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Abstract

Physical unclonable functions (PUFs) are a new promising means to realize cryp-
tographic scenarios such as identification, authentication and secret key genera-
tion. PUFs avoid the need for key storage, because the device-unique randomness
can be translated into a cryptographic key. SRAM-PUFs enjoy the properties
that, while being easily evaluated (after a device power-up), they are unique,
reproducible, physically unclonable and unpredictable. Error correction codes
(ECCs) are essential blocks of secret-generation schemes, since PUF observa-
tions are always effected by noise and environmental changes. In this paper, we
propose practical error correction schemes for PUF-based secret generation that
are based on polar codes. The proposed scheme could generate a 128-bit key or
256-bit key using less PUF bits and helper data bits than before and achieve a low
failure probability for a practical SRAM-PUFs application with error probability
between 15% and 25%. Therefore SRAM-PUFs are considered to combine very
well with authentication and unique cryptographic key generation for resource
constrained devices.

1 Introduction

Physical unclonable functions (PUFs) are low-cost hardware intrinsic security primi-
tives that possess an intrinsic randomness (unique “fingerprint” for chips) due to the
inevitable process variations during manufacturing. Therefore, PUFs can be used to
realize cryptographic scenarios that require random, unique and unpredictable keys,
such as identification, authentication and cryptographic key generation [1, 2]. PUFs
can act as trust anchors and avoid the need for key storage, since the device-unique
randomness can be translated into a cryptographic key.

SRAM-PUFs are one of the most popular PUF constructions because they are
easy to manufacture and do not require extra investments. SRAM-PUFs also enjoy
the properties that, while being easily evaluated (after a device power-up), they are
unique, reproducible, physically unclonable and unpredictable [3]. However, SRAM-
PUFs cannot be straightforwardly used as cryptographic keys, since their observations
are not exactly reproducible due to environmental condition changes such as time,
temperature, voltage and random noise. Therefore, error correction techniques are
necessary to mitigate these effects and generate reliable keys.

We present a new and efficient key generation building block for SRAM-PUFs
key generation, which uses polar codes because their advantage of achieving capacity
with low encoding and decoding complexity. To guarantee the performance in terms
of reliability and security, and to decrease the required memory size of this scheme,
we exploit the efficient decoding algorithm and provide a zero-leakage proof for the
proposed scheme. Our simulation results show that 10−9 failure probability can be
achieved with less PUF cells and helper data bits than before.



2 Secret-Key Generation Model for SRAM-PUFs

2.1 SRAM-PUFs model

SRAM-PUFs are PUF constructions based on the power-up state of an SRAM array.
The cell values of an SRAM array after power up go into one of two states: 0 or
1. It has been experimentally demonstrated [4] that due to the independent random
nature of process variations on each SRAM cell, the SRAM cell power-up vector can be
regarded as a chip fingerprint, see Fig. 1, which is unique and unclonable, and therefore
also called physical(ly) unclonable function (PUF). Therefore in this paper we assume
that SRAM-PUFs are binary-symmetric, hence for enrollment and authentication PUF
pairs (XN , Y N) it holds that

Pr{(XN , Y N) = (xN , yN)} =
N∏

n=1

Q(xn, yn), (1)

where Q(0, 1) = Q(1, 0) = p/2 and Q(0, 0) = Q(1, 1) = (1− p)/2 and 0 ≤ p ≤ 1/2.

Figure 1: An SRAM based Physical Unclonable Function

2.2 SRAM-PUFs based Secret-Key Generation System

The secret-key generation model can be depicted as a chosen key S sharing scheme
between an encoder and a decoder, see Fig. 2. Both parties observe the same SRAM-
PUF, resulting in binary observation vectors XN and Y N respectively, corresponding
to the start-up values of the N cells of SRAM. Therefore, we can consider Y N as a
noisy version of XN with average bit error probability p. First, the encoder observes an
initial enrollment measurement XN and the secret S, then produces the helper data W .
The helper data is assumed to be publicly available for the decoder that also observes
the PUF verification sequence Y N . This decoder forms an estimate Ŝ of the chosen
secret.

In this system we need to design an efficient error correction scheme that ensures the
system reliability and security, which indicates that the error probability Pr{Ŝ 6= S}
should be small and moreover that the helper data should not leak any information
about the key, i.e. I(S;W ) ≈ 0.

