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In this paper we present a rigorous treatment of the related-key boomerang
and the related-key rectangle distinguishers. Following this treatment,
we devise optimal distinguishing algorithms using the LLR (Logarithmic
Likelihood Ratio) statistics. We then analyze the success probability un-
der reasonable independence assumptions, and verify the computation
experimentally by implementing an actual attack on a 6-round variant
of KASUMI. The paper ends with a demonstration of the strength of
our new proposed techniques with attacks on 10-round AES-192 and the
full KASUMI.
Keywords: Related-key Boomerang Attack, Related-Key Rectangle At-
tack, AES, KASUMI.

1 Introduction

Related-key differentials are an extension of differentials, where the adversary
is allowed a control over the key difference along with control over the plain-
text/ciphertext differences [23]. The additional control gives the adversary the
possibility to cancel differences that enter the nonlinear parts of the cipher, and
as a result, the probability of the differential is increased.

While the use of related-key differentials in differential attacks has been stud-
ied for more than a decade, the idea of using the related-key differentials in more
complex attacks has not been as extensively studied. Although techniques like
related-key impossible differential [22] and related-key differential-linear crypt-
analysis [11] were used to attack specific ciphers, no systematic analysis was
suggested.

In this paper we examine the applicability of related-key differentials in the
boomerang and the rectangle attacks. We show that it is possible to change the
differentials into related-key differentials, and allow the adversary to enjoy the
related-key advantage twice, using two related-key differentials at the expense
of using four keys for the attack.8

1.1 The Related-Key Model

The related-key model was introduced in [4, 28] and deals with attack scenarios
where the adversary is given access to encryption under multiple unknown keys,
such that the relation between them is known to (or even chosen by) the ad-
versary. While this model might seem too strong, it has practical implications.
Amongst the many issues, a block cipher which is not secure against related-key
attacks might fail as a hash function (for example, a related-key attack on the
block cipher TEA [40] used in Microsoft’s Xbox architecture as a hash function,
was used to hack the system).

Related-key attacks were intensively studied in the last decade, both from
the theoretical [2] and the practical [11, 12, 19, 22, 43] points of view. Immunity
to related-key attacks is considered one of the security goals in the design of
modern block ciphers [16].

8 We note that in some cases the number of keys remains two.



1.2 The Boomerang and the Rectangle Attacks

The boomerang attack [38] is a differential-based attack that uses two short
differentials (of few rounds each) rather than one long differential (of many
rounds). In an adaptive chosen plaintext and ciphertext process, the adversary
constructs boomerang quartets by exploiting the short differentials.

The attack was later transformed into a chosen plaintext variant named the
amplified boomerang attack [25] (and then renamed as the rectangle attack [7]).
The transformation is done by a birthday-paradox argument, which leads to a
higher data complexity, but still allows the use of two short differentials.

All of these attacks treat the distinguished part of the cipher E as a decompo-
sition into two sub-ciphers, E = E1 ◦E0, where in each of these two sub-ciphers
some (relatively) high probability differential exists. If the probability of the
differential of E0 is p and the probability of the differential of E1 is q, then
the data complexity of the corresponding boomerang distinguisher is O((pq)−2)
adaptively chosen plaintexts and ciphertexts and of the rectangle distinguisher
is O(2n/2 · (pq)−1) chosen plaintexts, where n is the block size.

In the more complex variants of these attacks the use of multiple differentials
is supported as long as they share the input difference in the differentials for E0

(the first rounds) and share the output difference in the differentials for E1 (the
last rounds). This improvement reduces the data complexity of both attacks
significantly.

