13 research outputs found

    Multidimensional Zero-Correlation Linear Cryptanalysis of the Block Cipher KASUMI

    Full text link
    The block cipher KASUMI is widely used for security in many synchronous wireless standards. It was proposed by ETSI SAGE for usage in 3GPP (3rd Generation Partnership Project) ciphering algorthms in 2001. There are a great deal of cryptanalytic results on KASUMI, however, its security evaluation against the recent zero-correlation linear attacks is still lacking so far. In this paper, we select some special input masks to refine the general 5-round zero-correlation linear approximations combining with some observations on the FLFL functions and then propose the 6-round zero-correlation linear attack on KASUMI. Moreover, zero-correlation linear attacks on the last 7-round KASUMI are also introduced under some weak keys conditions. These weak keys take 2142^{-14} of the whole key space. The new zero-correlation linear attack on the 6-round needs about 2852^{85} encryptions with 262.82^{62.8} known plaintexts. For the attack under weak keys conditions on the last 7 round, the data complexity is about 262.12^{62.1} known plaintexts and the time complexity 2110.52^{110.5} encryptions

    Key classification attack on block ciphers

    Get PDF
    In this paper, security analysis of block ciphers with key length greater than block length is proposed. When key length is significantly greater than block length and the statistical distribution of cipher system is like a uniform distribution, there are more than one key which map fixed input to fixed output. If a block cipher designed sufficiently random, it is expected that the key space can be classified into same classes. Using such classes of keys, our proposed algorithm would be able to recover the key of block cipher with complexity O(max(2^n, 2^{k-n}) where n is block length and k is key length. We applied our algorithm to 2- round KASUMI block cipher as sample block cipher by using weakness of functions that used in KASUMI

    A Single-Key Attack on 6-Round KASUMI

    Get PDF
    KASUMI is a block cipher used in the confidentiality and integrity algorithms of the 3GPP (3rd Generation Partnership Project) mobile communications. In 2010, a related-key attack on full KASUMI was reported. The attack was very powerful and worked in practical complexity. However the attack was not a direct threat to full KASUMI because of the impractical assumptions related to the attack. Therefore, this paper concentrates on single-key attacks considered to be practical attacks. This paper proposes a single-key attack on 6-round KASUMI. The attack, which applies a technique of higher order differential attacks, requires 2^{60.8} data and 2^{65.4} encryption time. To the best of our knowledge, the attack reported in this paper is the most powerful single-key attack against reduced-round KASUMI in terms of time complexity

    Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    Get PDF
    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far.We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications

    Green Cryptanalysis: Meet-in-the-Middle Key-Recovery for the Full KASUMI Cipher

    Get PDF
    KASUMI is a block cipher with eight Feistel rounds and a key of up to 128 bits. Proposed more than 10 years ago, the confidentiality and integrity of 3G mobile communications systems depend on the security of KASUMI. In the practically interesting single key setting that we are aiming for in this work, no attack is known. For the full 8-round KASUMI we show for the first time a wide variety of results with data complexities between 2322^{32} chosen plaintexts and as few as 2 texts, while the speed-ups over brute force are between a factor 4 and 6. For use-cases of KASUMI in 2G networks, relying on a 64-bit master key, we describe key recovery methods with extremely low data complexity and speed-ups between a factor 2 and 3 for essentially any desired success probability. The latter results are the first of this type of cryptanalysis that could result in practically realizable cost and energy savings for key recovery efforts. By also analyzing an earlier version of the KASUMI-64 design that had a different mapping from the 64-bit master key to the 128-bit cipher key, we shed some light on a high-level key schedule design issue that may be of independent interest

    Practical-Time Attacks Against Reduced Variants of MISTY1

    Get PDF
    MISTY1 is a block cipher designed by Matsui in 1997. It is widely deployed in Japan where it is an e-government standard, and is recognized internationally as a NESSIE-recommended cipher as well as an ISO standard and an RFC. Moreover, MISTY1 was selected to be the blueprint on top of which KASUMI, the GSM/3G block cipher, was based. Since its introduction, and especially in recent years, MISTY1 was subjected to extensive cryptanalytic efforts, which resulted in numerous attacks on its reduced variants. Most of these attacks aimed at maximizing the number of attacked rounds, and as a result, their complexities are highly impractical. In this paper we pursue another direction, by focusing on attacks with a practical time complexity. The best previously-known attacks with practical complexity against MISTY1 could break either 4 rounds (out of 8), or 5 rounds in a modified variant in which some of the FL functions are removed. We present an attack on 5-round MISTY1 with all the FL functions present whose time complexity is 2^38 encryptions. When the FL functions are removed, we present a devastating (and experimentally verified) related-key attack on the full 8-round variant, requiring only 2^18 data and time. While our attacks clearly do not compromise the security of the full MISTY1, they expose several weaknesses in MISTY1’s components, and improve our understanding of its security. Moreover, future designs which rely on MISTY1 as their base, should take these issues into close consideration

    Related-Key Boomerang and Rectangle Attacks

    Get PDF
    This paper introduces the related-key boomerang and the related-key rectangle attacks. These new attacks can expand the cryptanalytic toolbox, and can be applied to many block ciphers. The main advantage of these new attacks, is the ability to exploit the related-key model twice. Hence, even ciphers which were considered resistant to either boomerang or related-key differential attacks may be broken using the new techniques. In this paper we present a rigorous treatment of the related-key boomerang and the related-key rectangle distinguishers. Following this treatment, we devise optimal distinguishing algorithms using the LLR (Logarithmic Likelihood Ratio) statistics. We then analyze the success probability under reasonable independence assumptions, and verify the computation experimentally by implementing an actual attack on a 6-round variant of KASUMI. The paper ends with a demonstration of the strength of our new proposed techniques with attacks on 10-round AES-192 and the full KASUMI

    SoK: Security Evaluation of SBox-Based Block Ciphers

    Get PDF
    Cryptanalysis of block ciphers is an active and important research area with an extensive volume of literature. For this work, we focus on SBox-based ciphers, as they are widely used and cover a large class of block ciphers. While there have been prior works that have consolidated attacks on block ciphers, they usually focus on describing and listing the attacks. Moreover, the methods for evaluating a cipher\u27s security are often ad hoc, differing from cipher to cipher, as attacks and evaluation techniques are developed along the way. As such, we aim to organise the attack literature, as well as the work on security evaluation. In this work, we present a systematization of cryptanalysis of SBox-based block ciphers focusing on three main areas: (1) Evaluation of block ciphers against standard cryptanalytic attacks; (2) Organisation and relationships between various attacks; (3) Comparison of the evaluation and attacks on existing ciphers
    corecore