D1.1 - Report on System Requirements for the PUF Implementation

1.3 Helper Data Schemes

In order to extract cryptographic keys out of noisy data source, so-called helper data schemes are
used. We will apply these schemes in the context of SRAM-PUFs. In this section we discuss the
generic description of these schemes, and then present a number of their realizations. Note that
throughout this section we use the fact that the PUF sequences are composed of independent
identically distributed symbols, as was explained in Section 1.2.

1.3.1 Generic setting

6 6

-- W -

Y NXN

encoder decoder
S Ŝ

Figure 1.2: Generic secret-key binding

Consider first a generic secret-sharing system with chosen keys, see Fig. 1.2. This system is based
on a correlated PUF source {Q(x, y), x ∈ X , y ∈ Y} that produces an initial enrollment PUF
sequence xN = (x1, x2, . . . , xN) with N symbols from the finite alphabet X and a verification
sequence yN = (y1, y2, . . . , yN) having N symbols from the finite alphabet Y . The sequence
pair (xN , yN) occurs with probability

Pr{(XN , Y N) = (xN , yN)} =
N∏

n=1

Q(xn, yn), (1.7)

i.e. here the PUF data statistics is memoryless (actually i.i.d.).
In this system a secret key S is chosen uniformly and independently of the PUF sequences from
alphabet {1, 2, . . . , |S|}. The encoder observes the PUF initial source sequence XN and the
secret S and produces helper dataM , henceM = e(S,XN), where e(·, ·) is the encoder mapping.
The public helper data M are sent to the decoder that also observes the PUF verification
sequence Y N . This decoder forms an estimate Ŝ of the chosen secret, hence Ŝ = d(M,Y N),
where d(·, ·) is the decoder mapping.
In this system we need to find out what secret-key rate could be realized with negligible error
probability Pr{Ŝ 6= S} and negligible secrecy-leakage rate. Here secret-key rates have to be as
large as possible.

Definition 1 In a secret-sharing system with chosen keys, a secret-key rate R ≥ 0 is achievable
if for all δ > 0 for all N large enough there exist encoders and decoders such that1

Pr{Ŝ 6= S} ≤ δ,
1

N
log |S| ≥ R− δ,

1

N
I(S;M) ≤ δ. (1.8)

The main result for this scenario was proved by Ahlswede and Csiszár [2] and is stated in the
following theorem.

Theorem 1 For secret-sharing model with chosen keys, the largest achievable secret-key rate
R is equal to I(X;Y ).

1Throughout this deliverable we take 2 as base of the log.
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Figure 2: Generic Secret-Key Generation System



3 Polar Codes

Polar codes were proposed by E. Arikan in 2009 [5], who demonstrated how to construct
a polar encoder and decoder for any block length N that is a power of 2 and any
K ≤ N . They were the first efficient encoders and decoders proven to achieve the
capacity of any binary memoryless symmetric (BMS) channel. Polar codes also provide
a flexible selection of the code rate and an arbitrary code rate can be used without
re-constructing the code. In this section, we will give an overview of polar codes and
then present secret-key generation schemes based on polar codes in next section.

3.1 Channel Polarization

The technique underlying polar codes is “channel polarization”[5] which is an opera-
tion that polarizes all sub-channel’s mutual informations either to a perfect channel
I(X;Y ) = 1 or to a completely noisy channel I(X;Y ) = 0.

In Fig. 3, we see N = 2 successive channels W 1
2 and W 2

2 that are characterized by
transformations W− : X → Y2 and W+ : X → Y2 ×X , respectively. ⊕ represents the
modulo two sum or equivalently the exclusive “or” operator.

W

W

1u

2u

1x

2x

1y

2y

Figure 3: Basic channel transformations

Based on these basic channel transformations, W− and W+ can be defined by the
following transition probabilities

PW−(y1, y2|u1) =
∑

u2∈X

1

2
P (y1|u1 ⊕ u2)P (y2|u2), (2)

PW+(y1, y2, u1|u2) =
1

2
P (y1|u1 ⊕ u2)P (y2|u2). (3)

The following properties related to the above transformation are derived:

1. The mutual information is preserved:

I(W−) + I(W+) = 2I(W ) (4)

2. While the channel W+ is improved, the channel W− is worsened:

I(W−) ≤ I(W ) ≤ I(W+) (5)

Then, we apply the same basic channel transformation by doubling the numbers
N of channels recursively. The capacity of each sub-channel now approaches either 1
(noiseless channel) or 0 (pure noise channel). The transformation matrix GN is defined
by a simple recursive rule,

GN , RNG
⊗n
2 (6)
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Figure 4: Recursive construction of GN and G2N

where RN is a permutation matrix known as bit-reversal, G2 =

[
1 0
1 1

]
and the Kro-

necker power G⊗n is defined as G⊗G⊗(n−1).

