

Pexternal ∝ 4∫
rarea

rcolumn

dr1 ∫
rcolumn

0
dr2 ∫

2�

0
d� ∫

ℎ

0
dz r1r2(2� − �)(ℎ − z) exp(−d(r1, r2, �, z)∕�conn). (4)

The remaining integrals are solved numerically using the adaptive multidimensional quadrature
implemented in SciPy (Virtanen et al., 2020). Pinternal and Pexternal are used to determine the number
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of synapses with neurons within and outside of the column, respectively:
N internal
synapse =

Pinternal
Pinternal + Pexternal

N local
synapse, (5)

N external
synapse =

Pexternal
Pinternal + Pexternal

N local
synapse. (6)

Note that although we keep rcolumn the same for all areas, both Pinternal and Pexternal are area-specificbecause their thickness ℎ and the neuron densities vary.
For the local connectivity within the column, comprising N internal

synapse synapses, we use the model
of Potjans and Diesmann (2014) as a blueprint. More precisely, we use the average number of
synapses pPDB→A between a neuron in source population B and a neuron in target population A. We
combine these average numbers of synapses with the number of neuronsNB

neuron,NA
neuron in the pre-and postsynaptic population:

NB→A
synapse =

NB
neuronp

PD
B→AN

A
neuron∑

A,BNB
neuronp

PD
B→ANA

neuron
N internal
synapse . (7)

Eq. (7) keeps the average number of synapses per pair of neurons equal to the respective value in
Potjans and Diesmann (2014) by construction.

TheN external
synapse synapses from outside the column are also distributed based on Potjans and Dies-

mann (2014). Here, we use the indegrees KPD
ext→A and the number of neurons in the postsynaptic

population NA
neuron:

N ext→A
synapse =

KPD
ext→AN

A
neuron∑

AK
PD
ext→ANA

neuron
N external
synapse . (8)

Both in Eq. (7) and Eq. (8), we round the final result to obtain an integer number of synapses.
Long-range projections
For theN long−range

synapse synapses from other cortical areas, we assume that the presynaptic neurons are
inside the simulated column in the respective presynaptic area. Thus, we do not distinguish be-
tween synapses with simulated and non-simulated presynaptic neurons—all presynaptic neurons
of long-range projections are simulated.

We define the area-level connectivity according to processed DTI data from Goulas et al. (2016)
which is based on data from the Human Connectome Project (Van Essen et al., 2013). For a given
target area X, we distribute the synapses among the source areas based on the relative number
of streamlines NoSY→X in the DTI data,

NY→X
synapse =

NoSY→X∑
Z NoSZ→X

N long−range
synapse . (9)

Again, we round the resulting value.
A comprehensive dataset on the layer specificity of the presynaptic neurons based on retro-

grade tracing is available for macaque (Markov et al., 2014b,a). Not only in this species but also
in cat, the layer specificity, i.e., the fraction of supragranular labeled neurons SLN, is systemati-
cally related to the cytoarchitecture (van Albada et al., 2022). For our human model, we assume
the same quantitative relationship as in macaque. Fitting a beta-binomial model with a probit link
function to the macaque data yields (Schmidt et al., 2018a)

SLN(B → A) = Φ
(
a0 + a1 log(�Aneuron∕�

B
neuron)

) (10)
where Φ(x) = 1

2

[
1 + erf

(
x∕

√
2
)] denotes the cumulative distribution function of the standard nor-

mal distribution and the fitted parameters are a0 = −0.152 and a1 = −1.534. We use the human
neuron densities in Eq. (10) to estimate the laminar origin in human. The SLN value allows deter-
mining whether the origin is in layer 2∕3 or not. Excluding layer 4, which does not form long-range
projections (Markov et al., 2014b), the two infragranular layers 5 and 6 still need to be distinguished.
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To this end, we simply use the relative size of the two populations to distribute the remaining
synapses.

On the target side, anterograde tracing can specify the layer specificity. However, there are no
comprehensive datasets of anterograde tracing in non-human primates available to date. Hence,
we use the collected data from the CoCoMac database (Stephan et al., 2001) which aggregates
data across many tracing studies. Relating the target patterns from anterograde tracing to the
SLN value reveals three categories of target patterns (Schmidt et al., 2018a):

SLN > 65% ∶[4]

35% ≤ SLN ≤ 65% ∶[1, 2∕3, 4, 5, 6]
SLN < 35% ∶[1, 2∕3, 5, 6]

where layer 4 is replaced by 2∕3 in the first case for agranular target areas (Beul and Hilgetag,
2015). Using the SLN value to distinguish feedforward (SLN > 65%), lateral (35% ≤ SLN ≤ 65%),
and feedback (SLN < 35%) connections, this implies that feedforward connections target layer
4, feedback connections avoid layer 4, and lateral connections show no distinct pattern. For the
quantitative distribution of the synapses onto the layers included in the respective target pattern,
we use the relative thickness of the layer in relation to all layers of the target pattern.

Thus far, we determined the location of the synapse in the target layer. Next, we decidewhether
the postsynaptic neuron of a synapse in a given layer is excitatory or inhibitory based on the anal-
ysis of the data by Binzegger et al. (2004) in Schmidt et al. (2018a, Table S11). To this end, we sum
the target probabilities for postsynaptic neurons across all layers separately for excitatory and in-
hibitory neurons. This yields the probability for a synapse in a given layer to have an excitatory
or inhibitory postsynaptic neuron in any layer. However, we take one exception into account: For
feedback connections (SLN < 35%), we fix the fraction of excitatory target cells to 93% (Schmidt
et al., 2018a) because feedback connections preferentially target excitatory neurons (Johnson and
Burkhalter, 1996; Anderson et al., 2011).

To finally determine the postsynaptic neuron, we assume that all inhibitory postsynaptic neu-
rons are in the same layer as the synapse. For the excitatory neurons, we take the dendritic
morphology into account. Using morphological reconstructions of human pyramidal cells in tem-
poral cortex (Mohan et al., 2015), we calculate the layer-resolved length of dendrites for neu-
rons with the soma in a given layer. Assuming a constant density of synapses along the den-
drites, the ratio of the length lA,B of dendrites in layer A ∈ [1, 2∕3, 4, 5, 6] belonging to a neuron
with soma in layer B ∈ [2∕3, 4, 5, 6] to the total length of dendrites in this layer, ∑B lA,B, deter-mines the probability that the postsynaptic cell is in layer B given that the synapse is in layer A:
P (soma inB | synapse inA) = lA,B∕

∑
B lA,B.Ultimately, we only need the location of the postsynaptic neuron but not the location of the

synapse. Thus, we multiply P (soma inB | synapse inA) with the distribution of the synapses across
the layers and marginalize the synapse location.
Further Parameters of the Model
Neuron parameters
Weuse the leaky integrate-and-fire (LIF) neuronmodel with exponential postsynaptic currents (Ger-
stner et al., 2014) for all neurons. To determine the parameter values, we analyzed the LIF models
from the Allen Cell Types Database (https://celltypes.brain-map.org/; Teeter et al., 2018; Berg et al.,
2021) which were fitted to human neurons. For both excitatory and inhibitory cells, we fix the leak
and reset potential to VL = Vreset = −70mV. For the threshold potential Vth, the membrane time
constant �m, and the membrane capacitance Cm, we fitted a log-normal distribution using maxi-
mum likelihood estimation to the distribution of the respective parameter for all cells in which
the LIF model had an explained variance above 0.75 to ensure a good fit of the LIF model. For
convenience, we parameterize the log-normal distribution using the mean and the coefficient of
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variation CV. The resulting mean threshold potential is Vth = −45mV for both excitatory and in-
hibitory cells with CV = 0.21 and CV = 0.22 for excitatory and inhibitory cells, respectively. The
resulting mean capacitance is Cm = 220 pF and Cm = 100 pF with CV = 0.22 and CV = 0.34 for excita-tory and inhibitory cells, respectively. To account for the high conductance state in vivo (Destexhe
et al., 2003), we lower the membrane time constant to �m = 10ms on average with CV = 0.55 and
CV = 0.43 for excitatory and inhibitory cells, respectively. We do not distribute the synaptic time
constants, which we fix to �s = 2ms for excitatory and �s = 5ms for inhibitory input (Fourcaud andBrunel, 2002), and the absolute refractory period of tref = 2ms.
Synapse parameters
We use static synapses with a transmission probability of 100%. Excitatory postsynaptic potentials
follow a truncated normal distribution with average 0.1mV and relative standard deviation of 10%.
The inhibitory postsynaptic potentials also follow a truncated normal distribution with a factor
g = 4 larger absolute value of the mean and standard deviation. Excitatory (inhibitory) weights are
truncated below (above) zero; values outside of the allowed range are redrawn.

We introduce several scaling factors that affect the postsynaptic potentials: First, the synaptic
weights of the synapses within a column from layer IV excitatory neurons to layer II/III excitatory
neurons are increased twofold in agreement with the blueprint (Potjans and Diesmann, 2014). Sec-
ond, we introduce two scaling factors for the synapses within a column: from layer 5 excitatory
neurons to all inhibitory neurons and from all excitatory neurons to all inhibitory neurons. Both
scaling factors stabilize the columnwith respect to cortico-cortical input. For all simulations shown,
the first scaling factor is set to 1.8 and the second to 1.2; the scaling factors are multiplied if both
apply.
Delays
Within a column, the average delay is 1.5ms for excitatory and 0.75ms for inhibitory synapses. For
the cortico-cortical synapses, we assume a conduction velocity of 3.5m∕s (Girard et al., 2001). Divid-
ing the fiber length between two areas, obtained through tractography (Goulas et al., 2016), by the
conduction velocity, we get the average delay between the two areas. All delays follow a truncated
log-normal distribution with a relative standard deviation of 50%. Delays are truncated below the
resolution of the simulation; values outside of the allowed range are redrawn.
External input
We determined the number of synapses from non-simulated presynaptic neurons in Eq. (8). The
postsynaptic potentials follow a truncated normal distribution with average wext = 0.1mV and rela-
tive standard deviation of 10%. We keep the mean input, measured relative to rheobase, fixed at
�ext = 1.1 and determine the rate of the driving Poisson processes by

�Aext =
Vth − VL
�mwextKext

A
�ext (11)

with Kext
A = N ext→A

synapse∕N
A
neuron. We further introduce two scaling factors for the postsynaptic potentials

arriving at excitatory neurons in layer 5 and 6, respectively. For all simulations shown, the first
scaling factor is set to 1.05 and the second to 1.15.
Activity Data
Spiking data
Minxha et al. (2020) recorded from thirteen adult epilepsy patients under evaluation for surgical
treatment using depth electrodes in medial frontal cortex. In total, they recorded 767 neurons
within 320 trials and extracted spikes using a semi-automated spike sorting algorithm. For our
analysis, we disregard task related activity and use only the two seconds of activity which were
recorded before stimulus onset. The data is publicly available via OSF at http://doi.org/10.17605/
OSF.IO/U3KCP.
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fMRI data
Participants
Nineteen participants (7 female, age range = 21–33 years, mean age = 25 years) with normal or
corrected-to-normal visual acuity took part in this study. All participants providedwritten informed
consent after receiving full information about experimental procedures and were compensated
for participation either throughmonetary reward or course credit. All procedures were conducted
with approval from the local Ethical Committee of the Faculty of Psychology and Neuroscience at
Maastricht University.
Magnetic resonance imaging
Anatomical and functional images were acquired at Maastricht Brain Imaging Centre (Maastricht
University) on a whole-bodyMagnetom 7T research scanner (Siemens Healthineers, Erlangen, Ger-
many) using a 32-channel head-coil (Nova Medical Inc.; Wilmington, MA, USA). Anatomical data
were collected prior to functional data with an MP2RAGE (Marques et al., 2010) imaging sequence
[240 slices, matrix = 320 × 320, voxel size = 0.65 × 0.65 × 0.65 mm3, first inversion time (TI1) = 900ms,
second inversion time (TI2) = 2750ms, echo time (TE) = 2.51ms, repetition time (TR) = 5000ms, first
nominal flip angle = 5°, and second nominal flip angle = 3°, GRAPPA = 2]. Functional images were ac-
quired using a gradient-echo echo-planar (Moeller et al., 2010) imaging sequence (84 slices, matrix
= 186×186, voxel size = 1, 6×1.6×1.6 mm3, TE = 22ms, TR = 1500ms, nominal flip angle = 63°, GRAPPA
= 2, multi-band factor = 4). In addition, after the first functional run, they recorded five functional
volumes with opposed phase encoding directions to correct for EPI distortions that occur at higher
field strengths (Andersson et al., 2003).

Participants underwent five functional runs comprising of a resting-state measurement, three
individual task measurements and a task-switching paradigm wherein participants repeatedly per-
formed each of the three tasks. With the exception of the task-switching run, which lasted 9.5min,
all functional runs lasted 15min. Since task-related runs were not included in the present study,
they will not be discussed further. However, it is noteworthy that resting-state runs always pre-
ceded task-related runs to prevent carry-over effects (Grigg and Grady, 2010). Participants were
instructed to close their eyes during resting-state runs and otherwise to let their mind wander
freely.
Processing of (f)MRI data
Anatomical images were downsampled to 0.8 × 0.8 × 0.8 mm3 and subsequently automatically pro-
cessed with the longitudinal stream in FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) including
probabilistic atlas-based cortical parcellation according to the Desikan-Killiany (DK) atlas (Desikan
et al., 2006). Initial preprocessing of functional data was performed in BrainVoyager 20 (version
20.0; Brain Innovation; Maastricht, The Netherlands) and included slice scan time correction and
(rigid body) motion correction wherein all functional runs were aligned to the first volume of the
first functional run. EPI distortions were then corrected using the COPE (“Correction based on
Opposite Phase Encoding”) plugin of BrainVoyager that implements a method similar to that de-
scribed in Andersson et al. (2003) and the ‘topup’ tool implemented in FSL (Smith et al., 2004). The
pairs of reversed phase encoding images recorded in the beginning of the scanning session were
used to estimate the susceptibility-induced off-resonance field and correct the distortions in the re-
maining functional runs. This was followed by wavelet despiking (Patel and Bullmore, 2016) using
the BrainWavelet Toolbox (brainwavelet.org) for MATLAB (2019a, TheMathWorks,Natick, MA). Subse-
quently, high-pass filtering was performed in BrainVoyager with a frequency cutoff of 0.01Hz and
to register functional images to participants’ anatomical images. Using MATLAB, functional data
were then cleaned further by regressing out a global noise signal given by the first five principal
components of signals observed within the cerebrospinal fluid of the ventricles (Behzadi et al.,
2007). Finally, voxels were uniquely assigned to one of 68 cortical regions of interest (ROIs) and an
average blood-oxygen-level-dependent (BOLD) signal for each ROI was obtained as the mean of
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Figure 6. Mean-field theory. (A) Firing rates of all populations across the pseudo-timesteps used to find aself-consistent solution. (B) Comparison with rates predicted by mean-field theory to empirical rates from asimulation.

the time-series of its constituent voxels.
Mean-Field Theory
While developing the model, it was often beneficial to have a prediction of the activity without per-
forming a computationally demanding full-scale simulation. To this end, we employed the mean-
field theory developed in Amit and Brunel (1997) in combination with the extension to exponential
post-synaptic currents andmultiple synaptic time constants derived in Fourcaud and Brunel (2002).
Within this theory, the input to a neuron in populationA is approximated as a Gaussian white noise
with mean �A and noise intensity �2A. The main assumptions of this theory are that the inputs are
uncorrelated, that the temporal structure of the input can be neglected, that a Gaussian approx-
imation of its statistics is valid, that the delays can be neglected, and that the variability of the
neuron parameters and synaptic weights can be neglected.