1.3 Our Contributions

We consider the same conceptual division. Let the cipher E be a concatena-
tion of two sub-ciphers, i.e., E = E1 ◦ E0. Furthermore, assume that there exist
high-probability related-key differentials in E0 and in E1 (not necessarily with
the same key difference). We show that in this scenario it is possible to apply
related-key boomerang and rectangle attacks. The basic related-key boomerang
and rectangle distinguishers are summarized in the following theorem:

Theorem 1. Let E = E1 ◦ E0 : {0, 1}n → {0, 1}n be a block cipher. Consider
encryptions with E under a secret key K and related-keys whose differences with
K are chosen by the adversary. Let

p̂ = max
α6=0,∆K0

√∑

β

(
Pr
P

[E0,K(P ) ⊕ E0,K⊕∆K0
(P ⊕ α) = β]

)2

,

q̂ = max
δ 6=0,∆K1

√∑

γ

(
Pr
C

[
E−1

1,K(C) ⊕ E−1
1,K⊕∆K1

(C ⊕ δ) = γ
] )2

= max
δ 6=0,∆K1

√∑

γ

(
Pr
X

[E1,K(X) ⊕ E1,K⊕∆K1
(X ⊕ γ) = δ]

)2



where E0,K(P ) denotes the partial encryption of P through E0 under the key
K and E−1

1,K(C) denotes the partial decryption of C through E1 under the key
K. Under independence assumptions between the differentials, for c > 0, given
either

– 4c/(p̂q̂)2 unique adaptively chosen plaintexts and ciphertexts, or

–
√

c · 2n/2+2/p̂q̂ unique chosen plaintexts,

encrypted under four related-keys of the form K, K⊕∆K0, K⊕∆K1, K⊕∆K0⊕
∆K1,

9 it is possible to distinguish E from a random permutation. The probability
of success of the distinguisher is approximately 1−e−c/2 (when p̂q̂ is sufficiently
high).

We present a rigorous treatment of the related-key boomerang and rectangle
distinguishers. We devise the optimal distinguishing algorithms using the LLR
metric, and compute their success rate. Using this analysis, we prove Theorem 1,
along with an easy lemma allowing to calculate lower bounds for p̂ and q̂ in
practical ciphers.

As in other statistical attacks on block ciphers, the calculation of the success
probability of our attack is based on some randomness assumptions. We state
explicitly the assumptions we use and discuss their validity in various cases. To
verify the validity of these assumptions we carried out computer experiments for
the related-key boomerang attack on 6-round KASUMI [36].

We note that the analysis presented in our paper is also the first rigorous
analysis of the boomerang/rectangle techniques themselves. Although these tech-
niques were used many times in attacks, a rigorous analysis of them was not
performed before.

After the theoretical treatment, we consider several improvements of the
related-key boomerang and rectangle attacks:

1. The Use of Structures of Keys: We use structures of keys to overcome
a wider range of key schedule algorithms. In ciphers with a nonlinear key
schedule, a given key difference may cause many subkey differences, thus
interfering with the construction of related-key differentials. Structures of
keys can be used to reduce the effect of this event on the differentials.

2. The Use of Other Relations between the Keys: While XOR relations
are common and inherent to the majority of differential-based related-key
attacks, in some cases there are more suitable key relations (either due to
the environment of the attack or in order to get higher probabilities of the
differentials). We show that the proposed attacks are applicable when the
XOR relations between the keys are replaced with different kinds of relations
and discuss which relations induce feasible attacks.

9 In some cases ∆K0 = ∆K1. In these cases, there are small changes in the analysis,
most notably the use of only two related keys.



We then compare the new attacks with previously proposed related-key tech-
niques. We explore the advantages of the new attacks, and show that in many
cases the related-key boomerang and the related-key rectangle attacks are signif-
icantly more effective than other related-key techniques, even if in the single-key
scenario the boomerang and the rectangle attacks are inferior to the non-related-
key techniques.

Finally, out of the many ciphers for which related-key boomerang and rect-
angle attacks were applied to (to mention a few, IDEA, MISTY1, SHACAL-1,
SHACAL-2, and XTEA), we present two cases that demonstrate the strength
and the wide applicability of the new attacks. We chose to concentrate on KA-
SUMI and AES, as these two ciphers demonstrate the advantages of using two
pairs of related-keys to overcome complex round functions (KASUMI) and using
structures of keys to bypass a nonlinear key schedule (AES).

