29 research outputs found

    The Cryptographic Hardness of Random Local Functions -- Survey

    Get PDF
    Constant parallel-time cryptography allows to perform complex cryptographic tasks at an ultimate level of parallelism, namely, by local functions that each of their output bits depend on a constant number of input bits. A natural way to obtain local cryptographic constructions is to use \emph{random local functions} in which each output bit is computed by applying some fixed dd-ary predicate PP to a randomly chosen dd-size subset of the input bits. In this work, we will study the cryptographic hardness of random local functions. In particular, we will survey known attacks and hardness results, discuss different flavors of hardness (one-wayness, pseudorandomness, collision resistance, public-key encryption), and mention applications to other problems in cryptography and computational complexity. We also present some open questions with the hope to develop a systematic study of the cryptographic hardness of local functions

    Spectral Thresholds in the Bipartite Stochastic Block Model

    Get PDF
    We consider a bipartite stochastic block model on vertex sets V1V_1 and V2V_2, with planted partitions in each, and ask at what densities efficient algorithms can recover the partition of the smaller vertex set. When V2V1|V_2| \gg |V_1|, multiple thresholds emerge. We first locate a sharp threshold for detection of the partition, in the sense of the results of \cite{mossel2012stochastic,mossel2013proof} and \cite{massoulie2014community} for the stochastic block model. We then show that at a higher edge density, the singular vectors of the rectangular biadjacency matrix exhibit a localization / delocalization phase transition, giving recovery above the threshold and no recovery below. Nevertheless, we propose a simple spectral algorithm, Diagonal Deletion SVD, which recovers the partition at a nearly optimal edge density. The bipartite stochastic block model studied here was used by \cite{feldman2014algorithm} to give a unified algorithm for recovering planted partitions and assignments in random hypergraphs and random kk-SAT formulae respectively. Our results give the best known bounds for the clause density at which solutions can be found efficiently in these models as well as showing a barrier to further improvement via this reduction to the bipartite block model.Comment: updated version, will appear in COLT 201

    Cryptography from Information Loss

    Get PDF
    © Marshall Ball, Elette Boyle, Akshay Degwekar, Apoorvaa Deshpande, Alon Rosen, Vinod. Reductions between problems, the mainstay of theoretical computer science, efficiently map an instance of one problem to an instance of another in such a way that solving the latter allows solving the former.1 The subject of this work is “lossy” reductions, where the reduction loses some information about the input instance. We show that such reductions, when they exist, have interesting and powerful consequences for lifting hardness into “useful” hardness, namely cryptography. Our first, conceptual, contribution is a definition of lossy reductions in the language of mutual information. Roughly speaking, our definition says that a reduction C is t-lossy if, for any distribution X over its inputs, the mutual information I(X; C(X)) ≤ t. Our treatment generalizes a variety of seemingly related but distinct notions such as worst-case to average-case reductions, randomized encodings (Ishai and Kushilevitz, FOCS 2000), homomorphic computations (Gentry, STOC 2009), and instance compression (Harnik and Naor, FOCS 2006). We then proceed to show several consequences of lossy reductions: 1. We say that a language L has an f-reduction to a language L0 for a Boolean function f if there is a (randomized) polynomial-time algorithm C that takes an m-tuple of strings X = (x1, . . ., xm), with each xi ∈ {0, 1}n, and outputs a string z such that with high probability, L0(z) = f(L(x1), L(x2), . . ., L(xm)) Suppose a language L has an f-reduction C to L0 that is t-lossy. Our first result is that one-way functions exist if L is worst-case hard and one of the following conditions holds: f is the OR function, t ≤ m/100, and L0 is the same as L f is the Majority function, and t ≤ m/100 f is the OR function, t ≤ O(m log n), and the reduction has no error This improves on the implications that follow from combining (Drucker, FOCS 2012) with (Ostrovsky and Wigderson, ISTCS 1993) that result in auxiliary-input one-way functions. 2. Our second result is about the stronger notion of t-compressing f-reductions – reductions that only output t bits. We show that if there is an average-case hard language L that has a t-compressing Majority reduction to some language for t = m/100, then there exist collision-resistant hash functions. This improves on the result of (Harnik and Naor, STOC 2006), whose starting point is a cryptographic primitive (namely, one-way functions) rather than average-case hardness, and whose assumption is a compressing OR-reduction of SAT (which is now known to be false unless the polynomial hierarchy collapses). Along the way, we define a non-standard one-sided notion of average-case hardness, which is the notion of hardness used in the second result above, that may be of independent interest

