837 research outputs found

    PRIMARY USER AUTHENTICATION IN COGNITIVE RADIO NETWORKS: A SURVEY

    Get PDF
    ABSTRACT: For effective usage of radio frequency spectrum, cognitive radio networks have been proposed, allowing the secondary users to occupy the spectrum whenever the primary user is not using it. To avoid interference with the primary user secondary user should constantly check the usage of the spectrum. But achieving a faithful monitoring is not so easy. Hence Primary user Emulation (PUE) attack comes into existence. To counter this attack primary user's signal can be authenticated in the physical layer itself. In this paper, we provide various approaches (dealt in different papers) for authenticating primary users' signals that conforms FCC's requirement

    On robust and secure wireless communication system design using software-defined radios

    Get PDF
    This dissertation is composed of three parts: airborne multi input multi output (MIMO) communications, physical layer authentication, and software radio design for DARPA Spectrum Challenge. A common theme for the three distinct problems is the system perspective that we have adopted throughout this dissertation. Instead of considering isolated issues within these problems, we have provided a holistic design approach to the three problems and have implemented all three systems using the GNU Radio/USRP (Universal Software Radio Peripheral) platform. In the first part, we develop a MIMO communication system for airborne platforms. MIMO communication has long been considered to be suitable only for environment that is rich in scatterers. This, unfortunately is not the case for airborne platforms. However, this lack of scattering can be compensated by the large aperture of the airborne MIMO platform; this is corroborated by our careful analysis using real measurement data. Our analysis of the airborne MIMO channels leads to the development of a variable rate MIMO transceiver architecture. This architecture is numerically shown to improve the bit error rate (BER) over conventional transceiver architectures that are developed for rich scattering environments. A software radio based MIMO system is then implemented to demonstrate experimentally the efficacy of the developed architecture. In the second part, we develop a physical layer authentication scheme as a counter measure to primary user emulation attack (PUEA) in cognitive radio (CR) networks. In this attack, a malicious user emulates the signal characteristics of the primary user (PU) when it is silent which prevents unsuspecting secondary user (SU) from utilizing the network. The developed physical layer authentication is based on embedding cryptographic hash signatures, referred to as authentication tags, within PU\u27s signal constellations. The embedding is performed such that the legacy receivers are not affected. We analyze the scheme using the fast fading Rayleigh channel model and present an optimal scheme to embed signals in PU\u27s constellations which minimizes the tag BER. Experimental results are obtained that corroborate our theoretical claims, thereby establish that reliable authentication can be achieved without sacrificing signal quality at the primary receivers. In the final part, we describe in detail our design of software radios developed as part of the DARPA Spectrum Challenge (DSC), a year long competition that started in January 2013 and concluded in March 2014 with the final tournament held in Arlington, VA at the DARPA headquarter. DSC was comprised of two tournaments, competitive and cooperative. In the competitive mode two radio pairs, each composed of a transmitter and a receiver, are pitted against each other to transmit the most amount of data error-free while operating concurrently in the same frequency band. In the cooperative mode, three radio pairs have to share a frequency band in a cooperative manner wherein the goal is to maximize the throughput of all the three pairs. We describe the design of our software radio system that integrates some key technologies crucial in operating in an environment that does not allow user coordination and spectrum pre-planning, including: spectrum sensing, adaptive transmission both in spectrum utilization and transmission rate, opportunistic jamming, and sliding window feedback. The developed radio is robust in the presence of unknown interference and achieves the desired balance between throughput and reliability in an uncoordinated transmission environment

    Secure MAC protocols for cognitive radio networks

    Get PDF
    A thesis submitted in partial fulfilment for the degree of Doctor of PhilosophyWith the rapid increase in wireless devices, an effective improvement in the demand of efficient spectrum utilisation for gaining better connectivity is needed. Cognitive Radio (CR) is an emerging technology that exploits the inefficient utilisation of the unused spectrum dynamically. Since spectrum sharing is responsible for coordinating channels’ access for Cognitive Users (CUs), the Common Control Channel (CCC) is one of the existing methods used to exchange the control information between CUs. However, the unique characteristics and parameters of Cognitive Radio Networks (CRNs) present several possible threats targeting spectrum sensing, spectrum management, spectrum sharing, and spectrum mobility leading to the deterioration of the network performance. Thus, protection and detection security mechanisms are essential to maintaining the CRNs. This thesis presents a novel decentralised CR MAC protocol that successfully utilises the unused portion of the licensed band. The protocol achieves improved performance; communication time and throughput when compared to two benchmark protocols. Less communication time and higher throughput are accomplished by the protocol due to performing fast switching to the selected available data channel for initiating data transmission. The proposed protocol is then extended to two different versions based on two authentication approaches applied to it; one using Digital Signature and another is based on Shared-Key. The two proposed secure protocols address the security requirements in CRNs leading to subsequent secure communication among CUs. The protocols function effectively in providing defence against several attacks related to the MAC layer such as; Spectrum Sensing Data Manipulation/Falsification, Data Tempering and Modification, Jamming attacks, Eavesdropping, Forgery and Fake control information attacks, MAC address spoofing, and unauthorised access attacks. The associated security algorithms ensure the successful secure communication between CUs in a cooperative approach. Moreover, the security protocols are investigated and analysed in terms of security flows by launching unauthorised access and modification attacks on the transmitted information. The testing results demonstrated that two protocols perform successful detection of threats and ensure secure communication in CRNs

    A Secure and Efficient Authentication Mechanism Applied to Cognitive Radio Networks

    Get PDF
    Cognitive radio (CR) has been introduced to accommodate the steady increment in the spectrum demand. Wireless security in cognitive radio network (CRN) is a challenging technical area due to the dynamic and unique characteristics of CRNs. As a cognitive node can dynamically join or leave the spectrum, providing secure communication becomes problematic and requires more investigation. Authentication is a primary security property in wireless networks wherein the identity of a cognitive node is verified before providing access to available resources. In this paper, a two-level authentication scheme for communication in CRN is proposed. Before joining the network, a CR node is validated by obtaining security credentials from an authorized point. The proposed scheme relies on public- and symmetric-key cryptography, instead of using a digital signaturebased approach. It encrypts data between the communicating nodes in order to improve network security in terms of resource availability and accessibility.This mitigates attacks such as Reflection attack, Denial of Service attack and Man-in-the-Middle attack. The scheme has been evaluated and verified in terms of security functionality, its correctness and the performance, which shows less computation and communication requirements

    Trust-based mechanisms for secure communication in cognitive radio networks

    Get PDF
    Cognitive radio (CR) technology was introduced to solve the problem of spectrum scarcity to support the growth of wireless communication. However, the inherent properties of CR technology make such networks more vulnerable to attacks. This thesis is an effort to develop a trust-based framework to ensure secure communication in CRN by authenticating trustworthy nodes to share spectrum securely and increasing system's availability and reliability by selecting the trustworthy key nodes in CRNs

    Security for 5G Mobile Wireless Networks

    Get PDF
    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use cases in 5G wireless networks are then summarized. The recent development and the existing schemes for the 5G wireless security are presented based on the corresponding security services including authentication, availability, data confidentiality, key management and privacy. The paper further discusses the new security features involving different technologies applied to 5G such as heterogeneous networks, device-to-device communications, massive multiple-input multiple-output, software defined networks and Internet of Things. Motivated by these security research and development activities, we propose a new 5G wireless security architecture, based on which the analysis of identity management and flexible authentication is provided. As a case study, we explore a handover procedure as well as a signaling load scheme to show the advantage of the proposed security architecture. The challenges and future directions of 5G wireless security are finally summarized
    • …
    corecore