An Attack on 10-round AES-192 The Advanced Encryption Standard (AES) [32]
is a 128-bit block cipher with a variable key length (128, 192, and 256-bit keys
are supported). Since its selection, AES gradually became one of the most widely
used and analyzed block ciphers. The cipher has received a great deal of cryptan-
alytic attention, both during the AES process, and even more after its selection.

We present a related-key rectangle attack on 10-round AES-192 requiring
2119.2 chosen plaintexts encrypted under one of 64 related keys and time com-
plexity of 2185.2 memory accesses. Our attack uses structures of 64 keys in order
to overcome the nonlinearity of the AES key schedule. We summarize our results
along with selected other results in Table 1.10

An Attack on the Full 8-Round KASUMI KASUMI is an 8-round Feistel
block cipher used in the confidentiality and the integrity algorithms of some
3GPP mobile communications. Since the 3GPP mobile communications are used
by millions of customers, KASUMI is one of the most widely used block ciphers.

We start by presenting a simple 6-round related-key boomerang attack on
6-round KASUMI, which has a practical data and time complexity. We follow to
present a related-key rectangle attack on the full 8-round requiring 254.6 chosen
plaintexts and 273.6 encryptions.

The cases of AES and KASUMI show the advantage of the related-key
boomerang/rectangle attack over the other related-key attacks. While the other
techniques can attack the same number of rounds as the best single-key attacks (8
rounds for AES-192 and 6 rounds for KASUMI), the related-key boomerang/rectangle
attacks can attack either two more rounds (10 rounds for AES-192 and the full
8-round KASUMI), or the same number of rounds with a significantly lower

10 We note that an independent related-key boomerang attack on 9-round AES-192 was
presented recently in [20]. Also, related-key boomerang attacks on the full AES-192
and AES-256 were presented in [14] using a stronger model of related keys.



complexity. We summarize our results along with selected other results in Ta-
ble 1.

Table 1. Comparison of our Attacks with Selected Previous Results

Cipher Attack Number of Complexity
Rounds Keys Data Time

KASUMI Imp. Diff. [29] 6 1 255 CP 2100

(8 rounds) RK Diff. [15] 6 2 218.6 RK-CP 2113.6

RK Boom. (Sect. 3.3) 6† 4 768 RK-ACPC 1
RK Rect. (Sect. 3.6) 8 4 254.6 RK-CP 273.6

RK Rect. (Sect. 3.7) 8 4 238.6 RK-CP 2104

AES-192 Partial Sums [19] 8 1 2128 − 2119 CP 2188

(12 rounds) RK Diff.-Lin. [43] 8 2 2118 RK-CP 2165

RK Imp. Diff. [42] 8 2 264.5 RK-CP 2177

8 2 288 RK-CP 2153

8 2 2112 RK-CP 2136

RS Rectangle [14] 12 4 2123 RS-CP 2176

RK Rect. (Sect. 4.4) 10 256 2121.2 RK-CP 2184.2 MA
(Sect. 4.5) 10 64 2119.2 RK-CP 2185.2 MA

CP – chosen plaintexts, ACPC – adaptive chosen plaintexts and ciphertexts,
RK: Related-Key, RS: Related-Subkey
†: distinguishing attack, MA: Memory accesses
Time is measured in encryption units unless mentioned otherwise

1.4 The Organization of the Paper

The paper is organized as follows: In Section 2 we present the related-key
boomerang and rectangle attacks and discuss them theoretically. In Section 3
we apply the attacks to the full KASUMI. In Section 4 we apply the attacks to
reduced-round AES-192. Finally, Section 5 summarizes the paper.

2 The Related-Key Boomerang and Rectangle Attacks

In this section we introduce the related-key boomerang and the related-key rect-
angle attacks. We start with a brief description of the boomerang and the rectan-
gle attacks in the single key model. We then introduce and analyze rigorously the
related-key boomerang and rectangle attacks. We follow and examine the ran-
domness assumptions used in the attacks. We conclude this section with several
generalizations and comparisons of the newly proposed attacks.