Despite the simplifying assumptions, the theory provides a reliable prediction of the average
firing rates if the network is in an asynchronous irregular state (Fig. 6). The remaining deviations are
likely a consequence of the neglected variabilities, in particular the distributed neuron parameters.
Thus, the theory allows for rapid prototyping without the need for high performance computing
resources.
Code & Workflow
The entire workflow of the model, from data preprocessing through the simulation to the final
analysis, relies on the Python programming language (Python Software Foundation, 2008) version
3.6.5 in combination with NumPy (Harris et al., 2020) version 1.14.3, SciPy (Virtanen et al., 2020)
version 1.1.0, pandas (Wes McKinney, 2010) version 0.23.4, Matplotlib (Hunter, 2007) version 2.2.2,
and seaborn (Waskom, 2021) version 0.9.0. All simulations were performed using the NEST sim-
ulator (Gewaltig and Diesmann, 2007) version 2.20.2 (Fardet et al., 2021) on the JURECA-DC su-
percomputer. The workflow is structured using snakemake (Köster and Rahmann, 2012). For the
mean-field based analysis, we used the NNMT toolbox (Layer et al., 2022).
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9
D I S C U S S I O N

9.1 summary & outlook

In this thesis, we investigated neural network models of varying com-
plexity. In all cases, a central goal was to push analytical approaches
as far as possible to capture the dynamics and function of the models.
In the remainder of this chapter, the results presented in the main part
are discussed one after the other before the individual results are then
woven into a coherent picture.

9.1.1 Chapter 4

Summary

In Chapter 4, we investigated Bayesian supervised learning in very
wide feedforward and very large recurrent networks (DNNs and
RNNs). Using a field-theoretical approach similar to DMFT (see Sec-
tion 3.4), we derived iterative equations for the kernel of both DNN
and RNN in a unified manner. From a DMFT perspective, the calcula-
tion corresponds to a M-replica calculation, where M denotes the size
of the dataset, with each replicon having a different initial condition
determined by the input datum.

We found that the kernels of the two architectures differ: for DNNs,
there are no correlations between the layers due to the independent
priors of the weights; for RNNs, there are correlations between the
time steps due to weight sharing (see also Mozeika, Li, and Saad 2020).
Curiously, there is no difference between the kernels in the within-
layer or equal-time statistics. This is due to the peculiar structure
structure of the iterative equations for the kernel—the within-layer
or equal-time statistics can be obtained without the across-layer or
across-time statistics. Thus, if the output depends only on the last
layer or time step, both architectures have an equivalent performance
in the infinite-size limit.

We verified numerically that the empirical distributions approach
those predicted by the theory using Maximum Mean Discrepancy. For
sufficiently large networks of size O(1,000), the correlations predicted
by the theory match the empirical ones very well. In particular, both
the equal within-layer and equal-time statistics as well as the different
across-layer and across-time statistics are well captured.
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Outlook

The field-theoretical formulation of the problem paves the way to
finite-size corrections (e.g., Zinn-Justin 1996; Moshe and Zinn-Justin
2003; Kleinert 2009). For feedforward networks, there is already a lot
of effort devoted to this line of research (e.g., Yaida 2020; Dyer and
Gur-Ari 2020; Antognini 2019; Huang and Yau 2020; Halverson, Maiti,
and Stoner 2021; Naveh et al. 2021; Roberts, Yaida, and Hanin 2022). In
contrast, there is less work on recurrent networks (e.g., Alemohammad
et al. 2021; Grosvenor and Jefferson 2022). Investigating the finite-size
corrections seems particularly important to further understand the
differences between the two architectures.

In terms of the models, our work focused on the most simple feedfor-
ward and recurrent networks. The work by Yang (2019) already yields
the leading-order kernel for a wide class of models, thus it should
be possible to extend our framework. One possible direction is to
consider residual networks (He et al. 2016) in which skip connections
lead to non-vanishing correlations between layers in feedforward net-
works. Furthermore, taking the continuum limit, a residual networks
becomes a neural ODE (Chen, Rubanova, et al. 2018). Since DMFT
originated from continuous-time dynamical systems, this extension
seems natural in the context of the field-theoretical approach.

In the long run it will be interesting to see how much insight
can be gained by starting from the infinite-size limit and computing
corrections (see the textbook on this approach by Roberts, Yaida, and
Hanin 2022). Furthermore, it will be valuable to deeply understand the
differences between the Bayesian framework used here and gradient-
based learning.

9.1.2 Chapter 5

Summary

In Chapter 5 we considered block-structured, random networks of rate
neurons. We calculated the distribution of the empirical measure of
the trajectories across the ensemble of random networks; more pre-
cisely its leading-order exponential contribution. This leading-order
contribution—the rate function—takes the form of a Kullback-Leibler
divergence. The exponential form implies self-averaging: the distri-
bution of the empirical measure is sharply peaked at the maximum
with deviations suppressed by 1/N. Thus, for any given realization of
the random network, one obtains an empirical measure which is close
to the most likely one. Consequently, by the contraction principle, all
network-averaged observables attain a value close to the one described
by the most likely empirical measure.

While the rate function is the main theoretical result of this chapter,
it is but the starting point for the resulting applications. In the first
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application, we used the rate function to investigate the fluctuations
around the most likely value, i.e., beyond-mean-field fluctuations.
Concretely, we considered the equal-time, network-averaged variance
of the single-unit activity; this is an order parameter indicating the
transition to a chaotic state (Sompolinsky, Crisanti, and Sommers 1988).
For slow single-neuron dynamics close to but above the transition
to chaos, we obtained an analytical result for the order parameter
fluctuations which matches the empirical result from simulations
well. This analytical result led us to a hitherto unknown network
state with two stable mean-field solutions and finite-size-fluctuation-
driven transitions between these solutions. To obtain this state, a
simple modification of the nonlinear interaction is sufficient: replacing
the sigmoidal nonlinearity, which has a negative third-order Taylor
coefficient, with an expansive nonlinearity with a positive third-order
Taylor coefficient.

In a second application, we used the rate function to infer the net-
work statistics from trajectories. From the point of view of inference,
the rate function is the (scaled, negative) log-likelihood. Setting the
derivative of the rate function to zero, we obtained a necessary con-
dition which needs to hold at the maximum of the likelihood. This
condition involves network-averaged power spectra and is linear in
the parameters. The spectra are straightforward to obtain from the
trajectories, hence the parameters can be extracted using non-negative
least squares. This allowed us to successfully infer the parameters
both for single- and multi-population networks. We complemented
the inference procedure with two methods for model comparison,
e.g., to determine the nonlinearity. Furthermore, we used the inferred
parameters to predict the future of the single-neuron trajectory.

Outlook

The rate function turned out to be useful for the aforementioned appli-
cations. However, these applications do not make full use of our result:
the rate function also governs the tails of the distribution far away
from the maximum (see Section 3.1). An interesting application where
the tails of the distribution, i.e., large fluctuations, become relevant
might be the (finite-size-)fluctuation-induced transition between two
stable mean-field solutions—only very rare large fluctuations drive
the system out of one stable mean-field solution into the other one. To
determine the rate of these transitions, for example, the rate function
seems to be a natural starting point.

More generally, it might be interesting to extend the rate function
beyond the class of models that we considered to arbitrary input-
output relationships akin to the model-independent DMFT by Keup
et al. (2021). This would allow one to apply the parameter inference
procedure also to more general models, e.g., spiking networks.
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From a conceptual point of view, we believe that our work advanced
the foundations of DMFT in two ways: First, our results show that
DMFT can be used to describe any network-averaged observable.
Second, we created a link between the field theoretical approach used
in the physics community (Crisanti and Sompolinsky 2018; Helias
and Dahmen 2020) and the large deviation approach used in the
mathematical community (Arous and Guionnet 1995; Guionnet 1997;
Faugeras and MacLaurin 2015; Faugeras, MacLaurin, and Tanré 2019).
We hope that these links lead to further cross-fertilization between the
disciplines.

9.1.3 Chapter 6

Summary

In Chapter 6 we linked neuron- and network-parameters to the auto-
correlation time of the emerging dynamics in block-structured, spiking
networks using DMFT. We focused on two different spiking neuron
models: generalized linear model neurons (GLMs) and leaky integrate-
and-fire neurons (LIFs). For GLMs, we solved the colored noise prob-
lem analytically for exponential and error function nonlinearities. For
LIFs, we first considered the voltage dynamics in the absence of the
fire-and-reset mechanism and calculated the non-stationary upcross-
ing probability as well as the stationary correlation function between
upcrossings. Together with a renewal approximation and an approxi-
mation of the hazard function proposed by Stratonovich (1967), this
allowed us to obtain the output statistics of LIF neurons with expo-
nential synapses. A fixed-point iteration using the analytical solution
for GLMs or the approximate solution for LIFs yielded self-consistent
correlation functions which were successfully validated with simula-
tions. The comparison with simulations furthermore demonstrated
that it is necessary to distinguish population-averaged single-neuron
statistics from the statistics of the population activity—with our theory
capturing only the former.

The second-order statistics contain temporal correlations as well
as static contributions, for example caused by the heterogeneity of
indegrees across neurons. Both are captured by our theory. An example
for a static variability is the distribution of firing rates which matches
the analytical prediction for GLMs well (for LIFs, we only determined
the variance of the firing rates, not their full distribution). Furthermore,
our theory accounts for the effect of temporally correlated external
input. The external timescale affects the timescale of the dynamics
in a straightforward manner: in the limit of very strong external
input, the external timescale determines the timescale of the dynamics
if it is above the maximal timescale of the units. If it is below the
maximal timescale of the units the latter determines the timescale
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of the dynamics. Decreasing the strength of the external input, the
timescale of the dynamics approaches the autonomous case.

For balanced networks of excitatory and inhibitory neurons, we
leveraged the theory to perform parameter scans of the autocorre-
lation time. Within the investigated parameter range we found a
maximum of a two- to three-fold increase of the autocorrelation com-
pared to the membrane time constant. The mechanisms leading to the
increased autocorrelation time differ between the two neuron models:
for GLM neurons, temporal correlations in the voltage dynamics lead
to bursts of spikes; for LIF neurons, the increased autocorrelation time
corresponds to an increased effective refractory period (a dip in the
autocorrelation function). In a network model of a cortical column
containing four excitatory and four inhibitory populations, the theory
still captured the bulk of the spectrum but not a peak in the spectrum
due to a fast, population-level oscillation.

Outlook

Capturing such an interplay between population activity, e.g., oscilla-
tions, and single-neuron statistics is an interesting avenue for future
work. On the technical level, this requires corrections beyond DMFT
because the neurons factorize in DMFT.

The timescales uncovered with our theory are still small compared
to the timescales observed experimentally (Murray et al. 2014). A
simple way to generate longer timescales would be to introduce slow
processes on the neuron level, e.g., spike frequency adaptation. But the
more interesting question is whether the timescales can be generated
on the network level. It is well-known that increasing the synaptic
weights yields slow fluctuations (Ostojic 2014; Wieland et al. 2015).
However, the increased synaptic weights lead to extreme fluctuations
of the membrane potential (Kriener et al. 2014). A potential network
mechanism is a clustered connectivity of either the excitatory neurons
(Litwin-Kumar and Doiron 2012) or of both excitatory and inhibitory
neurons (Rost, Deger, and Nawrot 2018) which leads to slow fluctua-
tions in the cluster activation. Another possibility might be to embed a
feedforward structure into the network (Ganguli, Huh, and Sompolin-
sky 2008; Murphy and Miller 2009; Hennequin, Vogels, and Gerstner
2012).

The autocorrelation time is convenient because it is a single number.
Its numerical value, however, depends on many factors which are
hard to disentangle in experimental data. For example: Is the activity
indeed stationary? Is the bias due to finite recording time (Grigera
2020; Zeraati, Engel, and Levina 2020) relevant? How does binning
the spike train affect the autocorrelation time? Conversely, these diffi-
culties imply that it is not straightforward to compare the theoretical
autocorrelation time with experimental data. Thus, it is important
to investigate the influence of these factors on the estimates of the
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autocorrelation time in order to tie a strong link between theory and
experiment.

9.1.4 Chapter 7

Summary

In Chapter 7 we analyzed the distribution of neuron densities within
and across (cytoarchitectonically defined) cortical areas in several
mammalian species. Neither a hypothesis test nor a model compar-
ison excluded the possibility that neuron densities are log-normally
distributed in the majority of cases.

We proposed a simple model of noisy cell division to account for
the log-normal distribution within areas: the rate of cell division λ is
a Gaussian process such that the dynamical equation for the density
ρ̇ = λρ is a stochastic differential equation leading to a log-normally
distributed solution ρ(t).

Outlook

Thus far, our model only accounts for the log-normal distribution
within areas. A salient difference between the areas is a broad distribu-
tion of development times (Rakic 2002; Cadwell et al. 2019). It would
be interesting to extend the model in a way where distributed devel-
opment times lead to a log-normal distribution of the mean density
across areas.

Our finding raises the question whether the long-tailed log-normal
distribution of neuron densities is simply a byproduct of the inherent
noise in biological processes or whether it serves a purpose, e.g., to
facilitate computation (Duarte and Morrison 2019; Perez-Nieves et
al. 2021). More generally, heterogeneity is ubiquitous in the brain
(Buzsáki and Mizuseki 2014)—an intriguing hypothesis, although it
is hard to test, is that this heterogeneity mirrors the heterogeneous
environment that we live in.

