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Abstract

Visual media have become a crucial part of our social lives. The throughput of generated multimedia content, together
with its richness for conveying sentiments and feelings, highlights the need of automated visual sentiment analysis
tools. We explore how Convolutional Neural Networks (CNNs), a computational learning paradigm that has shown
outstanding performance in several vision tasks, can be applied to the task of visual sentiment prediction by fine-
tuning a state-of-the-art CNN. We analyze its architecture, studying several performance boosting techniques, which
led to a network tuned to achieve a 6.1% absolute accuracy improvement over the previous state-of-the-art on a dataset
of images from a popular social media platform. Finally, we present visualizations of local patterns that the network
associates to each image’s sentiment.
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1. Introduction

The amount of user-generated multimedia content
that is uploaded to social networks every day has ex-
perienced an impressive growth in the last few years.
They are the means by which most of their users express
their feelings and opinions about nearly every event in
their lives. Moreover, visual contents have become a
very natural and rich media to share emotions and sen-
timents.

Affective Computing [1] is lately drawing the at-
tention of researchers from different fields, including
robotics, entertainment and medicine. This increasing
interest can be attributed to the numerous successful ap-
plications, such as emotional understanding of viewer
responses to advertisements using facial expressions [2]
and monitoring of emotional patterns to help patients
suffering from mental health disorder [3]. However, due
to the complexity of the task, the understanding of im-
age and video processing techniques for automatic emo-
tion and sentiment detection in multimedia is still far
from other computer vision tasks where machines are
approaching or have exceeded human performance. The
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concepts of emotion and sentiment hold a close con-
nection, albeit they differ in important aspects of their
meaning. Emotion is usually defined as high intensity,
but relatively brief experience, onset by a stimuli [4, 5],
whereas sentiment reflects an attitude, disposition or
opinion towards a certain topic [6] and usually implies a
longer-lived experience than that in emotion. Through-
out this work we refer to sentiment values as a polarity
that can be either positive or negative, although some
works also consider the neutral class or even a finer
scale that accounts for different strengths [7]. Since the
data used in our experiments is annotated using crowd-
sourcing, we believe that the binary binning is helpful
to force the annotators to decide between two polarities
rather than tend toward a neutral rating.

The state-of-the-art in fundamental vision tasks has
recently undergone a great performance improvement
thanks to Convolutional Neural Networks (CNNs) [8, 9,
10], fact that led us to explore the potential of trans-
ferring these techniques to a more abstract task such
as visual sentiment prediction, i.e. automatically de-
termining the sentiment that an image would provoke
to a human viewer. Given the difficulty of collecting
large-scale datasets with reliable sentiment annotations,
our efforts focus on understanding domain-transferred
CNNs for visual sentiment prediction by analyzing the
performance of a state-of-the-art architecture fine-tuned
for this task.
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Figure 1: Overview of the proposed visual sentiment prediction
framework.

In this paper, we extend our previous work in [11],
where we studied the suitability of domain transferred
CNNs for visual sentiment prediction. The new contri-
butions of this paper include: (1) an extension of the
fine-tuning experiment on a larger set of images with
more ambiguous annotations, (2) a study of the weights
initialization’s impact by changing the original domain
from which the learning is transferred from, (3) a new
architecture for the layer addition experiment, and (4) a
visualization of the local image regions that contribute
to the overall sentiment prediction.

2. Related Work

Computational affective understanding for visual
multimedia has been an area of research interest in
several in the past few years and resulted in the de-
velopment of a number of handcrafted feature repre-
sentations. Color Histograms and SIFT-based Bag-of-
Words, common low-level image descriptors used in vi-
sion recognition tasks, were evaluated in [12] for the
task of visual sentiment prediction. Given the close re-
lationship between Art and Psychology, some other re-
search has also employed visual descriptors inspired by
artistic disciplines to visual emotion classification [13]
and automatic image adjustment of emotional reactions
[14]. In [15] and [16], a Visual Sentiment Ontology
consisting of adjective-noun pairs (ANPs) was proposed
as a mid-level representation to bridging the affective
gap between low-level visual features and high-level af-
fective semantics. A bank of detectors was also pro-
posed in [15] and [16], called SentiBank and MVSO,
respectively, that can automatically extract these mid-
level representations. Unlike the former methods, which
are trained and evaluated on large scale datasets with
weak ANP labels, our work focuses on the use of im-
ages with strong sentiment labels collected by means of
crowd-sourcing.