2.1 Boomerang and Amplified Boomerang (Rectangle) Attacks

The main idea behind the boomerang attack [38] is to use two short differentials
with high probabilities instead of one long differential with a low probability.
We assume that a block cipher E :{0, 1}n×{0, 1}k→{0, 1}n can be described as
a cascade E = E1 ◦ E0, such that for E0 there exists a differential α → β with
probability p, and for E1 there exists a differential γ → δ with probability q.11

The distinguisher is based on the following boomerang process:

1. Ask for the encryption of a pair of plaintexts (P1, P2) such that P1 ⊕P2 = α
and denote the corresponding ciphertexts by (C1, C2).

2. Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3, C4). Denote the corresponding plaintexts by (P3, P4).

3. Check whether P3 ⊕ P4 = α.

The boomerang attack uses the first differential (α → β) for E0 with respect to
the pairs (P1, P2) and (P3, P4), and the second differential (γ → δ) for E1 with
respect to the pairs (C1, C3) and (C2, C4).

For a random permutation the probability that the last condition is satisfied
is 2−n, where n is the block size.12 For E, the probability that the pair (P1, P2)
is a right pair with respect to the first differential (i.e., the probability that
the intermediate difference after E0 equals β, as predicted by the differential)
is p. The probability that both pairs (C1, C3) and (C2, C4) are right pairs with
respect to the second differential is q2. If all these are right pairs, then E−1

1 (C3)⊕
E−1

1 (C4) = β = E0(P3)⊕E0(P4). Thus, with probability p, P3⊕P4 = α. Hence,
the total probability of this quartet of plaintexts and ciphertexts to satisfy the
condition P3 ⊕ P4 = α is at least (pq)2.

The attack can be mounted for all possible β’s and γ’s simultaneously (as
long as β 6= γ). Therefore, a right quartet for E is encountered with probability
not less than (p̂q̂)2, where:

p̂ =

√∑

β

Pr 2[α → β], and q̂ =

√∑

γ

Pr 2[γ → δ].

Using the boomerang process described above, the cipher E can be distinguished
from a random permutation given O((p̂q̂)−2) adaptively chosen plaintexts and
ciphertexts, provided that p̂q̂ ≫ 2−n/2. The complete analysis is given in [7, 8,
38]. We omit the analysis here since it is essentially included in the analysis of
the related-key boomerang attack presented in Section 2.2.

As the boomerang distinguisher requires adaptively chosen plaintexts and
ciphertexts, it cannot be combined with many of the standard techniques for

11 We note that in the attack, the differentials are used both in the forward (i.e.,
encryption), and in the backward (i.e., decryption) directions. As the considered dif-
ferentials are not truncated differentials, the direction does not affect the probability
of the differentials.

12 For the analysis of E we rely on some independence assumptions, addressed in
Section 2.4.



using distinguishers in key recovery attacks. This led to the introduction of a
chosen plaintext variant of the boomerang attack called the amplified boomerang
attack [25], and later renamed as the rectangle attack [7]. The transformation of
the boomerang attack into a chosen plaintext attack relies on standard birthday-
paradox arguments. The key idea behind the transformation is to encrypt many
plaintext pairs with input difference α, and to look for quartets (i.e., pairs of
pairs) that conform to the requirements of the boomerang process.

In the rectangle distinguisher, the adversary considers quartets of plaintexts
of the form ((P1, P2 = P1 ⊕ α), (P3, P4 = P3 ⊕ α)). A quartet is called a “right
quartet” if the following conditions are satisfied:

1. E0(P1) ⊕ E0(P2) = β = E0(P3) ⊕ E0(P4).
2. E0(P1) ⊕ E0(P3) = γ (which leads to E0(P2) ⊕ E0(P4) = γ if this condition

holds along with the previous one).
3. C1 ⊕ C3 = δ = C2 ⊕ C4.