9.1.5 Chapter 8

Summary

In Chapter 8 we built a multi-scale, data-based, spiking model of
human cortex. The model is built on, among other modalities, cytoar-
chitectonic data, neuron morphologies, electrophysiology, and DTI.
Gaps in the data were filled using statistical regularities found in
other species. We validated the resulting network structure against
features from tracing data, in particular the log-normal distribution
of connection densities, the exponential decay of connection density
with distance, and the differential arborization of feedforward and
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feedback axons. To determine the neuron parameters we analyzed
LIF models from the Allen Cell Types database which were fitted to
human electrophysiology data.

Simulations showed that the model produces asynchronous and
irregular activity with low firing rates and multiple levels of hetero-
geneity in the activity; from distributed firing rates of neurons inside
individual population to systematic differences between the areas.
However, a comparison of the model’s activity with electrophysiolog-
ical recordings and fMRI data clearly showed that the reproduction
is not satisfactory on either level. On the single neuron level, the dis-
tribution of firing rates is too broad while the irregularity is too low;
on the area level, the correlations between the areas are vanishingly
small.

Outlook

The prerequisite for further steps is a good agreement of the model’s
activity with the experimental data on both levels, spike trains and
functional connectivity. A major obstacle is that specific alterations of
the model, e.g., increasing the cortico-cortical connection strength or
the external input beyond a certain point, lead to a highly synchronous
state with firing rates far outside of the biophysiologically plausible
regime. Overcoming this obstacle is the main focus of the ongoing
work on the model.

Why bother? One possible answer is that in silico, experiments can
be performed which are impossible in vivo and in vitro. For example,
it is know that stimulating a single neuron can alter behavior (Brecht
et al. 2004; Houweling and Brecht 2008). In vivo, it is not possible to
investigate how the single-neuron stimulation propagates through the
network because the propagation critically depends on the ongoing
activity of the network which is not possible to duplicate (at least for
the foreseeable future). In silico, in contrast, this is a straightforward
exercise: one simply has to fix the random seed.

9.2 synthesis

Neuroscience exhibits a fascinating collection of paradigms (Parker
2018). While paradigm shifts are often the focus of attention, it is what
Kuhn (2012) calls “normal science”—fleshing out all the implications
entailed in the current paradigm—that lies at the heart of scientific
progress. From such a Kuhnian perspective, this thesis can be seen as
normal science under a random network paradigm.

Random networks are not a broadly accepted paradigm despite
their frequent use in theoretical studies. There are two immediate
objections against studying random networks: cortex is not a random
network (e.g., Song et al. 2005) and random networks do not support
a function. However, a random network might be a good first-order
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approximation for cortical networks such that non-random features
can subsequently be studied. This is the overarching theme of Chapter
6 and Chapter 8. In Chapter 6 we investigated the emergent timescale
of the dynamics and developed a corresponding theory. This exercise
revealed that non-random features are necessary in order to achieve
the longer timescales of the dynamics observed in vivo. In future
investigations, the theory will ideally prove valuable in determining
which non-random features that lead to longer timescales are the
most interesting ones. In Chapter 8 we built a multi-scale, data-based,
block-structured random network model of human cortex with the
goal of reproducing low-order activity statistics across the scales. Once
we succeed in reproducing the activity statistics we considered thus
far, this paves the way for subsequent refinements of the model in
order to match an ever increasing set of observables.

Regarding functional aspects, Chapter 4 shows how closely related
random networks and their functional counterparts can be. From the
perspective of Bayesian supervised learning, the only difference is a
conditioning operation, i.e., conditioning the network prior on the
training data. This shifts the focus from function back to ensembles of
random networks. How to treat these ensembles of random networks
analytically was at the heart of Chapter 5.

Naturally, neither of the two above objections against studying
random networks are addressed exhaustively within the scope of this
thesis, opening the door to future research. One immediately obvious
direction is to extend the methods from Chapter 4 and Chapter 5

to the more complex models considered in the later chapters. For
example, how does the kernel corresponding to the model by Potjans
and Diesmann (2014) look like? But also further investigation into
which features can and, more crucially, cannot be accounted for by
simple random networks is needed.

It seems rather unlikely that random networks become a generally
accepted paradigm across the many sub-disciplines of neuroscience.
Yet, it will be interesting to see how far this simple paradigm can be
pushed.
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A
N N M T: M E A N - F I E L D B A S E D A N A LY S I S T O O L S F O R
N E U R O N A L N E T W O R K M O D E L S

preamble

A theory frequently does not lead to a closed-form analytical solution
but requires numerical methods to derive its predictions. Implement-
ing these numerical methods is inherently prone to errors and takes
time. This problem is easily solved with a publicly available toolbox
with a comprehensive test suite (Riquelme and Gjorgjieva 2021).

We developed such a toolbox for mean-field based methods with
a focus on spiking neural networks: NNMT, the Neuronal Network
Mean-Field Toolbox. The toolbox is based on the diffusion approx-
imation (see Section 3.4) and comprises, among others, methods to
determine the steady state firing rate and linear response properties.
It fills a gap because there exists, to the best of our knowledge, no
publicly available implementation of these methods.

To demonstrate the use of the toolbox, we reproduced the results
of several studies. In the manuscript below, these reproductions are
embedded into a coherent description of the toolbox and a discussion
of its use and limits.

Author Contributions

Moritz Layer (ML) developed and implemented the current version
of the toolbox, including the test suite and the online documentation,
under the supervision of Dr. Johanna Senk (JS) and Prof. Moritz
Helias (MH). Simon Essink (SE) and the author (AvM) contributed
to various parts of the toolbox; in particular, AvM contributed the
algorithm described in appendix A.1 of the manuscript. The toolbox
is based on earlier work by, among others, Dr. Hannah Bos and
Dr. Jannis Schücker. ML (sections 1, 2, 3.1, 3.2.2, 4), JS (section 3.4),
SE (section 3.3, appendix A.2), and AvM (section 3.2.1, appendix A.1)
wrote the first draft of the manuscript. The examples and figures were
created by the authors of the corresponding sections. The manuscript
was jointly revised by ML, JS, SE, AvM, and MH.
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https://nnmt.readthedocs.io/en/latest/index.html
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Mean-field theory of neuronal networks has led to numerous advances in our analytical

and intuitive understanding of their dynamics during the past decades. In order to

make mean-field based analysis tools more accessible, we implemented an extensible,

easy-to-use open-source Python toolbox that collects a variety of mean-field methods

for the leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox

(NNMT) in its current state allows for estimating properties of large neuronal networks,

such as firing rates, power spectra, and dynamical stability in mean-field and linear

response approximation, without running simulations. In this article, we describe how the

toolbox is implemented, show how it is used to reproduce results of previous studies, and

discuss different use-cases, such as parameter space explorations, or mapping different

network models. Although the initial version of the toolbox focuses on methods for leaky

integrate-and-fire neurons, its structure is designed to be open and extensible. It aims to

provide a platform for collecting analytical methods for neuronal network model analysis,

such that the neuroscientific community can take maximal advantage of them.

Keywords: mean-field theory, (spiking) neuronal network, integrate-and-fire neuron, open-source software,

parameter space exploration, (hybrid) modeling, python, computational neuroscience

1. INTRODUCTION

Biological neuronal networks are composed of large numbers of recurrently connected neurons,
with a single cortical neuron typically receiving synaptic inputs from thousands of other neurons
(Braitenberg and Schüz, 1998; DeFelipe et al., 2002). Although the inputs of distinct neurons
are integrated in a complex fashion, such large numbers of weak synaptic inputs imply that
average properties of entire populations of neurons do not depend strongly on the contributions
of individual neurons (Amit and Tsodyks, 1991). Based on this observation, it is possible to
develop analytically tractable theories of population properties, in which the effects of individual
neurons are averaged out and the complex, recurrent input to individual neurons is replaced by
a self-consistent effective input (reviewed, e.g., in Gerstner et al., 2014). In classical physics terms
(e.g., Goldenfeld, 1992), this effective input is called mean-field, because it is the self-consistent
mean of a field, which here is just another name for the input the neuron is receiving. The term
self-consistent refers to the fact that the population of neurons that receives the effective input is the
same that contributes to this very input in a recurrent fashion: the population’s output determines
its input and vice-versa. The stationary statistics of the effective input therefore can be found in a
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self-consistent manner: the input to a neuron must be set exactly
such that the caused output leads to the respective input.

Mean-field theories have been developed for many different
kinds of synapse, neuron, and network models. They have been
successfully applied to study average population firing rates
(van Vreeswijk and Sompolinsky, 1996, 1998; Amit and Brunel,
1997b), and the various activity states a network of spiking
neurons can exhibit, depending on the network parameters
(Amit and Brunel, 1997a; Brunel, 2000; Ostojic, 2014), as well as
the effects that different kinds of synapses have on firing rates
(Fourcaud and Brunel, 2002; Lindner, 2004; Schuecker et al.,
2015; Schwalger et al., 2015; Mattia et al., 2019). They have
been used to investigate how neuronal networks respond to
external inputs (Lindner and Schimansky-Geier, 2001; Lindner
and Longtin, 2005), and they explain why neuronal networks
can track external input on much faster time scales than a single
neuron could (van Vreeswijk and Sompolinsky, 1996, 1998).
Mean-field theories allow studying correlations of neuronal
activity (Sejnowski, 1976; Ginzburg and Sompolinsky, 1994;
Lindner et al., 2005; Trousdale et al., 2012) and were able
to reveal why pairs of neurons in random networks, despite
receiving a high proportion of common input, can show low
output correlations (Hertz, 2010; Renart et al., 2010; Tetzlaff
et al., 2012; Helias et al., 2014), which for example has important
implication for information processing. They describe pair-wise
correlations in network with spatial organization (Rosenbaum
and Doiron, 2014; Rosenbaum et al., 2017; Dahmen et al.,
2022) and can be generalized to correlations of higher orders
(Buice and Chow, 2013). Mean-field theories were utilized to
show that neuronal networks can exhibit chaotic dynamics
(Sompolinsky et al., 1988; van Vreeswijk and Sompolinsky,
1996, 1998), in which two slightly different initial states can
lead to totally different network responses, which has been
linked to the network’s memory capacity (Toyoizumi and
Abbott, 2011; Schuecker et al., 2018). Most of the results
mentioned above have been derived for networks of either
rate, binary, or spiking neurons of a linear integrate-and-
fire type. But various other models have been investigated
with similar tools as well; for example, just to mention a
few, Hawkes processes, non-linear integrate-and-fire neurons
(Brunel and Latham, 2003; Fourcaud-Trocmé et al., 2003;
Richardson, 2007, 2008; Grabska-Barwinska and Latham, 2014;
Montbrió et al., 2015), or Kuramoto-type models (Stiller and
Radons, 1998; van Meegen and Lindner, 2018). Additionally,
there is an ongoing effort showing that many of the results
derived for distinct models are indeed equivalent and that
those models can be mapped to each other under certain
circumstances (Ostojic and Brunel, 2011; Grytskyy et al., 2013;
Senk et al., 2020).

Other theories for describing mean population rates in
networks with spatially organized connectivity, based on taking
a continuum limit, have been developed. These theories, known
as neural field theories, have deepened our understanding of
spatially and temporally structured activity patterns emerging in
cortical networks, starting with the seminal work by Wilson and
Cowan (1972, 1973), who investigated global activity patterns,
and Amari (1975, 1977), who studied stable localized neuronal

activity. They were successfully applied to explain hallucination
patterns (Ermentrout and Cowan, 1979; Bressloff et al., 2001), as
well as EEG and MEG rhythms (Nunez, 1974; Jirsa and Haken,
1996, 1997). The neural field approach has been used to model
working memory (Laing et al., 2002; Laing and Troy, 2003),
motion perception (Giese, 2012), cognition (Schöner, 2008), and
more; for extensive reviews of the literature, we refer the reader
to Coombes (2005), Bressloff (2012), and Coombes et al. (2014).

Clearly, analytical theories have contributed to our
understanding of neuronal networks and they provide a
plethora of powerful and efficient methods for network
model analysis. Comparing the predictions of analytical
theories to simulations, experimental data, or other theories
necessitates a numerical implementation applicable to various
network models, depending on the research question. Such
an implementation is often far from straightforward and at
times requires investing substantial time and effort. Commonly,
such tools are implemented as the need arises, and their reuse
is not organized systematically and restricted to within a
single lab. This way, not only are effort and costs spent by the
neuroscientific community duplicated over and over again, but
also are many scientists deterred from taking maximal advantage
of those methods although they might open new avenues for
investigating their research questions.

In order to make analytical tools for neuronal network
model analysis accessible to a wider part of the neuroscientific
community, and to create a platform for collecting well-tested
and validated implementations of such tools, we have developed
the Python toolbox NNMT (Layer et al., 2021), short for
Neuronal Network Mean-field Toolbox. We would like to
emphasize that NNMT is not a simulation tool; NNMT is
a collection of numerically solved mean-field equations that
directly relate the parameters of a microscopic network model
to the statistics of its dynamics. NNMT has been designed
to fit the diversity of mean-field theories, and the key features
we are aiming for are modularity, extensibility, and a simple
usability. Furthermore, it features an extensive test suite to ensure
the validity of the implementations as well as a comprehensive
user documentation. The current version of NNMT mainly
comprises tools for investigating networks of leaky integrate-and-
fire neurons as well as somemethods for studying binary neurons
and neural field models. The toolbox is open-source and publicly
available on GitHub.1

In the following, we present the design considerations that
led to the structure and implementation of NNMT as well as
a representative set of use cases. Section 2 first introduces its
architecture. Section 3 then explains its usage by reproducing
previously published network model analyses from Schuecker
et al. (2015), Bos et al. (2016), Sanzeni et al. (2020), and Senk et al.
(2020). Section 4 compares NNMT to other available toolboxes
for neuronal network model analysis, discusses its use cases from
a more general perspective, indicates current limitations and
prospective advancements of NNMT, and explains how new tools
can be contributed.

1https://github.com/INM-6/nnmt
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A

B

C

FIGURE 1 | Structure and workflows of the Neuronal Network Mean-field Toolbox (NNMT). (A) Basic workflow: individual mean-field based analysis methods are

implemented as functions, called _tools(), that can be used directly by explicitly passing the required arguments. (B) Model workflow: to facilitate the handling of

parameters and results, they can be stored in a model class instance, which can be passed to a tool(), which wraps the basic workflow of the respective

_tool(). (C) Structure of the Python package. In addition to the tool collection (red frame), containing the tools() and the _tools(), and pre-defined model

classes, the package provides utility functions for handling parameter files and unit conversions, as well as software aiding the implementation of new methods.