    Sum of squares lower bounds for refuting any CSP

    Full text link
    Let P:{0,1}k{0,1}P:\{0,1\}^k \to \{0,1\} be a nontrivial kk-ary predicate. Consider a random instance of the constraint satisfaction problem CSP(P)\mathrm{CSP}(P) on nn variables with Δn\Delta n constraints, each being PP applied to kk randomly chosen literals. Provided the constraint density satisfies Δ1\Delta \gg 1, such an instance is unsatisfiable with high probability. The \emph{refutation} problem is to efficiently find a proof of unsatisfiability. We show that whenever the predicate PP supports a tt-\emph{wise uniform} probability distribution on its satisfying assignments, the sum of squares (SOS) algorithm of degree d=Θ(nΔ2/(t1)logΔ)d = \Theta(\frac{n}{\Delta^{2/(t-1)} \log \Delta}) (which runs in time nO(d)n^{O(d)}) \emph{cannot} refute a random instance of CSP(P)\mathrm{CSP}(P). In particular, the polynomial-time SOS algorithm requires Ω~(n(t+1)/2)\widetilde{\Omega}(n^{(t+1)/2}) constraints to refute random instances of CSP(P)(P) when PP supports a tt-wise uniform distribution on its satisfying assignments. Together with recent work of Lee et al. [LRS15], our result also implies that \emph{any} polynomial-size semidefinite programming relaxation for refutation requires at least Ω~(n(t+1)/2)\widetilde{\Omega}(n^{(t+1)/2}) constraints. Our results (which also extend with no change to CSPs over larger alphabets) subsume all previously known lower bounds for semialgebraic refutation of random CSPs. For every constraint predicate~PP, they give a three-way hardness tradeoff between the density of constraints, the SOS degree (hence running time), and the strength of the refutation. By recent algorithmic results of Allen et al. [AOW15] and Raghavendra et al. [RRS16], this full three-way tradeoff is \emph{tight}, up to lower-order factors.Comment: 39 pages, 1 figur

    Boolean functions for homomorphic-friendly stream ciphers

    Get PDF
    The proliferation of small embedded devices having growing but still limited computing and data storage facilities, and the related development of cloud services with extensive storage and computing means, raise nowadays new privacy issues because of the outsourcing of data processing. This has led to a need for symmetric cryptosystems suited for hybrid symmetric-FHE encryption protocols, ensuring the practicability of the FHE solution. Recent ciphers meant for such use have been introduced, such as LowMC, Kreyvium, FLIP, and Rasta. The introduction of stream ciphers devoted to symmetric-FHE frameworks such as FLIP and its recent modification has in its turn posed new problems on the Boolean functions to be used in them as filter functions. We recall the state of the art in this matter and present further studies (without proof)

    Small-Box Cryptography

    Get PDF
    One of the ultimate goals of symmetric-key cryptography is to find a rigorous theoretical framework for building block ciphers from small components, such as cryptographic S-boxes, and then argue why iterating such small components for sufficiently many rounds would yield a secure construction. Unfortunately, a fundamental obstacle towards reaching this goal comes from the fact that traditional security proofs cannot get security beyond 2^{-n}, where n is the size of the corresponding component. As a result, prior provably secure approaches - which we call "big-box cryptography" - always made n larger than the security parameter, which led to several problems: (a) the design was too coarse to really explain practical constructions, as (arguably) the most interesting design choices happening when instantiating such "big-boxes" were completely abstracted out; (b) the theoretically predicted number of rounds for the security of this approach was always dramatically smaller than in reality, where the "big-box" building block could not be made as ideal as required by the proof. For example, Even-Mansour (and, more generally, key-alternating) ciphers completely ignored the substitution-permutation network (SPN) paradigm which is at the heart of most real-world implementations of such ciphers. In this work, we introduce a novel paradigm for justifying the security of existing block ciphers, which we call small-box cryptography. Unlike the "big-box" paradigm, it allows one to go much deeper inside the existing block cipher constructions, by only idealizing a small (and, hence, realistic!) building block of very small size n, such as an 8-to-32-bit S-box. It then introduces a clean and rigorous mixture of proofs and hardness conjectures which allow one to lift traditional, and seemingly meaningless, "at most 2^{-n}" security proofs for reduced-round idealized variants of the existing block ciphers, into meaningful, full-round security justifications of the actual ciphers used in the real world. We then apply our framework to the analysis of SPN ciphers (e.g, generalizations of AES), getting quite reasonable and plausible concrete hardness estimates for the resulting ciphers. We also apply our framework to the design of stream ciphers. Here, however, we focus on the simplicity of the resulting construction, for which we managed to find a direct "big-box"-style security justification, under a well studied and widely believed eXact Linear Parity with Noise (XLPN) assumption. Overall, we hope that our work will initiate many follow-up results in the area of small-box cryptography