The suitability of Convolutional Neural Networks
(CNNs) for some computer vision tasks was studied
in the past [8]. Nevertheless, it has been the cre-
ation of large-scale datasets such as [17] and the rise

of graphical processing units (GPUs) that has led them
to show outstanding performance in several vision tasks
[9, 18, 19]. The potential of CNNs is not restricted to
domains where large-scale data collections are avail-
able, as they have been proven very effective in trans-
fer learning experiments [20]. These transfer learn-
ing techniques comprise the extraction of off-the-shelf
features from intermediate layers activations in a pre-
trained CNN [21, 22], as well as the fine-tuning of such
pre-trained models for new tasks [23]. The standard
fine-tuning procedure described in [24] has shown a su-
perior performance as compared to the use of CNNs
as generic feature extractors [25]. Further insights on
the best practices for the fine-tuning process are devel-
oped in [26], where slight variations are recommended
depending on the visual similarity between the original
and target domains.

The suitability of CNNs for transfer learning was ex-
plored for the task of visual sentiment prediction in [7],
where it was shown that off-the-shelf visual descriptors
could outperform hand-crafted low-level features and
SentiBank [15]. The performance of CNNs for visual
sentiment prediction was further explored in [27], where
a custom CNN was designed for visual sentiment pre-
diction, but very little intuition for why their network
would improve on the state-of-the-art architectures was
given. In this work, we pre-train with a classical, but
proven CNN and develop a thorough analysis of the net-
work in order to gain insight in the design and training
of CNNs for the task of visual sentiment prediction.

3. Methodology

The CNN architecture employed in our experiments
is CaffeNet, an AlexNet-styled network that differs from
the ILSVRC2012 winning architecture [9] in the order
of the pooling and normalization layers. As depicted in
Figure 2, this CNN is composed by five convolutional
layers and three fully connected layers. The rectified
linear unit (ReLU) non-linearity, f (x) = max(0, x), is
used as the activation function. The first two convolu-
tional layers are followed by max-pooling and local re-
sponse normalization layers, while conv5 is followed by
a max-pooling layer. Finally, the output of the last fully
connected layer, fc8, is fed to a softmax function that
computes the probability distribution over the different
classes. The experiments were performed using Caffe
[28], a publicly available deep learning framework.

The Twitter dataset that was collected and released by
the authors in [27] is used in order to train and evaluate
the performance of our fine-tuned CaffeNet in the task
of visual sentiment prediction. In contrast with other
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Figure 2: The template Convolutional Neural Network architecture employed in our experiments. It is an AlexNet-styled architecture adapted for
visual sentiment prediction.

annotation methods which rely on image metadata, each
one of the 1,269 images in the dataset were labeled into
positive or negative sentiment by five human annotators.
This annotation process was carried out by means of the
Amazon Mechanical Turk platform (for more details on
the dataset construction, please see [27]). Human label-
ing results in a more accurate ground truth, which al-
lows the network to learn better and stronger sentiment-
related concepts. We use only the subset of images that
built consensus among the five annotators, namely five-
agree subset. The 880 images in the five-agree sub-
set were divided into five different folds in order obtain
more statistically meaningful results by applying cross-
validation.

3.1. Fine-tuning CaffeNet for Visual Sentiment

Convolutional Neural Networks (CNNs) contain an
enormous number of parameters that need to be tuned,
so they often require large datasets to be trained from
scratch. This requirement becomes critical in tasks such
as visual sentiment prediction, where there is a wide
variability in visual content composing a positive or
negative class. In addition, for visual sentiment predic-
tion tasks, the size of the datasets is usually constrained
because of the difficulty and expense of acquire high-
quality labels that depend so much on subjective reason-
ing. This problem arises as well for the Twitter dataset
used in our experiments, which is not large enough for
tuning the over 60 million parameters in the CaffeNet
architecture. Previous works [20, 23, 25] have success-
fully dealt with this latter problem by fine-tuning in-
stead of training the network from scratch. The fine-
tuning strategy consists in initializing all the weights in
the network, except the ones in the last layer, using a
pre-trained model instead of using a random initializa-
tion. The last fully connected layer is then discarded
and replaced by a new one, usually containing the same
amount of neurons as classes in the dataset, with a ran-
dom initialization of their weights. Finally, the training