� �
1 # basic workflow
2 result = nnmt.<submodule>.<_tool>(∗args, ∗∗kwargs)
3

4 # model workflow
5 my_model = nnmt.models.<model>(
6 <network_params>, <analysis_params>)
7 result = nnmt.<submodule>.<tool>(my_model)� �
Listing 1: The two modes of using NNMT: In the basic
workflow (top), quantities are calculated by passing all required
arguments directly to the underscored tool functions available
in the submodules of NNMT. In the model workflow (bottom),
a model class is instantiated with parameter sets and the model
instance is passed to the non-underscored tool functions which
automatically extract the relevant parameters.

2. WORKFLOWS AND ARCHITECTURE

What are the requirements a package for collecting analytical
methods for neuronal network model analysis needs to fulfill?
To begin with, it should be adaptable and modular enough
to accommodate many and diverse analytical methods while
avoiding code repetition and a complex interdependency of
package components. It should enable the application of the
collected algorithms to various network models in a simple and

transparent manner. It should make the tools easy to use for
new users, while also providing experts with direct access to
all parameters and options. Finally, the methods need to be
thoroughly tested and well documented.

These are the main considerations that guided the
development of NNMT. Figures 1A,B illustrate how the
toolbox can be used in to two different workflows, depending
on the preferences and goals of the user. In the basic workflow
the individual method implementations called tools are directly
accessed, whereas the model workflow provides additional
functionality for the handling of parameters and results.

2.1. Basic Workflow
The core of NNMT is a collection of low-level functions that
take specific parameters (or pre-computed results) as input
arguments and return analytical results of network properties.
In Figure 1A, we refer to such basic functions as _tools(),
as their names always start with an underscore. We term this
lightweight approach of directly using these functions the basic
workflow. The top part of Listing 1 demonstrates this usage;
for example, the quantity to be computed could be the mean
firing rate of a neuronal population and the arguments could be
parameters which define neuron model and external drive. While
the basic workflow gives full flexibility and direct access to every
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parameter of the calculation, it remains the user’s responsibility
to insert the arguments correctly, e.g., in the right units.

2.2. Model Workflow
The model workflow is a convenient wrapper of the basic
workflow (Figure 1B). A model in this context is an object that
stores a larger set of parameters and can be passed directly
to a tool(), the non-underscored wrapper of the respective
_tool(). The tool() automatically extracts the relevant
parameters from the model, passes them as arguments to the
corresponding core function _tool(), returns the results, and
stores them in the model. The bottom part of Listing 1 shows
how a model is initialized with parameters and then passed to a
tool() function.

Models are implemented as Python classes and can be
found in the submodule nnmt.models. We provide the
class nnmt.models.Network as a parent class and a few
child classes which inherit the generic methods and properties
but are tailored to specific network models; custom models
can be created straightforwardly. The parameters distinguish
network parameters, which define neuron models and network
connectivity, and analysis parameters; an example for an analysis
parameter is a frequency range over which a function is
evaluated. Upon model instantiation, parameter sets defining
values and corresponding units are passed as Python dictionaries
or yaml files. The model constructor takes care of reading
in these parameters, computing dependent parameters from
the imported parameters, and converting all units to SI units
for internal computations. Consequently, the parameters passed
as arguments and the functions for computing dependent
parameters of a specific child class need to be aligned. This
design encourages a clear separation between a concise set of base
parameters and functionality that transforms these parameters
to the generic (vectorized) format that the tools work with.
To illustrate this, consider the weight matrix of a network
of excitatory and inhibitory neuron populations in which all
excitatory connections have the same weight and all inhibitory
ones another weight. As argument one could pass just a tuple of
two different weight values and the corresponding model class
would take care of constructing the full weight matrix. This
happens in the example presented in Section 3.2.2: The parameter
file network_params_microcircuit.yaml contains the
excitatory synaptic weight and the ratio of inhibitory to excitatory
weights. On instantiation, the full weight matrix is constructed
from these two parameters, following the rules defined in
nnmt.models.Microcircuit.

When a tool() is called, it checks whether the provided
model object contains all required parameters and previously
computed results. Then the tool() extracts the required
arguments, calls the respective_tool(), and caches and returns
the result. If the user attempts to compute the same property
twice, using identical parameters, the tool() will retrieve the
already computed result from the model’s cache and return that
value. Results can be exported to an HDF5 file and also loaded.

Using the model workflow instead of the basic workflow
comes with the initial overhead of choosing a suitable
combination of parameters and a model class, but has the

advantages of a higher level of automation with built-in
mechanisms for checking correctness of input (e.g., regarding
units), reduced redundancy, and the options to store and load
results. Both modes of using the toolbox can also be combined.

2.3. Structure of the Toolbox
The structure of the Python package NNMT is depicted in
Figure 1C. It is subdivided into submodules containing the
tools (e.g., nnmt.lif.exp, or nnmt.binary), the model
classes (nnmt.models), helper routines for handling parameter
files and unit conversions, as well as modules that collect
reusable code employed in implementations for multiple neuron
models (cf. Section 4.4). The tools are organized in a modular,
extensible fashion with a streamlined hierarchy. To give an
example, a large part of the currently implemented tools apply
to networks of leaky integrate-and-fire (LIF) neurons, and they
are located in the submodule nnmt.lif. The mean-field theory
for networks of LIF neurons distinguishes between neurons with
instantaneous synapses, also called delta synapses, and those
with exponentially decaying post-synaptic currents. Similarly,
the submodule for LIF neurons is split further into the two
submodules nnmt.lif.delta and nnmt.lif.exp. NNMT
also collects different implementations for computing the same
quantity using different approximations or numerics, allowing
for a comparison of different approaches.

Apart from the core package, NNMT comes with an extensive
online documentation,2 including a quickstart tutorial, all
examples presented in this paper, a complete documentation of
all tools, as well as a guide for contributors.

Furthermore, we provide an extensive test suite that validates
the tools by checking them against previously published results
and alternative implementations where possible. This ensures
that future improvements of the numerics do not break the tools.

3. HOW TO USE THE TOOLBOX

In this section, we demonstrate the practical use of NNMT by
replicating a variety of previously published results. The examples
presented have been chosen to cover a broad range of common
use cases and network models. We include analyses of both
stationary and dynamic network features, as mean-field theory
is typically divided into two parts: stationary theory, which
describes time-independent network properties of systems in a
stationary state, and dynamical theory, which describes time-
dependent network properties. Additionally, we show how to use
the toolbox to map a spiking to a simpler rate model, as well as
how to perform a linear stability analysis. All examples, including
the used parameter files, are part of the online documentation.2

3.1. Installation and Setup
The toolbox can be either installed using pip:

pip install nnmt

or by installing it directly from the repository,
which is described in detail in the online

2https://nnmt.readthedocs.io/
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documentation. After the installation, the module can
be imported:

import nnmt

3.2. Stationary Quantities
3.2.1. Response Nonlinearities
Networks of excitatory and inhibitory neurons (EI networks,
Figure 2A) are widely used in computational neuroscience
(Gerstner et al., 2014), e.g., to show analytically that a
balanced state featuring asynchronous, irregular activity emerges
dynamically in a broad region of the parameter space (van
Vreeswijk and Sompolinsky, 1996, 1998; Brunel, 2000; Hertz,
2010; Renart et al., 2010). Remarkably, such balance states emerge
in inhibition dominated networks for a variety of neuron models
if the indegree is large, K≫ 1, and the weights scale as J ∝ 1/

√
K

(Sanzeni et al., 2020; Ahmadian and Miller, 2021). Furthermore,
in a balanced state, a network responds linearly to external
input in the limit K → ∞ (van Vreeswijk and Sompolinsky,
1996, 1998; Brunel, 2000; Sanzeni et al., 2020; Ahmadian and
Miller, 2021). How do EI networks of LIF neurons respond to
external input at finite indegrees? Sanzeni et al. (2020) uncover
five different types of nonlinearities in the network response
depending on the network parameters. Here, we show how to use
the toolbox to reproduce their result (Figures 2B–F).

The network consists of two populations, E and I, of identical
LIF neurons with instantaneous (delta) synapses (Gerstner et al.,
2014). The subthreshold dynamics of the membrane potential Vi

of neuron i obeys

τmV̇i = −Vi + RIi , (1)

where τm denotes the membrane time constant, R the membrane
resistance, and Ii the input current. If the membrane potential
exceeds a threshold Vth, a spike is emitted and the membrane
voltage is reset to the reset potential V0 and clamped to this value
during the refractory time τr. After the refractory period, the
dynamics continue according to Equation (1). For instantaneous
synapses, the input current is given by

RIi(t) = τm
∑

j

Jij
∑

k

δ(t − tj,k − dij) , (2)

where Jij is the synaptic weight from presynaptic neuron j to
postsynaptic neuron i (with Jij = 0 if there is no synapse),
the tj,k are the spike times of neuron j, and dij is a synaptic
delay (in this example dij = d for all pairs of neurons). In
total, there are NE and NI neurons in the respective populations.
Each neuron is connected to a fixed number of randomly chosen
presynaptic neurons (fixed in-degree); additionally, all neurons
receive external input from independent Poisson processes with
rate νX. The synaptic weights and in-degrees of recurrent and
external connections are population-specific:

J =
(
JEE −JEI
JIE −JII

)
, Jext =

(
JEX
JIX

)
,

K =
(
KEE KEI

KIE KII

)
, Kext =

(
KEX

KIX

)
. (3)

All weights are positive, implying an excitatory external input.
The core idea of mean-field theory is to approximate the

input to a neuron as Gaussian white noise ξ (t) with mean
〈ξ (t)〉 = µ and noise intensity 〈ξ (t)ξ (t′)〉 = τmσ 2δ(t − t′). This
approximation is well-suited for asynchronous, irregular network
states (van Vreeswijk and Sompolinsky, 1996, 1998; Amit and
Brunel, 1997b). For a LIF neuron driven by such Gaussian white
noise, the firing rate is given by (Siegert, 1951; Tuckwell, 1988;
Amit and Brunel, 1997b)

φ(µ, σ ) =
(

τr + τm
√

π

∫ Ṽth(µ,σ )

Ṽ0(µ,σ )
es

2
(1+ erf(s))ds

)−1

, (4)

where the rescaled reset- and threshold-voltages are

Ṽ0(µ, σ ) =
V0 − µ

σ
, Ṽth(µ, σ ) =

Vth − µ

σ
. (5)

The first term in Equation (4) is the refractory period and the
second term is the mean first-passage time of the membrane
voltage from reset to threshold. The mean and the noise intensity
of the input to a neuron in a population a ∈ {E, I}, which control
themean first-passage time through Equation (5), are determined
by (Amit and Brunel, 1997b)

µa = τm(JaEKaEνE − JaIKaIνI + JaXKaXνX) , (6)

σ 2
a = τm(J

2
aEKaEνE + J2aIKaIνI + J2aXKaXνX) , (7)

respectively, where each term reflects the contribution of one
population, with the corresponding firing rates of the excitatory
νE, inhibitory νI, and external population νX. Note that we use the
letters i, j, k, . . . to index single neurons and a, b, c, . . . to index
neuronal populations. Both µa and σa depend on the firing rate
of the neurons νa, which is in turn given by Equation (4). Thus,
one arrives at the self-consistency problem

νa = φ(µa, σa) , (8)

which is coupled across the populations due to Equation (6) and
Equation (7).

Our toolbox provides two algorithms to solve Equation (8):
(1) Integrating the auxiliary ordinary differential equation
(ODE) ν̇a = −νa + φ(µa, σa) with initial values νa(0) =
νa,0 using scipy.integrate.solve_ivp (Virtanen et al.,
2020) until it reaches a fixed point ν̇a = 0, where Equation (8)
holds by construction. (2) Minimizing the quadratic deviation∑

a

[
νa − φ(µa, σa)

]2
, using the least squares (LSTSQ) solver

scipy.optimize.least_squares (Virtanen et al., 2020)
starting from an initial guess νa,0. The ODE method is robust
to changes in the initial values and hence a good first choice.
However, it cannot find self-consistent solutions that correspond
to an unstable fixed point of the auxiliary ODE (note that the
stability of the auxiliary ODE does not indicate the stability of
the solution). To this end, the LSTSQ method can be used. Its
drawback is that it needs a good initial guess, because otherwise
the found minimum might be a local one where the quadratic

deviation does not vanish,
∑

a

[
νa − φ(µa, σa)

]2
> 0, and which
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A B C

D E F

FIGURE 2 | Response nonlinearities in EI-networks. (A) Network diagram with nodes and edges according to the graphical notation proposed by Senk et al.

(in press). (B–F) Firing rate of excitatory (blue) and inhibitory (red) population for varying external input rate νX . Specific choices for synaptic weights (J, Jext ) and

in-degrees (K, Kext ) lead to five types of nonlinearities: (B) saturation-driven nonlinearity, (C) saturation-driven multi-solution, (D) response-onset supersaturation,

(E) mean-driven multi-solution, and (F) noise-driven multi-solution. See Figure 8 in Sanzeni et al. (2020) for parameters.

accordingly does not correspond to a self-consistent solution,
νa 6= φ(µa, σa). A prerequisite for both methods is a numerical
solution of the integral in Equation (4); this is discussed in
Section A.1 in the Appendix.

The solutions of the self-consistency problem Equation (8)
for varying νX and fixed J, Jext, K , and Kext reveal the
five types of response nonlinearities (Figure 2). Different
response nonlinearities arise through specific choices of
synaptic weights, J and Jext, and in-degrees, K and Kext,
which suggests that already a simple EI-network possesses
a rich capacity for nonlinear computations. Whenever
possible, we use the ODE method and resort to the LSTSQ
method only if the self-consistent solution corresponds to an
unstable fixed point of the auxiliary ODE. Combining both
methods, we can reproduce the first columns of Figure 8 in
Sanzeni et al. (2020), where all five types of nonlinearities
are presented.

In all cases, we chose appropriate initial values νa,0 for
either method. Note that an exploratory analysis is necessary if
the stability properties of a network model are unknown, and
potentially multiple fixed points are to be uncovered because
there are, to the best of our knowledge, no systematic methods
in d > 1 dimensions that provide all solutions of a nonlinear
system of equations.

