5 research outputs found

    Cultural Event Recognition with Visual ConvNets and Temporal Models

    Get PDF
    This paper presents our contribution to the ChaLearn Challenge 2015 on Cultural Event Classification. The challenge in this task is to automatically classify images from 50 different cultural events. Our solution is based on the combination of visual features extracted from convolutional neural networks with temporal information using a hierarchical classifier scheme. We extract visual features from the last three fully connected layers of both CaffeNet (pretrained with ImageNet) and our fine tuned version for the ChaLearn challenge. We propose a late fusion strategy that trains a separate low-level SVM on each of the extracted neural codes. The class predictions of the low-level SVMs form the input to a higher level SVM, which gives the final event scores. We achieve our best result by adding a temporal refinement step into our classification scheme, which is applied directly to the output of each low-level SVM. Our approach penalizes high classification scores based on visual features when their time stamp does not match well an event-specific temporal distribution learned from the training and validation data. Our system achieved the second best result in the ChaLearn Challenge 2015 on Cultural Event Classification with a mean average precision of 0.767 on the test set.Comment: Initial version of the paper accepted at the CVPR Workshop ChaLearn Looking at People 201

    Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction

    Get PDF
    Visual media are powerful means of expressing emotions and sentiments. The constant generation of new content in social networks highlights the need of automated visual sentiment analysis tools. While Convolutional Neural Networks (CNNs) have established a new state-of-the-art in several vision problems, their application to the task of sentiment analysis is mostly unexplored and there are few studies regarding how to design CNNs for this purpose. In this work, we study the suitability of fine-tuning a CNN for visual sentiment prediction as well as explore performance boosting techniques within this deep learning setting. Finally, we provide a deep-dive analysis into a benchmark, state-of-the-art network architecture to gain insight about how to design patterns for CNNs on the task of visual sentiment prediction.Comment: Preprint of the paper accepted at the 1st Workshop on Affect and Sentiment in Multimedia (ASM), in ACM MultiMedia 2015. Brisbane, Australi

    Recognizing and Curating Photo Albums via Event-Specific Image Importance

    Full text link
    Automatic organization of personal photos is a problem with many real world ap- plications, and can be divided into two main tasks: recognizing the event type of the photo collection, and selecting interesting images from the collection. In this paper, we attempt to simultaneously solve both tasks: album-wise event recognition and image- wise importance prediction. We collected an album dataset with both event type labels and image importance labels, refined from an existing CUFED dataset. We propose a hybrid system consisting of three parts: A siamese network-based event-specific image importance prediction, a Convolutional Neural Network (CNN) that recognizes the event type, and a Long Short-Term Memory (LSTM)-based sequence level event recognizer. We propose an iterative updating procedure for event type and image importance score prediction. We experimentally verified that image importance score prediction and event type recognition can each help the performance of the other.Comment: Accepted as oral in BMVC 201

    From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction

    Get PDF
    Visual multimedia have become an inseparable part of our digital social lives, and they often capture moments tied with deep affections. Automated visual sentiment analysis tools can provide a means of extracting the rich feelings and latent dispositions embedded in these media. In this work, we explore how Convolutional Neural Networks (CNNs), a now de facto computational machine learning tool particularly in the area of Computer Vision, can be specifically applied to the task of visual sentiment prediction. We accomplish this through fine-tuning experiments using a state-of-the-art CNN and via rigorous architecture analysis, we present several modifications that lead to accuracy improvements over prior art on a dataset of images from a popular social media platform. We additionally present visualizations of local patterns that the network learned to associate with image sentiment for insight into how visual positivity (or negativity) is perceived by the model.Comment: Accepted for publication in Image and Vision Computing. Models and source code available at https://github.com/imatge-upc/sentiment-201

    Cultural event recognition with visual ConvNets and temporal models

    No full text
    This paper presents our contribution to the ChaLearn Challenge 2015 on Cultural Event Classification. The challenge in this task is to automatically classify images from 50 different cultural events. Our solution is based on the combination of visual features extracted from convolutional neural networks with temporal information using a hierarchical classifier scheme. We extract visual features from the last three fully connected layers of both CaffeNet (pretrained with ImageNet) and our fine tuned version for the ChaLearn challenge. We propose a late fusion strategy that trains a separate low-level SVM on each of the extracted neural codes. The class predictions of the low-level SVMs form the input to a higher level SVM, which gives the final event scores. We achieve our best result by adding a temporal refinement step into our classification scheme, which is applied directly to the output of each low-level SVM. Our approach penalizes high classification scores based on visual features when their time stamp does not match well an event-specific temporal distribution learned from the training and validation data. Our system achieved the second best result in the ChaLearn Challenge 2015 on Cultural Event Classification with a mean average precision of 0.767 on the test set.Peer Reviewe
    corecore