process is started using the data from the target dataset.
The main advantages of this procedure compared to a
random initialization of all the weights are (1) a faster
convergence, since the gradient descent algorithm starts
from a point which is much closer to a local minimum,
and (2) a reduction in the overfitting likelihood when
the training dataset is small [29, 30]. Besides, in a
transfer learning setting where the original and target
domains are similar, pre-training can be seen as addi-
tional training data from which the network may benefit
to achieve a better performance. AlexNet-styled net-
works trained on the ILSVRC2012 dataset have proved
to learn generic features that perform well in several
recognition tasks [21, 22], so a CaffeNet model pre-
trained on ILSVRC2012 is used as the starting point for
the fine-tuning procedure.

As shown in Figure 2, the original fc8 in CaffeNet
is replaced by a two-neuron layer, fc8 twitter, since the
addressed task distinguishes between two classes: pos-
itive and negative sentiment. The weights in this new
layer are initialized from a zero-mean Gaussian distri-
bution with standard deviation 0.01, while the biases are
initially set to zero. The rest of layers are initialized us-
ing the pre-trained model. The network is trained using
stochastic gradient descent, momentum of 0.9 and an
initial base learning rate of 0.001 that is divided by 10
every 6 epochs. In order to compensate the fact that
the weights in the last layer are not initialized using a
pre-trained model, their individual learning rate is set 10
times higher than the base one. Each model is trained
during 65 epochs, i.e. the CNN sees each training image
65 times, using mini-batches of 256 randomly sampled
images each.

A technique that has proven useful in tasks such as
object recognition by previous works [31] is oversam-
pling, which consists in feeding slightly modified ver-
sions of the image (e.g. by applying flips and crops) to
the network, as it helps to deal with the dataset bias [32].
We explore the effectiveness of this strategy for the task
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Figure 3: Experimental setup for the layer analysis using linear classi-
fiers. Activations in each layer are used as visual descriptors in order
to train a classifier.

of visual sentiment prediction by feeding 10 different
combinations of flips and crops of the original image to
the CNN in the test stage. The classification scores for
each combination are fused using an average operation
in order to determine the final decision.

3.2. Layer by layer analysis

Convolutional Neural Networks are complex learning
systems. The optimization problem of designing high
performing architectures using as few resources as pos-
sible is an ongoing area of research. In this section, we
present a series of experiments to analyze the contribu-
tion of the individual layers of the fine-tuned CaffeNet
for the task of visual sentiment prediction. Despite the
output of the studied CNN is the probability of the im-
age belonging to one of the two classes, i.e. positive or
negative sentiment, it is possible to extract the individ-
ual activations at each layer of the architecture and use
them as visual descriptors.

Previous works have used the activations from indi-
vidual layers as visual descriptors to solve different vi-
sion tasks [23, 22], although only fully connected layers
are usually used for this purpose. We further extend this
idea and train classifiers using activations from all the
layers in the architecture, as depicted in Figure 3, so
it is possible to compare the effectiveness of the differ-
ent representations that are learned along the network.
Feature maps from convolutional, pooling and normal-
ization layers were flattened into d-dimensional vectors
before being used to train the classifiers. Two different
classifiers were considered: Support Vector Machine
(SVM) with linear kernel and Softmax. The regular-
ization parameter of each classifier was optimized by
cross-validation.

Figure 4: Layer ablation architectures. The dimension of each layer’s
output is indicated between brackets.

3.3. Layer ablation

While convolutional layers share weights in order to
reduce the amount of hyperparameters in the model,
fully connected layers are densely connected, so they
contain most of the weights in the architecture. There-
fore, the excess of units of this type may lead the model
to poorer generalization capabilities [31, 29].

In our experiments, we explore how the ablation of
fully connected layers and, consequently, a large per-
centage of the architecture’s parameters, affects the per-
formance of fine-tuned CNNs for the task of visual sen-
timent prediction. Two different architectures are stud-
ied, as depicted in Figure 4, where the last or the two
last fully connected layers are removed.

