9,791 research outputs found

    Cryptographic error correction

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (leaves 67-71).It has been said that "cryptography is about concealing information, and coding theory is about revealing it." Despite these apparently conflicting goals, the two fields have common origins and many interesting relationships. In this thesis, we establish new connections between cryptography and coding theory in two ways: first, by applying cryptographic tools to solve classical problems from the theory of error correction; and second, by studying special kinds of codes that are motivated by cryptographic applications. In the first part of this thesis, we consider a model of error correction in which the source of errors is adversarial, but limited to feasible computation. In this model, we construct appealingly simple, general, and efficient cryptographic coding schemes which can recover from much larger error rates than schemes for classical models of adversarial noise. In the second part, we study collusion-secure fingerprinting codes, which are of fundamental importance in cryptographic applications like data watermarking and traitor tracing. We demonstrate tight lower bounds on the lengths of such codes by devising and analyzing a general collusive attack that works for any code.by Christopher Jason Peikert.Ph.D

    On combining information-theoretic and cryptographic approaches to network coding security against the pollution attack

    Get PDF
    In this paper we consider the pollution attack in network coded systems where network nodes are computationally limited. We consider the combined use of cryptographic signature based security and information theoretic network error correction and propose a fountain-like network error correction code construction suitable for this purpose

    Efficient key generation scheme for SRAM-PUFs using polar codes

    Get PDF
    Physical unclonable functions (PUFs) are a new promising means to realize cryptographic scenarios such as identification, authentication and secret key generation. PUFs avoid the need for key storage, because the device-unique randomness can be translated into a cryptographic key. SRAM-PUFs enjoy the properties that, while being easily evaluated (after a device power-up), they are unique, reproducible, physically unclonable and unpredictable. Error correction codes (ECCs) are essential blocks of secret-generation schemes, since PUF observations are always effected by noise and environmental changes. In this paper, we propose practical error correction schemes for PUF-based secret generation that are based on polar codes. The proposed scheme could generate a 128-bit key or 256-bit key using less PUF bits and helper data bits than before and achieve a low failure probability for a practical SRAM-PUFs application with error probability between 15% and 25%. Therefore SRAM-PUFs are considered to combine very well with authentication and unique cryptographic key generation for resource constrained devices

    Quantum Communication and Decoherence

    Get PDF
    In this contribution we will give a brief overview on the methods used to overcome decoherence in quantum communication protocols. We give an introduction to quantum error correction, entanglement purification and quantum cryptography. It is shown that entanglement purification can be used to create ``private entanglement'', which makes it a useful tool for cryptographic protocols.Comment: 31 pages, 10 figures, LaTeX, book chapter to appear in ``Coherent Evolution in Noisy Environments'', Lecture Notes in Physics, (Springer Verlag, Berlin-Heidelberg-New York). Minor typos correcte

    Performance Metrics and Empirical Results of a PUF Cryptographic Key Generation ASIC

    Get PDF
    We describe a PUF design with integrated error correction that is robust to various layout implementations and achieves excellent and consistent results in each of the following four areas: Randomness, Uniqueness, Bias and Stability. 133 PUF devices in 0.13 μm technology encompassing seven circuit layout implementations were tested. The PUF-based key generation design achieved less than 0.58 ppm failure rates with 50%+ stability safety margin. 1.75M error correction blocks ran error-free under worst-case V/T corners (±10% V, 125°C/-65°C) and under voltage extremes of ±20% V. All PUF devices demonstrated excellent NIST-random behavior (99 cumulative percentile), a criterion used to qualify random sources for use as keying material for cryptographic-grade applications

    Symmetric extendibility for qudits and tolerable error rates in quantum cryptography

    Full text link
    Symmetric extendibility of quantum states has recently drawn attention in the context of quantum cryptography to judge whether quantum states shared between two distant parties can be purified by means of one-way error correction protocols. In this letter we study the symmetric extendibility in a specific class of two-qudit states, i. e. states composed of two d-level systems, in order to find upper bounds on tolerable error rates for a wide class of qudit-based quantum cryptographic protocols using two-way error correction. In important cases these bounds coincide with previously known lower bounds, thereby proving sharpness of these bounds in arbitrary finite-dimensional systems.Comment: 4 pages, no figure
    • …
    corecore