In Listing 2, we show a minimal example to produce
the data shown in Figure 2B. After importing the function
that solves the self-consistency Equation (8), we collect the
neuron and network parameters in a dictionary. Then, we
loop through different values for the external rate νX and
determine the network rates using the ODE method, which
is sufficient in this example. In Listing 2 and to produce
Figure 2B, we use the basic workflow because only one isolated
tool of NNMT (nnmt.lif.delta._firing_rates()) is

� �
1 import numpy as np
2 from nnmt.lif.delta import _firing_rates
3

4 params = dict(
5 # membrane and refractory time constants (in s)
6 tau_m=20.∗1e-3, tau_r=2.∗1e-3,
7 # relative reset and threshold potentials (in V)
8 V_0_rel=10.∗1e-3, V_th_rel=20.∗1e-3,
9 # recurrent and external weights (in V)
10 J=np.array([[0.2, -1.6], [0.2, -1.4]])∗1e-3,
11 J_ext=np.array([0.2, 0.2])∗1e-3,
12 # recurrent and external in-degrees
13 K=np.array([[400, 100], [400, 100]]),
14 K_ext=np.array([1600, 800]),
15 # set the method for the fixpoint finder
16 fixpoint_method=’ODE’,
17 # initial guess for the firing rate
18 nu_0=(0, 0))
19

20 # determine self-consistent rates (in 1/s)
21 nu_ext = np.linspace(1, 100, 50) # external rates (in 1/s)
22 nu_E, nu_I = np.zeros_like(nu_ext), np.zeros_like(nu_ext)
23 for i, nu_X in enumerate(nu_ext):
24 nu_E[i], nu_I[i] = _firing_rates(nu_ext=nu_X,
25 ∗∗params)� �
Listing 2: Example script to produce the data shown in
Figure 2B using the ODE method (initial value νa,0 = 0 for
population a ∈ {E, I}).

employed, which requires only a few parameters defining the
simple EI-network.

3.2.2. Firing Rates of Microcircuit Model
Here we show how to use the model workflow to calculate
the firing rates of the cortical microcircuit model by Potjans
and Diesmann (2014). The circuit is a simplified point
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A

B

FIGURE 3 | Cortical microcircuit model by Potjans and Diesmann (2014).

(A) Network diagram (only the strongest connections are shown as in Figure 1

of the original publication). Same notation as in Figure 2A. (B) Simulation and

mean-field estimate for average population firing rates using the parameters

from Bos et al. (2016).

neuron network model with biologically plausible parameters,
which has been recently used in a number of other works:
for example, to study network properties such as layer-
dependent attentional processing (Wagatsuma et al., 2011),
connectivity structure with respect to oscillations (Bos et al.,
2016), and the effect of synaptic weight resolution on activity
statistics (Dasbach, Tetzlaff, Diesmann, and Senk, 2021); to
assess the performance of different simulator technologies
such as neuromorphic hardware (van Albada et al., 2018)
and GPUs (Knight and Nowotny, 2018; Golosio et al., 2021); to
demonstrate forward-model prediction of local-field potentials
from spiking activity (Hagen et al., 2016); and to serve as a
building block for large-scale models (Schmidt et al., 2018).

The model consists of eight populations of LIF neurons,
corresponding to the excitatory and inhibitory populations of
four cortical layers: 2/3E, 2/3I, 4E, 4I, 5E, 5I, 6E, and 6I (see
Figure 3A). It defines the number of neurons in each population,
the number of connections between the populations, the single
neuron properties, and the external input. Simulations show that
the model yields realistic firing rates for the different populations
as observed in particular in the healthy resting-state of early
sensory cortex (Potjans and Diesmann, 2014, Table 6).

In contrast to the EI-network model investigated in
Section 3.2.1, the neurons in the microcircuit model have
exponentially shaped post-synaptic currents: Equation (2) is
replaced by Fourcaud and Brunel (2002)

τsR
dIi

dt
(t) = −RIi(t)+ τm

∑

j

Jij
∑

k

δ(t − tj,k − dij) , (9)

with synaptic time constant τs. Note that Jij is a measure in
volts here. As discussed in Section 3.2.1, in mean-field theory the
second term, representing the neuronal input, is approximated
by Gaussian white noise. The additional synaptic filtering leads
to the membrane potential (Equation 1) receiving colored noise
input. Fourcaud and Brunel (2002) developed a method for
calculating the firing rate for this synapse type. They have shown
that, if the synaptic time constant τs is much smaller than the
membrane time constant τm, the firing rate for LIF neurons with
exponential synapses can be calculated using Equation (4) with
shifted integration boundaries

Ṽcn,0(µ, σ ) = Ṽ0(µ, σ )+
α

2

√
τs

τm
,

Ṽcn,th(µ, σ ) = Ṽth(µ, σ )+
α

2

√
τs

τm
, (10)

with the rescaled reset- and threshold-voltages from Equation (5)
and α =

√
2 |ζ (1/2)| ≈ 2.07, where ζ (x) denotes the Riemann

zeta function; the subscript cn stands for “colored noise”.
The microcircuit has been implemented as an NNMT

model (nnmt.models.Microcircuit). We here use the
parameters of the circuit as published in Bos et al. (2016) which
is slightly differently parameterized than the original model (see
Table A1 in the Appendix). The parameters of the model are
specified in a yaml file, which uses Python-like indentation and
a dictionary-style syntax. List elements are indicated by hyphens,
and arrays can be defined as nested lists. Parameters with units
can be defined by using the keys val and unit, whereas unitless
variables can be defined without any keys. Listing 3 shows an
example of how some of the microcircuit network parameters
used here are defined. Which parameters need to be provided in
the yaml file depends on the model used and is indicated in their
respective docstrings.

Once the parameters are defined, a microcircuit model is
instantiated by passing the respective parameter file to the model
constructor; the units are automatically converted to SI units.
Then the firing rates are computed. For comparison, we finally
load the simulated rates from Bos et al. (2016):

# create the network model using a network parameter yaml
# file
microcircuit = nnmt.models.Microcircuit(

’network_params_microcircuit.yaml’)
# calculate firing rates
firing_rates = nnmt.lif.exp.firing_rates(microcircuit)
# load simulated results
simulated_firing_rates = \

nnmt.input_output.load_h5(’Bos2016_rates.h5’)[’rates’]

The simulated rates have been obtained by a numerical network
simulation (for simulation details see Bos et al., 2016) in which
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� �
1 # membrane time constant
2 tau_m:
3 val: 10.0
4 unit: ms
5

6 # neuron numbers
7 N:
8 - 20683
9 - 5834
10 - 21915� �
Listing 3: Some microcircuit network parameters defined in a
yaml file. A dictionary-like structure with the keys val (value)
and unit is used to define the membrane time constant, which
is the same across all populations. The numbers of neurons in
each population are defined as a list. Only the numbers for the
first three populations are displayed.

the neuron populations are connected according to the model’s
original connectivity rule: “random, fixed total number with
multapses (autapses prohibited)”, see Senk et al. (in press) as a
reference for connectivity concepts. The term multapses refers
to multiple connections between the same pair of neurons
and autapses are self-connections; with this connectivity rule
multapses can occur in a network realization but autapses are
not allowed. For simplicity, the theoretical predictions assume
a connectivity with a fixed in-degree for each neuron. Dasbach
et al. (2021) show that simulated spike activity data of networks
with these two different connectivity rules are characterized by
differently shaped rate distributions (“reference” in their Figures
3d and 4d). In addition, the weights in the simulation are
normally distributed while the theory replaces each distribution
by its mean; this corresponds to the case Nbins = 1 in Dasbach
et al. (2021). Nevertheless, our mean-field theoretical estimate of
the average population firing rates is in good agreement with the
simulated rates (Figure 3B).

3.3. Dynamical Quantities
3.3.1. Transfer Function
One of the most important dynamical properties of a neuronal
network is how it reacts to external input. A systematic way to
study the network response is to apply an oscillatory external
input current leading to a periodically modulated mean input
µ(t) = µ+ δµRe

(
eiωt

)
(cf. Equation 6), with fixed frequency ω,

phase, and amplitude δµ, and observe the emerging frequency,
phase, and amplitude of the output. If the amplitude of the
external input is small compared to the stationary input, the
network responds in a linear fashion: it only modifies phase
and amplitude, while the output frequency equals the input
frequency. This relationship is captured by the input-output
transfer function N (ω) (Brunel and Hakim, 1999; Brunel et al.,
2001; Lindner and Schimansky-Geier, 2001), which describes the
frequency-dependent modulation of the output firing rate of a
neuron population

ν(t) = ν + Re
(
N (ω) δµ eiωt

)
.

Note that in this section we only study the linear response to a
modulation of the mean input, although in general, a modulation
of the noise intensity (Equation 7) can also be included (Lindner
and Schimansky-Geier, 2001; Schuecker et al., 2015). The transfer
functionN (ω) is a complex function: Its absolute value describes
the relative modulation of the firing rate. Its phase, the angle
relative to the real axis, describes the phase shift that occurs
between input and output. We denote the transfer function
for a network of LIF neurons with instantaneous synapses in
linear-response approximation as

N (ω) =
√
2ν

σ

1

1+ iωτm

8′
ω

∣∣
√
2Ṽth√
2Ṽ0

8ω|
√
2Ṽth√
2Ṽ0

, (11)

with the rescaled reset- and threshold-voltages Ṽ0 and Ṽth as

defined in Equation (5) and 8ω(x) = e
x2

4 U
(
iωτm − 1

2 , x
)
using

the parabolic cylinder functions U
(
iωτm − 1

2 , x
)
as defined

in (Abramowitz and Stegun, 1974, Section 19.3) and (Olver
et al., 2021, Section 12.2). 8′

ω denotes the first derivative by
x. A comparison of our notation and the transfer function
given in Schuecker et al. (2015, Equation 29) can be found in
Section A.2.1 in the Appendix.

For a neuronal network of LIF neurons with exponentially
shaped post-synaptic currents, introduced in Section 3.2.2,
Schuecker et al. (2014, 2015) show that an analytical
approximation of the transfer function can be obtained by
a shift of integration boundaries, akin to Equation (10):

Ncn (ω) =
√
2ν

σ

1

1+ iωτm

8′
ω

∣∣
√
2Ṽcn,th√
2Ṽcn,0

8ω|
√
2Ṽcn,th√
2Ṽcn,0

. (12)

To take into account the effect of the synaptic dynamics, we
include an additional low-pass filter:

Ncn,s (ω) = Ncn (ω)
1

1+ iωτs
. (13)

If the synaptic time constant is much smaller than the
membrane time constant (τs ≪ τm), an equivalent expression
for the transfer function is obtained by a Taylor expansion
around the original boundaries (cf. Schuecker et al. 2015,
Equation 30). The toolbox implements both variants and offers
choosing between them by setting the argument method of
nnmt.lif.exp.transfer_function to either shift
or taylor.

Here, we demonstrate how to calculate the analytical “shift
version” of the transfer function for different means and noise
intensities of the input current (see Figure 4) and thereby
reproduce Figure 4 in Schuecker et al. (2015).

The crucial parts for producing Figure 4 using NNMT are
shown in Listing 4 for one example combination of mean and
noise intensity of the input current. Instead of using the model
workflow with nnmt.lif.exp.transfer_function,
we here employ the basic workflow, using
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A B

FIGURE 4 | Colored-noise transfer function Ncn of LIF model in different regimes. (A) Absolute value and (B) phase of the “shift” version of the transfer function as a

function of the log-scaled frequency. Neuron parameters are set to Vth = 20mV, V0 = 15mv, τm = 20ms, and τs = 0.5ms. For given noise intensities of input

current, σ = 4mV (solid line) and σ = 1.5mV (dashed line), the mean input µ is chosen such that firing rates ν = 10Hz (black) and ν = 30Hz (gray) are obtained.

nnmt.lif.exp._transfer_function directly. This
allows changing the mean input and its noise intensity
independently of a network model’s structure, but requires
two additional steps: First, the necessary parameters
are loaded from a yaml file, converted to SI units and
then stripped off the units using the utility function
nnmt.utils._convert_to_si_and_strip_units.
Second, the analysis frequencies are defined manually. In this
example we choose logarithmically spaced frequencies, as we
want to plot the results on a log-scale. Finally, the complex-
valued transfer function is calculated and then split into its
absolute value and phase. Figure 4 shows that the transfer
function acts as a low-pass filter that suppresses the amplitude of
high frequency activity, introduces a phase lag, and can lead to
resonance phenomena for certain configurations of mean input
current and noise intensity.

The replication of the results from Schuecker et al. (2015)
outlined here is also used in the integration tests of the toolbox.
Note that the implemented analytical form of the transfer
function by Schuecker et al. (2015) is an approximation for
low frequencies, and deviations from a simulated ground truth
are expected for higher frequencies (ω/2π & 100Hz at the
given parameters).

3.3.2. Power Spectrum
Another frequently studied dynamical property is the power
spectrum, which describes how the power of a signal is
distributed across its different frequency components, revealing
oscillations of the population activity. The power is the Fourier
transformed auto-correlation of the population activities (c.f. Bos
et al. 2016, Equations 16-18). Linear response theory on top
of a mean-field approximation, allows computing the power,
dependent on the network architecture, the stationary firing

rates, and the neurons’ transfer function (Bos et al., 2016). The
corresponding analytical expression for the power spectra of
population a at angular frequency ω is given by the diagonal
elements of the correlation matrix

Pa(ω) = Caa(ω)

=
[(
1−M̃d(ω)

)−1
diag (ν ⊘ n)

(
1−M̃d(−ω)

)−T
]
aa

,

(14)

with ⊘ denoting the elementwise (Hadamard) division, the
effective connectivity matrix M̃d(ω) = τmNcn,s(ω) · J ⊙ K ⊙
D(ω), where the dot denotes the scalar product, while⊙ denotes
the elementwise (Hadamard) product, the mean population
firing rates ν, and the numbers of neurons in each population
n. The effective connectivity combines the static, anatomical
connectivity J ⊙ K , represented by synaptic weight matrix J

and in-degree matrix K , and dynamical quantities, represented
by the transfer functions Ncn,s,a (ω) (Equation (13)), and the
contribution of the delays in (Equation 13), represented by their
Fourier transformed distributions Dab(ω) (cf. Bos et al. 2016,
Equations 14, 15).

The modular structure in combination with the model
workflow of this toolbox permits a step-by-step calculation of
the power spectra, as shown in Listing 5. The inherent structure
of the theory is emphasized in these steps: After instantiating
the network model class with given network parameters, we
determine the working point, which characterizes the statistics of
the model’s stationary dynamics. It is defined by the population
firing rates, the mean, and the standard deviation of the input
to a neuron of the respective population. This is necessary for
determining the transfer functions. The calculation of the delay
distribution matrix is then required for calculating the effective
connectivity and to finally get an estimate of the power spectra.
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FIGURE 5 | Power spectra of the population spiking activity in the adapted cortical microcircuit from Bos et al. (2016). The spiking activity of each population in a 10 s

simulation of the model is binned with 1ms resolution and the power spectrum of the resulting histogram is calculated by a fast Fourier transform (FFT; light gray

curves). In addition, the simulation is split into 500ms windows, the power spectrum calculated for each window and averaged across windows (gray curves). Black

curves correspond to analytical prediction obtained with NNMT as described in Listing 5. The panels show the spectra for the excitatory (top) and inhibitory (bottom)

populations within each layer of the microcircuit.