Inspired by the fine-tuning methodology explained
in Section 3.1, where the last layer always contains as
many units as classes in the dataset, we replaced the last
remaining layer by one with 2 neurons, one for positive
and another for negative sentiment, obtaining architec-
tures fc7-2 and fc6-2 in Figure 4. The weights in the
last layer are initialized from a zero-mean Gaussian dis-
tribution with standard deviation 0.01, while the biases
are set to zero. The rest of parameters are loaded from
the pre-trained model. The learning rate of the last layer
is set to be 10 times higher than the base learning rate
to compensate the fact that their weights are randomly
initialized. The rest of training conditions are the same
as in Section 3.1 except for the learning rate of archi-
tecture fc6-2, which was set to 0.0001 in order to avoid
divergence.

3.4. Initialization analysis

Given its success in ILSVRC2012, AlexNet-styled
CNNs have been used for several vision tasks other than
object recognition, such as scene recognition [33] or
adjective-noun pair detection [10, 16]. Since fine-tuning
a CNN can be seen as a transfer learning strategy, we ex-
plored how changing the original domain affects the per-
formance by using different pre-trained models as ini-
tialization for the fine-tuning process, while keeping the
architecture fixed. In addition to the model trained on
ILSVRC 2012 [9] (i.e. CaffeNet), we evaluate models
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trained on Places dataset [33] (i.e. PlacesCNN), which
contains images annotated for scene recognition, and
two sentiment-related datasets: Visual Sentiment Ontol-
ogy (VSO) [15] and Multilingual Visual Sentiment On-
tology (MVSO) [16], which are used to train adjective-
noun pair (ANP) detectors that are later used as a mid-
level representation to predict the sentiment in an im-
age. The model trained on VSO, DeepSentiBank [10],
is a fine-tuning of CaffeNet on VSO. Given the mul-
ticultural nature of MVSO, there is one model for each
language (i.e. English, Spanish, French, Italian, German
and Chinese) and each one of them is obtained by fine-
tuning DeepSentiBank on a specific language subset of
MVSO. All models are fine-tuned for 65 epochs, fol-
lowing the same procedure as in Section 3.1.

3.5. Going deeper: layer addition

The activations in a pre-trained CNN’s last fully con-
nected layer contain the likelihood for the input image
belonging to each class in the original training dataset,
but the regular fine-tuning strategy completely discards
this information. Besides, since fully connected layers
contain most of the weights in the architecture, a large
amount of parameters that may contain useful informa-
tion for the target task are being lost.

In this set of experiments we explore how adding
high-level information by reusing the last layer of pre-
trained CNNs affects their performance when fine-
tuning for visual sentiment prediction. In particular, the
networks pre-trained on ILSVRC2012 (i.e. CaffeNet)
and MVSO-EN are studied. The former was originally
trained to recognize 1,000 object classes, whereas the
latter was used to detect 4,342 different Adjective Noun
Pairs that were designed as a mid-level representation
for visual sentiment prediction.

A 2-neuron layer, namely fc9 twitter, is added on top
of both architectures (Figure 5). The weights in this new
layer are initialized from a zero-mean Gaussian distri-
bution with standard deviation 0.01, while the biases
are set to zero. The parameters in the rest of layers
are loaded from the pre-trained models. The individual

Figure 5: Layer addition architectures. The dimension of each layer’s
output is indicated between brackets.

Table 1: Details of new convolutional layers resulting from converting
our modified CaffeNet to a fully convolutional network (stride=1).

Layer Number of kernels Kernel size (h × w × d)
fc6-conv 4096 6 × 6 × 256
fc7-conv 4096 1 × 1 × 4096

fc8 twitter-conv 2 1 × 1 × 4096

Table 2: Five-fold cross-validation accuracy results on Twitter dataset.
Results are displayed as mean ± std.

Model Five-agree Four-agree Three-agree
Baseline PCNN from [27] 0.783 0.714 0.687

Fine-tuned CaffeNet 0.817 ± 0.038 0.782 ± 0.033 0.739 ± 0.033
Fine-tuned CaffeNet with oversampling 0.830 ± 0.034 0.787 ± 0.039 0.749 ± 0.037

learning rate of fc9 twitter is set to be 10 times higher
than the base learning rate to compensate for the ran-
dom initialization of its parameters. The rest of training
conditions are the same as described in Section 3.1.

3.6. Visualization: fully convolutional network

A very natural way to gain insight about the concepts
learned by the network consists in observing which
parts of an image lead the CNN to classify it either as
positive or negative. We convert the fine-tuned CaffeNet
into a fully convolutional network by replacing its fully
connected layers by convolutional layers (see Table 1
for details), following the method described in [34] and
reusing the weights from the original fully connected
layers for the fully convolutional architecture, so no fur-
ther training is needed.