    On the Algebraic Immunity - Resiliency trade-off, implications for Goldreich\u27s Pseudorandom Generator

    Get PDF
    Goldreich\u27s pseudorandom generator is a well-known building block for many theoretical cryptographic constructions from multi-party computation to indistinguishability obfuscation. Its unique efficiency comes from the use of random local functions: each bit of the output is computed by applying some fixed public nn-variable Boolean function ff to a random public size-nn tuple of distinct input bits. The characteristics that a Boolean function ff must have to ensure pseudorandomness is a puzzling issue. It has been studied in several works and particularly by Applebaum and Lovett (STOC 2016) who showed that resiliency and algebraic immunity are key parameters in this purpose. In this paper, we propose the first study on Boolean functions that reach together maximal algebraic immunity and high resiliency. 1) We assess the possible consequences of the asymptotic existence of such optimal functions. We show how they allow to build functions reaching all possible algebraic immunity-resiliency trade-offs (respecting the algebraic immunity and Siegenthaler bounds). We provide a new bound on the minimal number of variables~nn, and thus on the minimal locality, necessary to ensure a secure Goldreich\u27s pseudorandom generator. Our results come with a granularity level depending on the strength of our assumptions, from none to the conjectured asymptotic existence of optimal functions. 2) We extensively analyze the possible existence and the properties of such optimal functions. Our results show two different trends. On the one hand, we were able to show some impossibility results concerning existing families of Boolean functions that are known to be optimal with respect to their algebraic immunity, starting by the promising XOR-MAJ functions. We show that they do not reach optimality and could be beaten by optimal functions if our conjecture is verified. On the other hand, we prove the existence of optimal functions in low number of variables by experimentally exhibiting some of them up to 1212 variables. This directly provides better candidates for Goldreich\u27s pseudorandom generator than the existing XOR-MAJ candidates for polynomial stretches from 22 to 66

    Extreme Algebraic Attacks

    Get PDF
    When designing filter functions in Linear Feedback Shift Registers (LFSR) based stream ciphers, algebraic criteria of Boolean functions such as the Algebraic Immunity (AI) become key characteristics because they guarantee the security of ciphers against the powerful algebraic attacks. In this article, we investigate a generalization of the algebraic attacks proposed by Courtois and Meier on filtered LFSR twenty years ago. We consider how the standard algebraic attack can be generalized beyond filtered LFSR to stream ciphers applying a Boolean filter function to an updated state. Depending on the updating process, we can use different sets of annihilators than the ones used in the standard algebraic attack; it leads to a generalization of the concept of algebraic immunity, and more efficient attacks. To illustrate these strategies, we focus on one of these generalizations and introduce a new notion called Extreme Algebraic Immunity (EAI). We perform a theoretic study of the EAI criterion and explore its relation to other algebraic criteria. We prove the upper bound of the EAI of an nn-variable Boolean function and further show that the EAI can be lower bounded by the AI restricted to a subset, as defined by Carlet, M\'{e}aux and Rotella at FSE 2017. We also exhibit functions with EAI guaranteed to be lower than the AI, in particular we highlight a pathological case of functions with optimal algebraic immunity and EAI only n/4n/4. As applications, we determine the EAI of filter functions of some existing stream ciphers and discuss how extreme algebraic attacks using EAI could apply to some ciphers. Our generalized algebraic attack does not give a better complexity than Courtois and Meier's result on the existing stream ciphers. However, we see this work as a study to avoid weaknesses in the construction of future stream cipher designs
    corecore