The probability of a quartet to be a right quartet is a lower bound on the
probability of the event

C1 ⊕ C3 = δ = C2 ⊕ C4. (1)

The usual assumption is that each of the above conditions is independent of the
rest, and hence the probability that a given quartet ((P1, P2), (P3, P4)) is a right
quartet is p2 · 2−n−1 · q2. Since for a random permutation, the probability of
Condition (1) is 2−2n, the rectangle process can be used to distinguish E from
a random permutation if pq ≫ 2−n/2 (like in the boomerang distinguisher).

The data complexity of the distinguisher is O(2n/2(pq)−1), which is much
higher than the complexity of the boomerang distinguisher. The higher data
complexity follows from the fact that the event E0(P1) ⊕ E0(P3) = γ occurs
with a “random” probability of 2−n (actually, this is the birthday-paradox argu-
ment used in the construction). The identification of right quartets is also more
complicated than in the boomerang case, as instead of checking a condition on
pairs, the adversary has to go over all the possible quartets. At the same time,
the chosen plaintext nature allows using stronger key recovery techniques. An
optimized method of finding the right rectangle quartets is presented in [8].

Like the boomerang attack, the rectangle attack can use all the possible
β’s and γ’s simultaneously. This reduces the data complexity of the attack to
O(2n/2(p̂q̂)−1), where p̂ and q̂ are as defined above. The complete analysis of the
rectangle attack is given in [7, 8].

2.2 The Related-Key Boomerang Attack

We now present the related-key boomerang distinguisher, and determine the
conditions required for the distinguisher to succeed. Following a rigorous treat-
ment we compute the optimal value of the threshold used in the distinguisher
using the Logarithmic Likelihood Ratio method. Then we compute the success



rate of the distinguisher using a Poisson approximation. In order to keep this sec-
tion readable, we refrain from presenting a detailed analysis of the key-recovery
attack algorithm. The reader is referred to [8] for a generic key-recovery attack
algorithm exploiting the boomerang distinguisher (which is easily adapted to the
related-key model), and to the specific attack algorithms presented in Sections 3
and 4.
First, we recall the definition of related-key differentials and introduce a short-
hand used throughout this paper to denote them:

Definition 1. We say that a related-key differential α → β with key difference
∆K holds for E with probability p, if

Pr
P,K

[EK(P ) ⊕ EK⊕∆K(P ⊕ α) = β] = p,

where EK(·) denotes encryption through E with the key K. For the ease of

exposition, we denote this event by Pr
(
α

E−−→
∆K

β
)

= p. For sake of simplicity,

we shall denote the related-key differential by
(
α

E−−→
∆K

β
)

or when the cipher E

is implicit from the text by
(
α −−→

∆K
β
)

(we alert the reader that this notation is

not common).

In order to present the independence assumption used in the paper, we need
another definition:

Definition 2. For each related-key differential
(
α

E−−→
∆K

β
)
, we denote the set of

right pairs with respect to the differential (for the given key K) by GK

(
α

E−−→
∆K

β
)
.

Formally, for a block cipher E and a given key K,

GK

(
α

E−−→
∆K

β
)

=
{

P
∣∣∣EK(P ) ⊕ EK⊕∆K(P ⊕ α) = β

}
.

Similarly, we define the set of good ciphertexts:

G−1
K

(
α

E−−→
∆K

β
)

=
{

EK(P )
∣∣∣P ∈ G

(
α

E−−→
∆K

β
)}

=
{
C
∣∣∣E−1

K (C) ⊕ E−1
K⊕∆K(C ⊕ β) = α

}
.

Our independence assumption asserts that the sets of the form G
(
α

E−−→
∆K

β
)

are independent, in the following sense:

Assumption 1 For the block cipher E = E1 ◦ E0 under consideration, for any
fixed key K, and for any set of differences α, γ1, δ, ∆K0, and ∆K1, we assume

that the event

(
X ∈ GK

(
γ1

E1−−−→
∆K1

δ

))
is independent of any combination of

these three events:



1.

(
X ⊕ β1 ∈ GK⊕∆K0

(
γ2

E1−−−→
∆K1

δ

))
for all β1, γ2.

2.