Since the original architecture contains fully con-
nected layers that implement a dot product operation,
it requires the input to have a fixed size. In contrast,
the fully convolutional network can handle inputs of any
size: by increasing the input size, the dimensions of the
output will increase as well and it will become a pre-
diction map on overlapping patches from the input im-
age. We generate 8×8 prediction maps for the images
of the Twitter five-agree dataset by using inputs of size
451×451 instead of 227×227, which were the required
input dimensions of the original architecture.

4. Experimental results

This section contains the results for the experiments
described in Section 3, as well as intuition and conclu-
sions for such results.

4.1. Fine-tuning CaffeNet for Visual Sentiment

The five-fold cross-validation results for the fine-
tuning experiment on Twitter dataset are detailed in Ta-
ble 2, together with the best five-fold cross-validation
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result in this dataset from [27]. The latter was achieved
using a custom architecture, composed by two convolu-
tional layers and four fully connected layers, that was
trained using the Flickr dataset (VSO) [15] and later
fine-tuned on Twitter dataset. In order to evaluate the
performance of our approach when using images with
more ambiguous annotations, CaffeNet was also fine-
tuned on four-agree and three-agree subsets, i.e. those
containing images that built consensus among at least
four and three annotators, respectively.

These results show that, despite being pre-trained
for a completely different task, the AlexNet-styled ar-
chitecture clearly outperforms the custom architecture
from [27]. This difference suggests that visual senti-
ment prediction architectures may benefit from an in-
creased depth that comes from adding a larger amount
of convolutional layers instead of fully connected ones,
as suggested by [29] for the task of object recognition.
Secondly, this results highlight the importance of high-
level representations for the addressed task, as transfer-
ring learning from object recognition to sentiment pre-
diction results in high accuracy rates.

Averaging over the predictions of modified versions
of the image results in an additional performance boost,
as found out by the authors in [31] for the task of object
recognition. This fact suggests that oversampling helps
to compensate the dataset bias and increases the gener-
alization capability of the system without a penalization
on the prediction speed thanks to the batch computation
capabilities of GPUs.

4.2. Layer by layer analysis
The results for the layer-wise analysis using linear

classifiers are compared in Table 3. The evolution of
the accuracy rates at each layer, for both SVM and Soft-
max classifiers, shows how the learned representation
becomes more effective along the network. While ev-
ery single layer does not introduce a performance boost
with respect to the previous ones, it does not necessarily
mean that the architecture needs to be modified: since
the training of the network is performed in an end-to-
end manner, some of the layers may apply a transfor-
mation to their inputs from which later layers may ben-
efit, e.g. conv5 and pool5 report lower accuracy than the
previous conv4 when used directly for classification, but
the fully connected layers on top of the architecture may
be benefiting from their effect since they produce higher
accuracy rates than conv4.

Previous works have studied the suitability of Sup-
port Vector Machines to classify off-the-shelf visual de-
scriptors extracted from pre-trained CNNs [22], while
some others have even trained these networks using the

Table 3: Layer analysis with linear classifiers: Five-fold cross-
validation accuracy results on five-agree Twitter dataset. Results are
displayed as mean ± std.

Layer SVM Softmax
fc8 0.82 ± 0.055 0.821 ± 0.046
fc7 0.814 ± 0.040 0.814 ± 0.044
fc6 0.804 ± 0.031 0.81 ± 0.038

pool5 0.784 ± 0.020 0.786 ± 0.022
conv5 0.776 ± 0.025 0.779 ± 0.034
conv4 0.794 ± 0.026 0.781 ± 0.020
conv3 0.752 ± 0.033 0.748 ± 0.029
norm2 0.735 ± 0.025 0.737 ± 0.021
pool2 0.732 ± 0.019 0.729 ± 0.022
conv2 0.735 ± 0.019 0.738 ± 0.030
norm1 0.706 ± 0.032 0.712 ± 0.031
pool1 0.674 ± 0.045 0.68 ± 0.035
conv1 0.667 ± 0.049 0.67 ± 0.032

L2-SVM’s squared hinge loss on top of the architecture
[35]. From our layer by layer analysis, it is not possi-
ble to claim that one of the classifiers consistently out-
performs the other for the task of visual sentiment pre-
diction, at least using the proposed CNN in the Twitter
five-agree dataset.