Figure 5 reproduces Figure 1E in Bos et al. (2016) and shows the
spectra for each population of the adjusted version (see Table A1
in the Appendix) of the microcircuit model.

The numerical predictions obtained from the toolbox
largely coincide with simulated data taken from the original
publication (Bos et al., 2016) and reveal dominant oscillations
of the population activities in the low-γ range around
63Hz. Furthermore, faster oscillations with peak power around
300Hz are predicted with higher magnitudes in the inhibitory
populations 4I, 5I, and 6I.

The deviation between predicted and simulated power spectra
seen at ∼ 130Hz in population 2/3E could be a harmonic of the
correctly predicted, prominent 63Hz peak; a non-linear effect not
captured in linear response theory. Furthermore, the systematic
overestimation of the power spectrum at large frequencies is
explained by the limited validity of the analytical approximation
of the transfer function for high frequencies.

3.3.3. Sensitivity Measure
The power spectra shown in the previous section exhibit
prominent peaks at certain frequencies, which indicate
oscillatory activity. Naturally, this begs the question: which
mechanism causes these oscillations? Bos et al. (2016) expose the
crucial role that the microcircuit’s connectivity plays in shaping
the power spectra of this network model. They have developed a
method called sensitivity measure to directly relate the influence
of the anatomical connections, especially the in-degree matrix,
on the power spectra.

The power spectrum of the a-th population Pa(ω) receives a
contribution from each eigenvalue λb of the effective connectivity

matrix, Pa(ω) ∝ 1/
(
1− λb(ω)

)2
. Such a contribution

consequently diverges as the complex-valued λb approaches
1 + 0i in the complex plane, which is referred to as the
point of instability. This relation can be derived by replacing
the effective connectivity matrix M̃d(ω) in Equation (14) by
its eigendecomposition. The sensitivity measure leverages this
relationship and evaluates how a change in the in-degree
matrix affects the eigenvalues of the effective connectivity
and thus indirectly the power spectrum. Bos et al. (2016)
introduce a small perturbation αcd of the in-degree matrix, which
allows writing the effective connectivity matrix as M̂ab(ω) =
(1+ αcdδcaδdb) M̃ab(ω), where we dropped the delay subscript
d. The sensitivity measure Zb,cd(ω) describes how the b-th
eigenvalue of the effective connectivity matrix varies when the
cd-th element of the in-degree matrix is changed

Zb,cd(ω) =
∂λb(ω)

∂αcd

∣∣∣∣
αcd=0

=
vb,cM̃cdub,d

vT
b
· ub

, (15)

where
∂λb(ω)
∂αcd

is the partial derivative of the eigenvalue with

respect to a change in connectivity, vT
b
and ub are the left and

right eigenvectors of M̃ corresponding to eigenvalue λb(ω).
The complex sensitivity measure can be understood in terms

of two components: Z
amp
b

is the projection of the matrix Zb

onto the direction in the complex plane defined by 1 − λb(ω);
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FIGURE 6 | Sensitivity measure at low-γ frequency and corresponding power spectrum of microcircuit with adjusted connectivity. (A) Sensitivity measure of one

eigenmode of the effective connectivity relevant for low-γ oscillations. The sensitivity measure for this mode is evaluated at the frequency where the corresponding

eigenvalue is closest to the point of instability 1+ 0i in complex plane. Z
amp
b (ω) (left subpanel) visualizes the influence of a perturbation of a connection on the peak

amplitude of the power spectrum. Z
freq
b (ω) (right subpanel) shows the impact on the peak frequency. Non-existent connections are masked white. (B) Mean-field

prediction of power spectrum of population 4I with original connectivity parameters (solid line), 5% increase (dashed line) and 10% increase (dotted line) in connections

K4I→4I. The increase in inhibitory input to population 4I was counteracted by an increase of the excitatory external input Kext→4I to maintain the working point.

it describes how, when the in-degree matrix is perturbed, the
complex-valued λb(ω) moves toward or away from the instability
1 + 0i, and consequently how the amplitude of the power

spectrum at frequency ω increases or decreases. Z
freq
b

is the
projection onto the perpendicular direction and thus describes
how the peak frequency of the power spectrum changes with the
perturbation of the in-degree matrix. For a visualization of these
projections, refer to Figure 5B in Bos et al. (2016).

The toolbox makes this intricate measure accessible by
supplying two tools: After computing the required working
point, transfer function, and delay distribution, the tool
nnmt.lif.exp.sensitivity_measure computes the
sensitivity measure at a given frequency for one specific
eigenvalue. By default, this is the eigenvalue which is closest to
the instability 1 + 0i. To perform the computation, we just need
to add one line to Listing 5:

sensitivity_dict = nnmt.lif.exp.sensitivity_measure(
microcircuit, frequency)

The result is returned in form of a dictionary that
contains the sensitivity measure and its projections. The
tool nnmt.lif.exp.sensitivity_measure_all_
eigenmodes wraps that basic function and calculates the
sensitivity measure for all eigenvalues at the frequency for which
each eigenvalue is closest to instability.

According to the original publication (Bos et al., 2016), the
peak around 63Hz has contributions from one eigenvalue of the
effective connectivity matrix. Figure 6 shows the projections of
the sensitivity measure at the frequency for which this eigenvalue
is closest to the instability, as illustrated in Figure 4 of Bos
et al. (2016). The sensitivity measure returns one value for each
connection between populations in the network model. For Z

amp
b

a negative value indicates that increasing the in-degrees of a
specific connection causes the amplitude of the power spectrum
at the evaluated frequency to drop. If the value is positive,

the amplitude is predicted to grow as the in-degrees increase.

Similarly, for positive Z
freq
b

the frequency of the peak in the power

spectrum shifts toward higher values as in-degrees increase, and

vice versa. Themain finding in this analysis is that the low-γ peak

seems to be affected by excitatory-inhibitory loops in layer 2/3

and layer 4.
To decrease the low–γ peak in the power spectrum, one could

therefore increase the 4I to 4I connections (cp. Figure 6A):

# 5 percent increase
K_new = microcircuit.network_params[’K’].copy()
K_new[3,3] = 1001 # originally 953
K_ext_new = microcircuit.network_params[’K_ext’].copy()
K_ext_new[3] = 2034 # originally 1900
microcircuit_new = microcircuit.change_parameters(

{’K’: K_new, ’K_ext’: K_ext_new})

and calculate the power spectrum as in Listing 5 again to

validate the change. Note that a change in connectivity

leads to a shift in the working point. We are interested in

the impact of the modified connectivity on the fluctuation

dynamics at the same working point and thus need to

counteract the change in connectivity by adjusting the external
input. In the chosen example this is ensured by satisfying

J4I→4I1K4I→4Iν4I = −Jext→4I1Kext→4Iνext, which yields
1Kext→4I = − J4I→4I1K4I→4Iν4I

Jext→4Iνext
.

If several eigenvalues of the effective connectivity matrix
influence the power spectra in the same frequency range,

adjustments of the connectivity are more involved. This is

because a change in connectivity would inevitably affect all

eigenvalues simultaneously. Further care has to be taken because
the sensitivity measure is subject to the same constraints as

the current implementation of the transfer function, which
is only valid for low frequencies and enters the sensitivity
measure directly.
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� �
1 # load parameters in custom units
2 params = nnmt.input_output.load_val_unit_dict_from_yaml(
3 ’Schuecker2015_parameters.yaml’)
4

5 # convert parameters to SI units
6 nnmt.utils._convert_to_si_and_strip_units(params)
7

8 # define the analysis frequencies
9 frequencies = np.logspace(
10 params[’f_start_exponent’],
11 params[’f_end_exponent’],
12 params[’n_freqs’])
13 # add the zero frequency
14 frequencies = np.insert(frequencies, 0, 0.0)
15 omegas = 2 ∗ np.pi ∗ frequencies
16

17 # extract necessary parameters from params dictionary
18 mean_input = params[’mean_input’]
19 ... # here we leave out similar statements
20

21 # calculate the transfer function
22 transfer_function = nnmt.lif.exp._transfer_function(
23 mu, sigma,
24 tau_m, tau_s, tau_r,
25 V_th_rel, V_0_rel,
26 omegas,
27 method=’shift’,
28 synaptic_filter=False)
29

30 # calculate properties plotted in Schuecker et al. (2015)
31 absolute_value = np.abs(transfer_function)
32 phase = np.angle(transfer_function) / 2 / np.pi ∗ 360� �
Listing 4: Example script for computing a transfer
function shown in Figure 4 using the method of shifted
integration boundaries.

3.4. Fitting Spiking to Rate Model and
Predicting Pattern Formation
If the neurons of a network are spatially organized and connected
according to a distance-dependent profile, the spiking activity
may exhibit pattern formation in space and time, including wave-
like phenomena. Senk et al. (2020) set out to scrutinize the non-
trivial relationship between the parameters of such a network
model and the emerging activity patterns. The model they use
is a two-population network of excitatory E and inhibitory
I spiking neurons, illustrated in Figure 7. All neurons are of
type LIF with exponentially shaped post-synaptic currents. The
neuron populations are recurrently connected to each other and
themselves and they receive additional external excitatory Eext
and inhibitory Iext Poisson spike input of adjustable rate as shown
in Figure 7A. The spatial arrangement of neurons on a ring
is illustrated in Figure 7B and the boxcar-shaped connectivity

profiles in Figure 7C.
In the following, we consider a mean-field approximation of

the spiking model with spatial averaging, that is a time and space

continuous approximation of the discrete model as derived in
Senk et al. (2020, Section E. Linearization of spiking network
model). We demonstrate three methods used in the original
study: First, Section 3.4.1 explains how a model can be brought
to a defined state characterized by its working point. The working
point is given by the mean µ and noise intensity σ of the input
to a neuron, which are both quantities derived from network

� �
1 # create network model microcircuit
2 microcircuit = nnmt.models.Microcircuit(
3 network_params=’Bos2016_network_params.yaml’,
4 analysis_params=’Bos2016_analysis_params.yaml’)
5

6 # calculate working point for exponentially shaped post-
synaptic currents

7 nnmt.lif.exp.working_point(microcircuit, method=’taylor’)
8 # calculate the transfer function
9 nnmt.lif.exp.transfer_function(microcircuit,
10 method=’taylor’)
11 # calculate the delay distribution matrix
12 nnmt.network_properties.delay_dist_matrix(microcircuit)
13 # calculate the effective connectivity matrix
14 nnmt.lif.exp.effective_connectivity(microcircuit)
15 # calculate the power spectra
16 power_spectra = nnmt.lif.exp.power_spectra(microcircuit)� �
Listing 5: Example script to produce the theoretical prediction
(black lines) shown in Figure 5B.

A

B C

FIGURE 7 | Illustrations of spiking network model by Senk et al. (2020).

(A) Excitatory and inhibitory neuronal populations randomly connected with

fixed in-degree and multapses allowed (autapses prohibited). External

excitatory and inhibitory Poisson drive to all neurons. Same notation as in

Figure 2A. (B) One inhibitory and four excitatory neurons per grid position on

a one-dimensional domain with periodic boundary conditions (ring network).

(C) Normalized, boxcar-shaped connection probability with wider excitation

than inhibition; the grid spacing is here 10−3 mm. For model details and

parameters, see Tables II–IV of Senk et al. (2020); the specific values given in

the caption of their Figure 6 are used throughout here.

parameters and require the calculation of the firing rates. With
the spikingmodel in that defined state, Section 3.4.2 thenmaps its
transfer function to the one of a rate model. Section 3.4.3 finally
shows that this working-point dependent rate model allows for
an analytical linear stability analysis of the network accounting
for its spatial structure. This analysis can reveal transitions to
spatial and temporal oscillatory states which, when mapped back
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to the parameters of the spiking model, may manifest in distinct
patterns of simulated spiking activity after a startup transient.

3.4.1. Setting the Working Point by Changing

Network Parameters
With network and analysis parameters predefined in yaml files,
we set up a networkmodel using the examplemodel classBasic:

space_model = nnmt.models.Basic(
network_params=’Senk2020_network_params.yaml’,
analysis_params=’Senk2020_analysis_params.yaml’)

Upon initialization the given parameters are automatically
converted into the format used by NNMT’s tools. For instance,
relative spike reset and threshold potentials are derived from
the absolute values, connection strengths in units of volt are
computed from the post-synaptic current amplitudes in ampere,
and all values are scaled to SI units.

We aim to bring the network to a defined state by fixing the
working point but also want to explore if the procedure of fitting
the transfer function still works for different network states.
For a parameter space exploration, we use a method to change
parameters provided by the model class and scan through a
number of different working points of the network. To obtain the
required input for a target working point, we adjust the external
excitatory and inhibitory firing rates accordingly; NNMT uses a
vectorized version of the equations given in Senk et al. (2020,
Appendix F: Fixing the working point) to calculate the external
rates needed:

# relative to spike threshold (in V)
mu = 10. ∗ 1e-3; sigma = 10. ∗ 1e-3
nu_ext = nnmt.lif.exp.external_rates_for_fixed_input(

space_model, mu_set=mu, sigma_set=sigma)
space_model = space_model.change_parameters(

changed_network_params={’nu_ext’: nu_ext})

The implementation uses only one excitatory and one inhibitory
Poisson source to represent the external input rates which
typically originate from a large number of external source
neurons. These two external sources are connected to the
network with the same relative inhibition g as used for the
internal connections. The resulting external rates for different
choices of (µ, σ) are color-coded in the first two plots of
Figure 8A. The third plot shows the corresponding firing rates of
the neurons, which are stored in the results of the model instance
when computing the working point explicitly:

nnmt.lif.exp.working_point(space_model)

Although the external rates are substantially higher than the
firing rates, since a neuron is recurrently connected to hundreds
of neurons, the total external and recurrent inputs are of the
same order.