(
X ∈ G−1

K

(
α

E0−−−→
∆K0

β1

))
for all β1.

3.

(
X ⊕ γ1 ∈ G−1

K⊕∆K1

(
α

E0−−−→
∆K0

β2

))
for all β2.

For example, our independence assumption asserts that

Pr

[
X ∈ GK

(
γ1

E1−−−→
∆K1

δ

) ∣∣∣
(

X ⊕ β1 ∈ GK⊕∆K0

(
γ2

E1−−−→
∆K1

δ

))∧

(
X ∈ G−1

K

(
α

E0−−−→
∆K0

β1

))∧(
X ⊕ γ1 ∈ G−1

K⊕∆K1

(
α

E0−−−→
∆K0

β2

))]

= Pr

[
X ∈ GK

(
γ1

E1−−−→
∆K1

δ

)]
.

This assumption is used implicitly in all the statements in the sequel. We
discuss the assumption and its relation to the independence assumptions used
in other techniques, such as differential and linear cryptanalysis, in Section 2.4.

The Related-Key Boomerang Distinguisher Now we are ready to present
the related-key boomerang distinguisher. Similarly to the boomerang attack, we
treat the cipher E as a cascade of sub-ciphers: E = E1 ◦ E0. The distinguisher
involves four different unknown (but related) keys — Ka, Kb = Ka ⊕ ∆Kab,
Kc = Ka ⊕∆Kac, and Kd = Ka ⊕ ∆Kab ⊕∆Kac. For fixed values α and δ, the
attack algorithm is the following:

1. Choose M plaintexts at random, and set a counter C to zero. For each
plaintext Pa, perform the following:
(a) Compute Pb = Pa ⊕ α.
(b) Ask for the ciphertexts Ca = EKa

(Pa) and Cb = EKb
(Pb).

(c) Compute Cc = Ca ⊕ δ and Cd = Cb ⊕ δ.
(d) Ask for the plaintexts Pc = E−1

Kc
(Cc) and Pd = E−1

Kd
(Cd).

(e) Check whether Pc ⊕ Pd = α. If yes, increase the value of the counter C
by 1.

2. If C > Threshold, output “The cipher E”. Otherwise, output “Random
Permutation”.

The value of Threshold will be specified later in this section. See Figure 1 for
an outline of a right related-key boomerang quartet.

It is easy to see that for a random permutation, the probability that the
condition Pc ⊕ Pd = α is satisfied is 2−n. The probability that the condition is
satisfied for E is given in the following proposition:



Fig. 1. A Related-Key Boomerang Quartet
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Proposition 1. Consider a quartet (Pa, Pb, Pc, Pd) constructed by the algorithm
described above. We have

Pr[Pc ⊕ Pd = α] =
∑

β1⊕β2⊕γ1⊕γ2=0

Pr

[
α

E0−−−−→
∆Kab

β1

]
·Pr

[
α

E0−−−−→
∆Kab

β2

]
·Pr

[
γ1

E1−−−−→
∆Kac

δ

]
·Pr

[
γ2

E1−−−−→
∆Kac

δ

]
.

(2)
In particular,

Pr[Pc ⊕ Pd = α] ≥ (p̂q̂)2, (3)

where

p̂ =

√√√√∑

β′

Pr

[
α

E0−−−−→
∆Kab

β′

]2
and q̂ =

√√√√∑

γ′

Pr

[
γ′ E1−−−−→

∆Kac

δ

]2
.

Proof. Consider a quartet (Pa, Pb, Pc, Pd) constructed by the algorithm. Denote
the intermediate values (E0(Pa), E0(Pb), E0(Pc), E0(Pd)) (where the encryption
is under the respective keys) by (Xa, Xb, Xc, Xd), respectively. For all β1, γ1, γ2,
we say that the event Sβ1,γ1,γ2

occurs, if the following conditions are satisfied:

Xa ⊕ Xb = β1, Xa ⊕ Xc = γ1, Xb ⊕ Xd = γ2.