4.3. Layer ablation

The five-fold cross-validation for the fine-tuning of
the ablated architectures are shown in Table 4. Fol-
lowing the behavior observed in the layer-wise analysis
with linear classifiers in Section 4.2, removing layers
from the top of the architecture results in a deterioration
of the classification accuracy.

The drop in accuracy for architecture fc6-2 is larger
than one may expect given the results from the layer
by layer analysis, which denotes that the convergence
from 9,216 neurons in pool5 to a two-layer neuron
might be too sudden. This is not the case of architec-
ture fc7-2, where the removal of more than 16M pa-
rameters produces only a slight deterioration in perfor-
mance. These observations suggest that an intermedi-
ate fully connected layer that provides a softer dimen-
sionality reduction is beneficial for the architecture, but
the addition of a second fully connected layer between
pool5 and the final two-neuron layer produces a small
gain compared to the extra 16M parameters that are be-
ing added. This trade-off is especially important for
tasks such as visual sentiment prediction, where collect-
ing large datasets with reliable annotations is difficult,
and removing one of the fully connected layers in the
architecture might allow training it from scratch using
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Table 4: Layer ablation: Five-fold cross-validation accuracy results
on five-agree Twitter dataset. Results are displayed as mean ± std.

Architecture Without oversampling With oversampling Parameter reduction
fc7-2 0.784 ± 0.024 0.797 ± 0.021 >16M
fc6-2 0.651 ± 0.044 0.676 ± 0.029 >54M

smaller datasets without overfitting the model.

4.4. Initialization analysis

Convolutional Neural Networks that are trained from
scratch using large-scale datasets usually achieve very
similar results regardless of their initialization, but the
fact of fine-tuning on a reduced dataset with low learn-
ing rates seems to increase the influence of the original
model on the final performance, as seen in the results
for the different initializations presented in Table 5.

These numerical results show how most of the mod-
els that were already trained for a sentiment-related task
outperform the ones pre-trained on ILSVRC 2012 and
Places, whose images are mostly neutral in terms of sen-
timent. Because the Twitter dataset used in our experi-
ments was labeled using Amazon Mechanical Turk, the
annotators were required to be U.S. residents, introduc-
ing a certain culture bias in such annotations. This fact,
together with the performance gap of the MVSO-ZH
model with respect to the rest of MVSO models, sug-
gests the existence of a larger culture gap between east-
ern and western cultures. A similar behavior was ob-
served in [16], where the authors reported that using a
Chinese-specific model to predict the sentiment in other
languages reported the worst results in all their cross-
lingual domain transfer experiments.

A comparison of the evolution of the loss function of
the different models during training can be seen in Fig-
ure 6, where it can be observed that the different pre-
trained models need a different amount of iterations un-
til convergence. The DeepSentiBank model seems to
adapt worse than other models to the target dataset al-
beit being pre-trained for sentiment-related task, as can
be seen both in its final accuracy and in its noisy and
slow evolution during training. On the other hand, the
different MVSO models not only provide the top accu-
racy rates, but converge faster and in a smoother way as
well.

4.5. Going deeper: Layer addition

The results for the layer addition experiments, which
are compared in Table 6, show that the accuracy
achieved by reusing all the information in the original
models is poorer than when performing a regular fine-
tuning.

Table 5: Five-fold cross-validation accuracy results for the different
initializations on five-agree Twitter dataset. Results are displayed as
mean ± std.

Pre-trained model Without oversampling With oversampling
CaffeNet 0.817 ± 0.038 0.830 ± 0.034

PlacesCNN 0.823 ± 0.025 0.823 ± 0.026
DeepSentiBank 0.804 ± 0.019 0.806 ± 0.019

MVSO [EN] 0.839 ± 0.029 0.844 ± 0.026
MVSO [ES] 0.833 ± 0.024 0.844 ± 0.026
MVSO [FR] 0.825 ± 0.019 0.828 ± 0.012
MVSO [IT] 0.838 ± 0.020 0.838 ± 0.012
MVSO [DE] 0.837 ± 0.025 0.837 ± 0.033
MVSO [ZH] 0.797 ± 0.024 0.806 ± 0.020

Table 6: Layer addition: Five-fold cross-validation accuracy results
on five-agree Twitter dataset. Results are displayed as mean ± std.