In general, GN is constructed using N/2 copies of G2 and two copies of GN/2. The
corresponding channel configuration is drawn in Fig. 4 by combining independent
copies of W .

3.2 Code Design of Polar Codes

Based on the idea of channel polarization, the recursive operation can create longer
channel codes. As the length N →∞, the error rate of each bit approaches 1 (perfectly
reliable) or 0 (completely unreliable). Therefore, polar coding is a strategy to assign
the information bits for the reliable channels and set one set of bits with fixed values
(1s or 0s) – Arikan calls these the frozen bits – for unreliable channels.

As a family of linear block codes, a binary polar code are can be specified by
(N,K,F , uF), where N is the block length, K is the code dimension (number of in-
formation bits encoded per codeword), F is a set of indices for the N − K frozen
bits positions from {0, 1, ..., N − 1} and uF is the vector of N − K frozen bits. The
frozen bits are normally set to 0, but they may have any value that is known to both
the encoder and the decoder. The optimized polar codes for target channel transition
matrix W can be constructed by choosing F as the set of inputs with the lowest error
probabilities. Therefore, the choice of the set F is a critical step for polar coding often
referred to as polar code construction. The original construction of polar codes is based
on the Bhattacharyya bound approximation [5]. Later proposed algorithms improve
on this approximation at the cost of higher complexity [6, 7, 8].



3.3 Encoding

For an (N,K,F) polar code, the encoding operation for vector of information bits u
can be represented using a generator matrix,

GN = G⊗N, (7)

where ⊗ denotes the Kronecker product. Given the data sequence u, the codewords
are generated as

x = GFcu + GFuF , (8)

where F c , {0, 1, ..., N − 1}\F corresponds to the non frozen bits indices. u is the
data sequence, and uF is the sequence of frozen bits which we set as all zeros.

3.4 Decoding

At the decoder, we want to decode the output of the N channels which defined by the
transition probabilities Pi(y

N
1 ui−1

1 |ui). Therefore, we need the correct estimates of the
previous channel inputs û1, ..., ûi−1 to estimate the channel input ûi. Based on this, it
is more suitable to use a successive cancellation decoder. Given yN1 and estimates ûi−1

1

of ui−1
1 , the SC decoding algorithm attempts to estimate ui. This can be implemented

by computing the log-likelihood ratios Li
N(yN1 , ûi−1

1 ) = log
Pr(0|yN1 ,ui−1

1 )

Pr(1|yN1 ,ui−1
1 )

, where the LLRs

can be computed recursively using two formulas:

L2i−1
N (yN1 , û2i−2

1 ) = 2 tanh−1( tanh(Li
N/2(y

N/2
1 , û2i−2

o ⊕ û2i−2
e )/2)

· tanh(Li
N/2(y

N/2+1
1 , û2i−2

e )/2)), (9)

and

L2i
N(yN1 , û2i−1

1 ) = (−1)û2i−1Li
N/2(y

N/2
1 , û2i−2

o ⊕ û2i−2
e ) + Li

N/2(y
N/2+1
1 , û2i−2

e ), (10)

where û2i−2
o and û2i−2

e denote, respectively, the odd and even indices part of û2i−2.
Therefore, calculation of LLRs at length N can be reduced to calculation of two LLRs
at length N/2, and then recursively break down to block length 1. The initial LLRs

can be directly calculated from the channel observation as Li
1 = log Pr{0|yi}

Pr{1|yi} .

For finite block-length, the performance of polar codes can be improved by imple-
menting enhanced decoding algorithms based on the classical successive cancellation
decoder (SCD), such as successive cancellation list (SCL) decoding [9] and CRC-aided
successive cancellation list (CA-SCL) decoding [10].

4 Secret-Key Generation Schemes based on Polar

Codes

4.1 Polar Codes based Code-offset Construction

In this section, we show how helper data can be constructed using polar codes for a
PUF-based key generation scheme. Fig. 5 illustrates the polar code based code-offset
construction scheme that realizes an enrollment phase (encoder) and key regeneration
phase (decoder).
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Figure 5: Polar codes based code-offset scheme.