3.4.2. Parameter Mapping by Fitting the Transfer

Function
We map the parameters of the spiking model to a corresponding
rate model by, first, computing the transfer function Ncn,s given
in Equation (13) of the spiking model, and second, fitting the
simpler transfer function of the rate model, for details see
Senk et al. (2020, Section F. Comparison of neural-field and
spiking models). The dynamics of the rate model can be written

as a differential equation for the linearized activity ra with
populations a, b ∈ {E, I} :

τ
d

dt
ra(t) = −ra(t)+

∑

b

wbrb(t − d) (16)

with the delay d; τ is the time constant and wb are the unitless
weights that only depend on the presynaptic population. The
transfer function is just the one of a low-pass filter, NLP =
1/ (1+ λτ), where λ is the frequency in Laplace domain. The
tool to fit the transfer function requires that the actual transfer
function Ncn,s has been computed beforehand and fits NLPw to
τmNcn,s · J ⊙ K for the same frequencies together with τ , w, and
the combined fit error η:

nnmt.lif.exp.transfer_function(space_model)
nnmt.lif.exp.fit_transfer_function(space_model)

The absolute value of the transfer function is
fitted with non-linear least-squares using the solver
scipy.optimize.curve_fit. Figure 8B illustrates
the amplitude and phase of the transfer function and its fit for a
few (µ, σ) combinations. The plots of Figure 8C show the fitted
time constants, the fitted excitatory weight, and the combined fit
error. The inhibitory weight is proportional to the excitatory one
in the same way as the post-synaptic current amplitudes.

3.4.3. Linear Stability Analysis of Spatially Structured

Model With Delay
Sections 3.4.1 and 3.4.2 considered a mean-field approximation
of the spiking model without taking space into account.
In the following, we assume a spatial averaging of the
discrete network depicted in Figure 7 and introduce the spatial
connectivity profiles pa(x). Changing Equation (16) to the
integro-differential equation

τ
∂

∂t
ra(x, t) = −ra(x, t)+

∑

b

wb

∫ ∞

−∞
pb(x− y)rb(y, t − d) dy

(17)

yields a neural field model defined in continuous space x.
This model lends itself to analytical linear stability analysis,
as described in detail in Senk et al. (2020, Section A. Linear
stability analysis of a neural-field model). In brief, we analyze
the stability of a fixed-point solution to this differential equation
system which, together with parameter continuation methods
and bifurcation analysis, allows us to determine points in
parameter space where transitions from homogeneous steady
states to oscillatory states can occur. These transitions are given
as a function of a bifurcation parameter, here the constant
delay d, which is the same for all connections. The complex-
valued, temporal eigenvalue λ of the linearized time-delay system
is an indicator for the system’s overall stability and can serve
as a predictor for temporal oscillations, whereas the spatial
oscillations are characterized by the real-valued wave number k.
Solutions that relate λ and k with the model parameters are given
by a characteristic equation, which in our case reads (Senk et al.,
2020, Equation 7):

λB(k) = −
1

τ
+

1

d
WB

(
c
(
k
) d

τ
e
d
τ

)
, (18)
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A

C

B

FIGURE 8 | Network parameters and mean-field results from scanning through different working points. Working point (µ, σ) combines mean input µ and noise

intensity of input σ . (A) External excitatory νext, E and inhibitory νext, I Poisson rates required to set (µ, σ) and resulting firing rates ν. (B) Transfer function Ncn,s of

spiking model and fitted rate-model approximation with low-pass filter for selected (µ, σ) (top: amplitude, bottom: phase). (C) Fit results (time constants τ and

excitatory weights wE) and fit errors η. The inhibitory weights are wI = −gwE with g = 5. Star marker in panels (A) and (C) denotes target working point (10, 10) mV.

Similar displays as in Senk et al. (2020, Figure 5).

with the time constant of the rate model τ , the multi-valued
Lambert WB function3 on branch B (Corless et al., 1996),
and the effective connectivity profile c

(
k
)
, which combines the

weights wb and the Fourier transforms of the spatial connectivity
profiles. Note that the approach generalizes from the boxcar-
shaped profiles used here to any symmetric probability density
function. NNMT provides an implementation to solve this
characteristic equation in its linear_stability module
using the spatialmodule for the profile:

import nnmt.spatial as spatial
import nnmt.linear_stability as linstab

connectivity = (
W_rate ∗ spatial._ft_spatial_profile_boxcar(

k_wavenumber,
space_model.network_params[’width’]))

eigenvalue = (
linstab._solve_chareq_lambertw_constant_delay(

branch_nr, tau_rate,
space_model.network_params[’delay’],
connectivity))

Figure 9A shows that the computed eigenvalues come for the
given network parameters in complex conjugate pairs. The
branch with the largest real part is the principal branch (B = 0).
Temporal oscillations are expected to occur if the real part of

3The Lambert WB function is defined as z = WB (z) eWB(z) for z ∈ C and has

infinitely many solutions, numbered by the branches B.

the eigenvalue on the principal branch becomes positive; the
oscillation frequency can then be read off the imaginary part
of that eigenvalue. In this example, the largest eigenvalue λ∗

on the principal branch has a real part that is just above zero.
There exists a supercritical Hopf bifurcation and the delay as the
bifurcation parameter is chosen large enough such that the model
is just beyond the bifurcation point separating the stable from the
instable state. The respective wave number k∗ is positive, which
indicates spatial oscillations as well. The oscillations in both time
and space predicted for the rate model imply that the activity
of the corresponding spiking model might exhibit wave trains,
i.e., temporally and spatially periodic patterns. The predicted
propagation speed of the wave trains is given by the phase velocity
Im [λ∗] /k∗.

To determine whether the results obtained with the ratemodel
are transferable to the spiking model, Figure 9B interpolates
the analytical solutions of the rate model [α = 0, evaluating
Equation (18)] to solutions of the spiking model (α = 1,
accounting for the transfer function Ncn,s), which can only
be computed numerically. Thus, the parameter α interpolates
between the characteristic equations of these two models which
primarily differ in their transfer function; for details see Senk
et al. (2020, Section F.2 Linear interpolation between the transfer
functions). Since the eigenvalues estimated this way show only
little differences between rate and spiking model, we conclude
that predictions from the rate model should hold also for the
spiking model in the parameter regime tested. Following the
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A B

FIGURE 9 | Linear stability analysis of spatially structured network model.

(A) Analytically exact solution for real (top) and imaginary (bottom) part of

eigenvalue λ vs. wavenumber k using rate model derived by fit of spiking

model at working point (µ, σ) = (10, 10) mV. Color-coded branches of

Lambert WB function; maximum real eigenvalue (star marker) on principal

branch (B = 0). (B) Linear interpolation between rate (α = 0) and spiking

model (α = 1) by numerical integration of Senk et al. (2020, Equation 30) (solid

line) and by numerically solving the characteristic equation in Senk et al. (2020,

Equation 29) (circular markers). Star markers at same data points as in (A).

Similar displays as in Senk et al. (2020, Figure 6).

argument of Senk et al. (2020), the predicted pattern formation
could next be tested in a numerical simulation of the discrete
spiking network model. Their Figure 7c for the delay d = 1.5ms
shows such results with the same parameters as used here; this
figure also illustrates transitions from homogeneous states to
oscillatory states by changing the delay (panels b, c, and e).

4. DISCUSSION

Mean-field theory grants important insights into the dynamics
of neuronal networks. However, the lack of a publicly available
numerical implementation for most methods entails a significant
initial investment of time and effort prior to any scientific
investigations. In this paper, we present the open-source toolbox
NNMT, which currently focuses on methods for LIF neurons but
is intended as a platform for collecting standard implementations
of various neuronal network model analyses based on mean-
field theory that have been thoroughly tested and validated by
the neuroscientific community (Riquelme and Gjorgjieva, 2021).
As use cases, we reproduce known results from the literature:
the non-linear relation between the firing rates and the external
input of an E-I-network (Sanzeni et al., 2020), the firing rates of
a cortical microcircuit model, its response to oscillatory input,
its power spectrum, and the identification of the connections

that predominantly contribute to the model’s low frequency
oscillations (Schuecker et al., 2015; Bos et al., 2016), and pattern
formation in a spiking network, analyzed by mapping it to a
rate model and conducting a linear stability analysis (Senk et al.,
2020).

In the remainder of the discussion, we compare NNMT to
other tools suited for network model analysis. We expand on
the different use cases of NNMT and also point out the inherent
limitations of analytical methods for neuronal network analysis.
We conclude with suggestions on how new tools can be added to
NNMT and how the toolbox may grow and develop in the future.

4.1. Comparison to Other Tools
There are various approaches and corresponding tools that can
help to gain a better understanding of a neuronal network
model. There are numerous simulators that numerically solve the
dynamical equations for concrete realizations of a networkmodel
and all its stochastic components, often focusing either on the
resolution of single-neurons, for example NEST (Gewaltig and
Diesmann, 2007), Brian (Stimberg et al., 2019), or Neuron (Hines
and Carnevale, 2001), or on the population level, for example
TheVirtualBrain (Sanz Leon et al., 2013). Similarly, general-
purpose dynamical system software like XPPAUT (Ermentrout,
2002) can be used. Simulation tools, like DynaSim (Sherfey
et al., 2018), come with enhanced functionality for simplifying
batch analysis and parameter explorations. All these tools yield
time-series of activity, and some of them even provide the
methods for analyzing the generated data. However, simulations
only indirectly link a model’s parameters with its activity: to
gain an understanding of how a model’s parameters influence
the statistics of their activity, it is necessary to run many
simulations with different parameters and analyze the generated
data subsequently.

Other approaches provide a more direct insight into a model’s
behavior on an abstract level: TheVirtualBrain and the Brain
Dynamics Toolbox (Heitmann et al., 2018), for example, allow
plotting a model’s phase space vector field while the parameters
can be changed interactively, allowing for exploration of low-
dimensional systems defined by differential equations without
the need for simulations. XPPAUT has an interface to AUTO-
07P (Doedel and Oldeman, 1998), a software for performing
numerical bifurcation and continuation analysis. It is worth
noting that such tools are limited to models that are defined
in terms of differential equations. Models specified in terms
of update rules, such as binary neurons, need to be analyzed
differently, for example using mean-field theory.

A third approach is to simplify the model analytically and
simulate the simplified version. The simulation platformDiPDE4

utilizes the population density approach to simulate the statistical
evolution of a network model’s dynamics. Schwalger et al. (2017)
start from a microscopic model of generalized integrate-and-
fire neurons and derive mesoscopic mean-field population
equations, which reproduce the statistical and qualitative
behavior of the homogeneous neuronal sub-populations.
Similarly, Montbrió et al. (2015) derive a set of non-linear

4http://alleninstitute.github.io/dipde
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differential equations describing the dynamics of the rate
and mean membrane potentials of a population of quadratic
integrate-and-fire (QIF) neurons. The simulation platform
PyRates (Gast et al., 2019) provides an implementation of this
QIF mean-field model, and allows simulating them to obtain the
temporal evolution of the population activity measures.

However, mean-field and related theories can go beyond
such reduced dynamical equations: they can directly link model
parameters to activity statistics, and they can even provide access
to informative network properties that might not be accessible
otherwise. The spectral bound (Rajan and Abbott, 2006) of the
effective connectivity matrix in linear response theory (Lindner
et al., 2005; Pernice et al., 2011; Trousdale et al., 2012) is an
example of such a property. It is a measure for the stability of the
linearized system and determines, for example, the occurrence
of slow dynamics and long-range correlations (Dahmen et al.,
2022). Another example is the sensitivity measure presented in
Section 3.3.3, which directly links a network model’s connectivity
with the properties of its power spectrum. Thesemeasures are not
accessible via simulations. They require analytical calculation.

Similarly, NNMT is not a simulator. NNMT is a collection
of mean-field equation implementations that directly relate a
model’s parameters to the statistics of its dynamics or to other
informative properties. It provides these implementations in
a format that makes them applicable to as many network
models as possible. This is not to say that NNMT does not
involve numerical integration procedures; solving self-consistent
equations, such as in the case of the firing rates calculations in
Section 3.2.1 and Section 3.2.2, is a common task, and a collection
of respective solvers is part of NNMT.

4.2. Use Cases
In Section 3, we present concrete examples of how to apply some
of the tools available. Here, we revisit some of the examples
to highlight the use cases NNMT lends itself to, as well as
provide some ideas for how the toolbox could be utilized in
future projects.

Analytical methods have the advantage of being fast, and
typically they only require a limited amount of computational
resources. The computational costs for calculating analytical
estimates of dynamical network properties like firing rates, as
opposed to the costs of running simulations of a network model,
are independent of the number of neurons the network is
composed of. This is especially relevant for parameter space
explorations, for which many simulations have to be performed.
To speed up prototyping, a modeler can first perform a parameter
scan using analytical tools from NNMT to get an estimate of
the right parameter regimes and subsequently run simulations
on this restricted set of parameters to arrive at the final model
parameters. An example of such a parameter scan is given in
Section 3.2.1, where the firing rates of a network are studied as
a function of the external input.

Additionally to speeding up parameter space explorations,
analytical methods may guide parameter space explorations in
another way: namely, by providing an analytical relation between
network model parameters and network dynamics, which allows
a targeted adjustment of specific parameters to achieve a desired

network activity. The prime example implemented in NNMT is
the sensitivity measure presented in Section 3.3.3, which provides
an intuitive relation between the network connectivity and the
peaks of the power spectrum corresponding to the dominant
oscillation frequencies. As shown in the final part of Section 3.3.3,
the sensitivity measure identifies the connections which need to
be adjusted in order to modify the dominant oscillation mode
in a desired manner. This illustrates a mean-field method that
provides a modeler with additional information about the origin
of a model’s dynamics, such that a parameter space exploration
can be restricted to the few identified crucial model parameters.

A modeler investigating which features of a network model
are crucial for the emergence of certain activity characteristics
observed in simulationsmight be interested in comparingmodels
of differing complexity. The respective mappings can be derived
in mean-field theory, and one variant included in NNMT, which
is presented in Section 3.4, allows mapping a LIF network to a
simpler rate network. This is useful to investigate whether spiking
dynamics is crucial for the observed phenomenon.

On a general note, which kind of questions researchers pursue
is limited by and therefore depends on the tools they have
at hand (Dyson, 2012). The availability of sophisticated neural
network simulators for example has lead to the development of
conceptually new and more complex neural network models,
precisely because their users could focus on actual research
questions instead of implementations. We hope that collecting
useful implementations of analytical tools for network model
analysis will have a similar effect on the development of new tools
and that it might lead to new, creative ways of applying them.

4.3. Limitations
As a collection of analytical methods, NNMT comes with
inherent limitations that apply to any toolbox for analytical
methods: it is restricted to network, neuron, and synapse models,
as well as observables, for which a mean-field theory exists, and
the tools are based on analytical assumptions, simplifications,
and approximations, restricting their valid parameter regimes
and their explanatory power, which we expand upon in the
next paragraphs.