Architecture Without oversampling With oversampling
CaffeNet-fc9 0.795 ± 0.023 0.803 ± 0.034

MVSO-EN-fc9 0.702 ± 0.067 0.694 ± 0.060

One possible reason for the loss of performance with
respect to the regular fine-tuning is the actual informa-
tion being reused by the network. For instance, the
CaffeNet model was trained on ILSVRC 2012 for the
recognition of objects which are mostly neutral in terms
of sentiment, e.g. teapot, ping-pong ball or apron. This
is not the case of MVSO-EN, which was originally used
to detect sentiment-related concepts such as nice car or
dried grass. The low accuracy rates of this last model
may be justified by the low ANP detection rate of the
original MVSO-EN model (0.101 top-1 ANP detection
accuracy in a classification task with 4,342 classes), as
well as by a mismatch between the concepts in the orig-
inal and target domains.

Moreover, the MVSO-EN CNN was originally de-
signed as a mid-level representation, i.e. a concept de-
tector that serves as input to a sentiment classifier. This
is not being fulfilled when fine-tuning all the weights
in the network, so we speculate that freezing the pre-
trained layers and learning only the new weights intro-
duced by fc9 twitter may result in a better use of the

Figure 6: Comparison of the evolution of the loss function on one of
the folds during training.

7



Figure 7: Some examples of the global and local sentiment predictions of the fine-tuned MVSO-EN CNN. The color of the border indicates the
predicted sentiment at global scale, i.e. green for positive and red for negative. The heatmaps in the second row follow the same color code, but
they are not binary: a higher intensity means a stronger prediction towards the represented sentiment.

concept detector and, thus, a boost in performance.

4.6. Visualization

Some examples of the visualization results obtained
using the fine-tuned MVSO-EN CNN, which is the top
performing model among all that have been presented in
this work, are depicted in Figure 7. They were obtained
by resizing the 8×8 prediction maps in the output of the
fully convolutional network to fit each image’s dimen-
sions. Nearest-neighbor interpolation was used in the
resizing process, so that the original prediction block
were not blurred. The probability for each sentiment,
originally in the range [0,1], was scaled to the range [0,
255] and assigned to one RGB channel, i.e. green for
positive and red for negative. It is important to notice
that this process is equivalent to feeding 64 overlapped
patches of the image to the regular CNN and then com-
posing their outputs to build and 8×8 prediction map,
but in a much more efficient manner (while the output

dimension is 64 times larger, the inference time grows
only by a factor of 3). As a consequence, the global
prediction by the regular CNN is not the average of the
64 local predictions in the heatmap, but it is still a very
useful method to understand the concepts that the model
associates to each sentiment.

From the observation of both global and local pre-
dictions, we observe two sources of errors that may be
addressed in future experiments. Firstly, a lack of gran-
ularity in the detection of some high-level semantics is
detected, e.g. the network seems unable to tell a camp-
fire from a burning building, and associates them to the
same sentiment. On the other hand, the decision seems
to be driven mainly by the main object or concept in
the image, whereas the context is vital for the addressed
task. The former source of confusion may be addressed
in future research by using larger datasets, while the
latter may be improved by using other types of neural
networks that have showed increased accuracy in image
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classification benchmarks, e.g. Inception [36] or ResNet
[37] architectures, or using mid-level representations in-
stead of an end-to-end prediction, e.g. freezing all the
weights in the MVSO models and training just the new
fc9 twitter on top of them.

5. Conclusions and future work

We presented an extensive set of experiments com-
paring several fine-tuned CNNs for the task of visual
sentiment prediction. We have shown that deep archi-
tectures can learn useful features in recognizing visual
sentiment in social images, and in particular, we pre-
sented several models that outperform the current state-
of-the-art on a dataset of Twitter photos. Some of these
models actually performed better even with a smaller
number of parameters with respect to the original ar-
chitecture, highlighting the importance of finding a cor-
rect balance in network design when the target task la-
bels can come from a subjective and noisy source. We
also showed that the choice of model pre-training ini-
tialization can make a difference as well when the target
dataset is small. To better understand these models, we
presented a sentiment prediction visualization with spa-
tial localization that helped further diagnose erroneous
classifications as well as better understand learned net-
work representations.

In the future, we plan to study different state-of-the-
art network architectures for visual sentiment analysis.
In addition, we will seek to expand our analysis to larger
and weakly supervised settings as well as develop mod-
els that can learn with high fidelity under noisy labels.
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