Since the events {Sβ1,γ1,γ2
} for different values of (β1, γ1, γ2) are disjoint and

their union is the entire space, we have

Pr[Pc ⊕ Pd = α] =
∑

β1,γ1,γ2

Pr[Pc ⊕ Pd = α
∣∣Sβ1,γ1,γ2

] · Pr[Sβ1,γ1,γ2
]. (4)



If the event Sβ1,γ1,γ2
occurs, then

Xc ⊕ Xd = (Xc ⊕ Xa) ⊕ (Xa ⊕ Xb) ⊕ (Xb ⊕ Xd) = γ1 ⊕ β1 ⊕ γ2.

Hence, by the independence assumptions,

Pr
[
Pc ⊕ Pd = α

∣∣∣Sβ1,γ1,γ2

]
= Pr[α

E0−−−−→
∆Kab

β2], (5)

where β2 = γ1⊕β1⊕γ2. Similarly, the three conditions forming the event Sβ1,γ1,γ2

are independent, and hence

Pr[Sβ1,γ1,γ2
] = Pr

[
α

E0−−−−→
∆Kab

β1

]
· Pr

[
γ1

E1−−−−→
∆Kac

δ

]
· Pr

[
γ2

E1−−−−→
∆Kac

δ

]
. (6)

Substituting Equations (5) and (6) into Equation (4) yields Equation (2).
∑

β1⊕β2⊕γ1⊕γ2=0

Pr

[
α

E0−−−−→
∆Kab

β1

]
·Pr

[
α

E0−−−−→
∆Kab

β2

]
·Pr

[
γ1

E1−−−−→
∆Kac

δ

]
·Pr

[
γ2

E1−−−−→
∆Kac

δ

]
· ≥

≥
∑

β1 ⊕ β2 = 0,
γ1 ⊕ γ2 = 0

Pr

[
α

E0−−−−→
∆Kab

β1

]
·Pr

[
α

E0−−−−→
∆Kab

β2

]
·Pr

[
γ1

E1−−−−→
∆Kac

δ

]
·Pr

[
γ2

E1−−−−→
∆Kac

δ

]
=

∑

β′

(
Pr

[
α

E0−−−−→
∆Kab

β′

]2)∑

γ′

(
Pr

[
γ′ E1−−−−→

∆Kac

δ

]2)
= (p̂q̂)

2
,

and thus, Inequality (3) follows from Equation (2).

Proposition 1 shows that if p̂q̂ > 2−n/2, then the probability that the condi-
tion Pc ⊕ Pd = α holds, is higher for E than for a random permutation, i.e., we
expect more quartets in the case of E. We next compute the optimal choice of
the value Threshold used in the distinguisher.

The Optimal Choice of Threshold The optimal value of Threshold can be
found using the Likelihood Ratio test for the distributions representing Pr[Pc ⊕
Pd = α] for E and for a random permutation. We use the following standard
result:

Proposition 2 ([1], Proposition 1). Consider two distributions D0 and D1

assuming values in a finite set Z, and a sample zm of m independent elements
of Z (represented as a vector in Zm). The optimal test for deciding whether
the sample is distributed according to D0 or to D1 is the test having acceptance
region

AD0
= {zm ∈ Zm : LLR(zm) ≥ 0},



where

LLR(zm) =
∑

a∈Z

N(a|zm) log
PrD0

[a]

PrD1
[a]

is the logarithmic likelihood ratio (with the convention that log(0/p) = −∞ and
log(p/0) = ∞), and where N(a|zm) is the number of times a occurs in the
sequence zm.

Denote p0 = Pr[Pc⊕Pd = α] (where Pc and Pd are constructed by the boomerang
process). We apply Proposition 2, where D0 and D1 are the distributions rep-
resenting Pr[Pc ⊕ Pd = α] for E and for a random permutation, respectively.
In this case, Z = {0, 1}, m = M , and both distributions represent Bernoulli
random variables, where D0 = Ber(p0) and D1 = Ber(2−n). Hence,

LLR(zM) = N(0|zM) log
1 − p0

1 − 2−n
+ N(1|zM) log

p0

2−n
. (7)

Since in our distinguisher, the acceptance region of the test is {zM ∈ ZM :
N(1|zM ) ≥ Threshold}, the optimal value of Threshold is min{k : f(k) ≥ 0},
where

f(k) = (M − k) log
1 − p0

1 − 2−n
+ k log

p0

2−n
.