Analytical methods can provide good estimates of network
model properties, but there are limitations that must be
considered when interpreting results provided by NNMT:
First of all, the employed numerical solvers introduce
numerical inaccuracies, but they can be remedied by changing
hyperparameters such as integration step sizes or iteration
termination thresholds. More importantly, analytical methods
almost always rely on approximations, which can only be justified
if certain assumptions are fulfilled. Typical examples of such
assumptions are fast or slow synapses, or a random connectivity.
If such assumptions are not met, at least approximately, and
the valid parameter regime of a tool is left, the corresponding
method is not guaranteed to give reliable results. Hence, it is
important to be aware of a tool’s limitations, which we aim to
document as thoroughly as possible.

An important assumption of mean-field theory is
uncorrelated Poissonian inputs. As discussed in Section 3.2.1,
asynchronous irregular activity is a robust feature of inhibition
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dominated networks, and mean-field theory is well-suited to
describe the activity of such models. However, if a network
model features highly correlated activity, or strong external
input common to many neurons, approximating the input by
uncorrelated noise no longer holds and mean-field estimates
become unreliable.

In addition to the breakdown of such assumptions, some
approaches, like linear response theory, rely on neglecting higher
order terms. This restricts the tools’ explanatory power, as they
cannot predict higher order effects, such as the presence of higher
harmonics in a network’s power spectrum. Addressing these
deficiencies necessitates using more elaborate analyses, and users
should be aware of such limitations when interpreting the results.

Finally, a specific limitation of NNMT is that it currently only
collects methods for LIF neurons. However, one of the aims of
this paper is to encourage other scientists to contribute to the
collection, and we outline how to do so in the following section.

4.4. How to Contribute and Outlook
A toolbox like NNMT always is an ongoing project, and there are
various aspects that can be improved. In this section, we briefly
discuss how available methods could be improved, what and how
new tools could be added, as well as the benefits of implementing
a new method with the help of NNMT.

First of all, NNMT in its current state is partly vectorized
but the included methods are not parallelized, e.g., using
multiprocessing or MPI for Python (mpi4py). Vectorization
relies on NumPy (Harris et al., 2020) and SciPy (Virtanen
et al., 2020), which are thread-parallel for specific backends, e.g.,
IntelMKL. With the tools available in the toolbox at the moment,
run-time only becomes an issue in extensive parameter scans, for
instance, when the transfer function needs to be calculated for
a large range of frequencies. To further reduce the runtime, the
code could be made fully vectorized. Alternatively, parallelization
of many tools in NNMT is straightforward, as many of them
include for loops over the different populations of a network
model and for loops over the different analysis frequencies. A
third option is just-in-time compilation, as provided by Numba
(Lam et al., 2015).

Another aspect to consider is the range of network models a
tool can be applied to. Thus far, the toolbox primarily supports
arbitrary block structured networks. Future developments could
extend the class of networks to even more general models.

Due to the research focus at our lab, NNMT presently mainly
contains tools for LIF neurons in the fast synaptic regime and
networks with random connectivity. Nonetheless, the structure
of NNMT allows for adding methods for different neuron types,
like for example binary (Ginzburg and Sompolinsky, 1994)
or conductance-based neurons (Izhikevich, 2007; Richardson,
2007), as well as more elaborate network models. Another
way to improve the toolbox is adding tools that complement
the existing ones: As discussed in Section 4.3, many mean-
field methods only give valid results for certain parameter
ranges. Sometimes, there exist different approximations for the
same quantity, valid in complementary parameter regimes. A
concrete example is the currently implemented version of the
transfer function for leaky integrate-and-fire neurons, based

on Schuecker et al. (2015), which gives a good estimate for
small synaptic time constants compared to the membrane time
constant τs/τm≪1. A complementary estimate for τs/τm≫1 has
been developed by Moreno-Bote and Parga (2006). Similarly, the
current implementation of the firing rates of leaky integrate-and-
fire neurons, based on the work of Fourcaud and Brunel (2002),
is valid for τs/τm ≪ 1. Recently, van Vreeswijk and Farkhooi
(2019) have developed a method accurate for all combinations
of synaptic and membrane time constants.

In the following, we explain how such implementations
can be added and how using NNMT helps implementing
new methods. Clearly, the implementations of NNMT help
implementing methods that build on already existing ones. An
example is the firing rate for LIF neurons with exponential
synapses nnmt.lif.exp._firing_rates() which wraps
the calculation of firing rates for LIF neurons with delta synapses
nnmt.lif.delta._firing_rates(). Additionally, the
toolbox may support the implementation of tools for other
neuron models. As an illustration, let us consider adding the
computation of themean activity for a network of binary neurons
(included in NNMT 1.1.0). We start with the equations for the
mean input µa, its variance σ 2

a , and the firing rates m (Helias
et al., 2014, Equations 4, 6, and 7)

µa (m) =
∑

b

KabJabmb ,

σ 2
a (m) =

∑

b

KabJ
2
abmb (1−mb) , (19)

ma (µa, σa) =
1

2
erfc

(
2a − µa√

2σa

)
,

with indegree matrix Kab from population b to population a,
synaptic weight matrix Jab, and firing-threshold2a. The sum

∑
b

may include an external population providing input to themodel.
This set of self-consistent equations has the same structure as
the self-consistent equations for the firing rates of a network
of LIF neurons, Equation (8): the input statistics are given as
functions of the rate, and the rate is given as a function of
the input statistics. Therefore, it is possible to reuse the firing
rate integration procedure for LIF neurons, providing immediate
access to the two different methods presented in Section 3.2.1.
Accordingly, it is sufficient to implement Equation (19) in a new
submodule nnmt.binary and apply the solver provided by
NNMT to extend the toolbox to binary neurons.

The above example demonstrates the benefits of collecting
analytical tools for network model analysis in a common
framework. The more methods and corresponding solvers
the toolbox comprises, the easier implementing new methods
becomes. Therefore, contributions to the toolbox are highly
welcome; this can be done via the standard pull request
workflow on GitHub (see the “Contributors guide” of the
official documentation of NNMT2). We hope that in the future,
many scientists will contribute to this collection of analytical
methods for neuronal network model analysis, such that, at some
point, we will have tools from all parts of mean-field theory
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of neuronal networks, made accessible in a usable format to
all neuroscientists.
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A. APPENDIX

A.1. Siegert Implementation
Here, we describe how we solve the integral in Equation (4)
numerically in a fully vectorized manner. The difficulty in
Equation (4), φ(µ, σ ) = 1/[τr + τm

√
πI(Ṽ0, Ṽth)] where

Ṽ0 = Ṽ0(µ, σ ) and Ṽth = Ṽth(µ, σ ) are determined
by either Equation (5) or Equation (10), is posed by
the integral

I(Ṽ0, Ṽth) =
∫ Ṽth

Ṽ0

es
2
(1+ erf(s))ds. (A1)

This integral is problematic due to the multiplication of es
2
and

1 + erf(s) in the integrand which leads to overflow and loss of
significance.

To address this, we split the integral into different
domains depending on the sign of the integration
variable. Furthermore, we use the scaled complementary
error function

erf(s) = 1− e−s2erfcx(s) (A2)

to extract the leading exponential contribution. Importantly,
erfcx(s) decreases monotonically from erfcx(0) = 1 with
power law asymptotics erfcx(s) ∼ 1/(

√
πs), hence it does

not contain any exponential contribution. For positive s, the
exponential contribution in the prefactor of erfcx(s) cancels

the es
2
factor in the integrand. For negative s, the integrand

simplifies even further to es
2
(1 + erf(−s)) = erfcx(s) using

erf(−s) = −erf(s). In addition to erfcx(s), we employ the
Dawson function

D(s) = e−s2
∫ s

0
er

2
dr (A3)

to solve some of the integrals analytically. The Dawson
function has a power law tail, D(s) ∼ 1/(2s); hence, it
also does not carry an exponential contribution. Both erfcx(s)
and the Dawson function are fully vectorized in SciPy
(Virtanen et al., 2020).

Any remaining integrals are solved using Gauss–Legendre
quadrature (Press et al., 2007). By construction, Gauss–Legendre
quadrature of order k solves integrals of polynomials up to degree
k on the interval [−1, 1] exactly. Thus, it gives very good results if
the integrand is well approximated by a polynomial of degree k.
The quadrature rule itself is

∫ b

a
f (s)ds ≈

b− a

2

k∑

i=1

wif

(
b− a

2
ui +

b+ a

2

)
, (A4)

where the ui are the roots of the Legendre polynomial of order
k and the wi are appropriate weights such that a polynomial of
degree k is integrated exactly. We use a fixed order quadrature for
which Equation (A4) is straightforward to vectorize to multiple
a and b. We determine the order of the quadrature iteratively
by comparison with an adaptive quadrature rule; usually, a small
order k = O(10) already yields very good results for an erfcx(s)
integrand.

Inhibitory Regime
First, we consider the case where lower and upper bound of
the integral are positive, 0 < Ṽ0 < Ṽth. This corresponds
to strongly inhibitory mean input. Expressing the integrand in
terms of erfcx(s) and using the Dawson function, we get

Iinh(Ṽ0, Ṽth) = 2eṼ
2
thD(Ṽth)− 2eṼ

2
0D(Ṽ0)−

∫ Ṽth

Ṽ0

erfcx(s)ds.

The remaining integral is evaluated using Gauss–Legendre
quadrature, Equation (A4). We extract the leading contribution

eṼ
2
th from the denominator in Equation (4) and arrive at

φ(µ, σ ) =
e−Ṽ2

th

τre
−Ṽ2

th + τm
√

π
(
e−Ṽ2

th Iinh(Ṽ0, Ṽth)
) . (A5)

Extracting eṼ
2
th from the denominator reduces the latter

to 2τm
√

πD(Ṽth) and exponentially small correction terms
(remember 0 < Ṽ0 < Ṽth becauseV0 < Vth), thereby preventing
overflow.

Excitatory Regime
Second, we consider the case where lower and upper bound of
the integral are negative, Ṽ0 < Ṽth < 0. This corresponds
to strongly excitatory mean input. In this regime, we change
variables s → −s to make the domain of integration positive.
Using erf(−s) = −erf(s) as well as erfcx(s), we get

Iexc(Ṽ0, Ṽth) =
∫ |Ṽ0|

|Ṽth|
erfcx(s)ds.

Thus, we evaluate Equation (4) as

φ(µ, σ ) =
1

τr + τm
√

π
∫ |Ṽ0|
|Ṽth|

erfcx(s)ds
. (A6)

In particular, there is no exponential contribution involved in this
regime.

Intermediate Regime
Last, we consider the remaining case Ṽ0 ≤ 0 ≤ Ṽth. We split the
integral at zero and use the previous steps for the respective parts
to get

Iinterm(Ṽ0, Ṽth) = 2eṼ
2
thD(Ṽth)+

∫ |Ṽ0|

Ṽth

erfcx(s)ds.

Note that the sign of the second integral depends on whether
|Ṽ0| > Ṽth (+) or not (−). Again, we extract the leading

contribution eṼ
2
th from the denominator in Equation (4) and

arrive at

φ(µ, σ ) =
e−Ṽ2

th

τre
−Ṽ2

th + τm
√

π
(
e−Ṽ2

th Iinterm(Ṽ0, Ṽth)
) . (A7)

As before, extracting eṼ
2
th from the denominator prevents

overflow.
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Deterministic Limit
The deterministic limit σ → 0 corresponds to |Ṽ0|, |Ṽth| → ∞
for both Equation (5) and Equation (10). In the inhibitory and the
intermediate regime, we see immediately that φ(µ, σ → 0) → 0

due to the dominant contribution e−Ṽ2
th . In the excitatory regime,

we use the asymptotics erfcx(s) ∼ 1/(
√

πs) to get

I(Ṽ0, Ṽth) →
∫ |Ṽ0|

|Ṽth|

1
√

πs
ds =

1
√

π
ln

|Ṽ0|
|Ṽth|

.

Inserting this into Equation (4) yields

φ(µ, σ ) →





1

τr+τm ln
µ−V0
µ−Vth

if µ > Vth

0 otherwise
, (A8)

which is the firing rate of a leaky integrate-and-fire neuron
driven by a constant input (Gerstner et al., 2014). Thus, this
implementation also tolerates the deterministic limit of a very
small noise intensity σ .

TABLE A1 | Microcircuit Parameters.

Symbol Value (Potjans and

Diesmann, 2014)

Value (Bos

et al., 2016)

Description

K4E,4I 795 675 In-degree from 4I to 4E

K4E,ext 2100 1780 External in-degree to 4E

D(ω) none truncated

Gaussian

Delay distribution

de ± δde 1.5± 0.75ms 1.5± 1.5ms Mean and standard

deviation of excitatory

delay

di ± δdi 0.75± 0.375ms 0.75±
0.75ms

Mean and standard

deviation of inhibitory

delay

Parameter adaptions used here are introduced by Bos et al. (2016) compared to original

microcircuit model. Kij denotes the in-degrees from population j to population i. The delays

in the simulated networks were drawn from a truncated Gaussian distribution with the

given mean and standard deviation. The mean-field approximation of the microcircuit by

Potjans and Diesmann (2014) assumes the delay to be fixed at the mean value, which is

specified in the toolbox by setting the parameter delay_dist to none.

A.2. Transfer Function Notations
In Section 3.3.1 we introduce the analytical form of the
transfer function implemented in the toolbox. Schuecker
et al. (2015), derive a more general form of the transfer
function, which includes a modulation of the variance
of the input. Here we compare the notation used in
Equation (11) to the notation used in Schuecker et al. (2015, Eq.
29).

Schuecker et al. (2015) define the modulations of input mean
and variance as

µ(t) = µ + ǫµ eiωt , (A9)

σ 2(t) = σ 2 +Hσ 2 eiωt ,

and introduce the transfer function in terms of its influence on
the firing rate

ν(t)/ν0 = 1+ n (ω) eiωt ,

where ν0 is the stationary firing rate. Here the transfer
function n (ω) includes contributions of both the modulation
of the mean nG(ω) ∝ ǫ and the modulation of the
variance nH(ω) ∝ H. We write the modulation of the
mean as

µ(t) = µ + δµ eiωt ,

implying that δµ corresponds to ǫµ in Equation (A9). As we
only consider the modulation of the mean, the firing rate can be
rewritten as

ν(t) = ν + N (ω) δµ eiωt ,

where we moved the stationary firing rate ν to the right hand
side and included it in the definition of the transfer function
N (ω). In the main text we emphasize that µ(t) and ν(t) are
physical quantities by only considering the real part of complex
contributions. Additionally, we swap the voltage boundaries in
Equation (11), introducing a canceling sign change in both
the numerator and the denominator. This reformulation was
chosen to align the presented formula with the implementation in
the toolbox.
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