4.1.1 Enrollment

In the enrollment phase, the secret key SK is encoded into a polar codeword CN =
p(SK) = GFcSK + GF0N−K, where p(·) is the polar encoding function, F c and F are
the index sets for secret key and the frozen bits. Then, the helper data is generated by
adding the PUF enrollment response sequence XN to this codeword.

WN = CN ⊕XN = p(SK)⊕XN . (11)

4.1.2 Key regeneration

In the key regeneration phase, a PUF authentication sequence Y N is observed and
added to the public helper data WN . We obtain the cordword with noise eN = XN ⊕
Y N ,

C̃N = WN ⊕ Y N = p(SK)⊕ (XN ⊕ Y N)︸ ︷︷ ︸
eN

. (12)

Hence, the secret key SK can be estimated by implementing a modified version of
the SC and CA-SCL decoding algorithms with a known N −K zeros-vector as

ŜK = SCD(CN ,0N−K), ŜK = SCLD(CN ,0N−K). (13)

where the polar decoder SCD(·) is given in Algorithm1 and SCLD(·) is the polar
decoder with CRC-aided SCL decoding algorithms of [10].

Algorithm 1 Decoding Algorithm for Code-offset Construction

Input: The observations Y N from PUFs, the public helper data WN .
Output: The estimated secret ŜK

1: Compute the initial L1(yi) = log Pr{0|yi}
Pr{1|yi} , i = 1, 2, ...N

2: Compute L1(c̃i) = (−1)wiL1(yi), i = 1, 2, ...N
3: for i = 1 to N do
4: Compute Li

N(C̃N , ûi−1
1 ) with the initial L1(C̃

N) from Eq. (9-10)
5: if i ∈ F then
6: Ûi = 0
7: else if i ∈ F c and Li

N(C̃N , ûi−1
1 ) > 0 then

8: Ûi = 0
9: else

10: Ûi = 1
11: end if
12: ŜK ← ÛN [F c]
13: end for
14: return ŜK



4.2 Security Analysis

In this section, we analyze the secrecy for the proposed polar codes based key generation
scheme. To prove that the helper data do not leak any information about the secret
key, it requires that the helper data leaks about the generated secret key. Therefore
we must show that I = (SK ;WN) = 0. For the proposed scheme, we can easily prove
that this is true each pair of secret SK and helper data WN , see below:

0 ≤ I(SK ;WN) = I(CN ;WN) = H(WN)−H(WN |CN)

= H(CN ⊕XN)−H(CN ⊕XN |CN)

≤ N −H(XN |CN) = N −H(XN) = N −N = 0. (14)
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Figure 6: Failure rate performance comparison of the polar codes based secret-key
generation scheme with different key sizes K =∈ {128, 256} and different list sizes
L ∈ {1, 2, 4, 8, 16, 32} for CA-SCL decoding.

5 Simulation Results

In this section, we present the performance of polar code based error correction schemes
for an SRAM-PUF with two average bit error probability around 15% and 25%, respec-
tively. For these two different conditions, we designed the corresponding polar code
constructions to achieve the target performance.

The most important performance criterion for PUF error correction is the error
probability (or failure probability) of the key regeneration. Fig. 6 gives the error
correction performance of the polar code based code-offset construction with the SC
and CA-SCL decoding algorithm. Here SC and CA-SCL with different required key
size are simulated for different practical applications.

For key size K = 128 with block length N = 1024, we can see that the failure rate
of polar codes with SC decoding is close to 10−6 at 15% and CA-SCL decoding can
further reduce the failure rate to less than 10−9 at 15% as list size L increases, but at
the cost of extra computational complexity and memory. For key size K = 256 with
block length N = 4096, the simulation results show that failure rates 10−6 and 10−9

can also be achieved under worse PUFs condition p = 25%.



6 Conclusion

In this paper we investigated practical polar code based code-offset schemes for secret-
key generation scheme that encode the secret key into polar codeword and then mask it
with PUF bits as helper data to correct the errors for the noisy PUFs. Our simulation
results show that reliability (small failure probabilities) can be achieved together with
high security. Furthermore, the proposed scheme requires less SRAM-PUF bits and
helper data bits, which leads to the reduction in memory requirements.
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