A simple computation shows that the optimal value is

Threshold =
⌈ − log 1−p0

1−2−n

log p0(1−2−n)
(1−p0)2−n

M
⌉
. (8)

The Success Probability of the Distinguisher We use the following stan-
dard definition of the success probability of a distinguisher (see, e.g., [1]):

Definition 3. Let A be a distinguisher between distributions D0 and D1, such
that for j = 0, 1, the statement [A(D) = j] corresponds to “D is distributed like
Dj”. The probability of success of A is

Pr s(A) =
Pr[A(D) = 0|D = D0] + Pr[A(D) = 1|D = D1]

2
.

Since the distinguisher counts the number of successes amongst M trials, it actu-
ally distinguishes between the Binomial distributions Bin(M, p0) and Bin(M, 2−n).
Hence, given the value Threshold (as computed in Equation 8), the success prob-
ability of the distinguisher is given by the formula:

Pr[Success] =
1

2

[
Pr[Bin(M, p0) ≥ Threshold]+Pr[Bin(M, 2−n) < Threshold]

]
=



=
1

2

[
M∑

k=Threshold

(
M

k

)
pk
0(1 − p0)

M−k
Threshold−1∑

k=0

(
M

k

)
2−nk(1 − 2−n)M−k

]
.

(9)
For a large value of M (like the values usually used in attacks as M has to

be at least 1/p0, and p0 is in most cases very small), the Binomial distributions
can be approximated by the Poisson distributions Poi(p0M) and Poi(2−nM).
Using this approximation, Equation (9) is simplified to:

Pr[Success] ≈ 1

2

[
1 − e−p0M

Threshold−1∑

k=0

(p0M)k

k!
+ e−2−nM

Threshold−1∑

k=0

(2−nM)k

k!

]
.

(10)
Denote c = Mp0, and x = p0/2−n. Equation (10) can be reformulated into:

Pr[Success] ≈ 1

2

[
1 −

(
e−c ·

Threshold−1∑

k=0

ck

k!

)
+

(
e−c/x ·

Threshold−1∑

k=0

(c/x)k

k!

)]
.

(11)
We note that in actual attacks, c usually satisfies 1 ≤ c ≤ 100, while the value
x varies significantly between different attacks. In Table 2, we give the optimal
threshold and success rate for several common values of c and x.

When x tends to infinity, Equation (11) can be simplified, as e−c/x tends
to 1. In other words, when x ≫ 1, given M = c · p−1

0 quartets, a threshold of 1
is sufficient to achieve the following success rate:

Pr[success] ≈ 1

2

(
1 − e−c + 1

)
= 1 − e−c

2
.

Table 2. Optimal Thresholds and Success Rates for Common Parameters

x c = 1 c = 2 c = 3 c = 4 c = 6 c = 8 c = 16

2 1 (61.9%) 2 (66.5%) Imp Imp Imp Imp Imp
4 1 (70.5%) 2 (75.2%) 2 (81.4%) 3 (84.1%) Imp Imp Imp
10 1 (76.8%) 1 (84.2%) 2 (88.2%) 2 (92.3%) 3 (95.7%) 4 (97.4%) Imp
16 1 (78.6%) 1 (87.4%) 2 (89.3%) 2 (94.1%) 3 (96.6%) 3 (98.6%) 6 (99.9%)
100 1 (81.1%) 1 (92.2%) 1 (96.0%) 1 (97.1%) 2 (99.0%) 2 (99.7%) 4 (99.99%)
200 1 (81.4%) 1 (92.7%) 1 (96.8%) 1 (98.1%) 2 (99.1%) 2 (99.8%) 4 (99.995%)
1000 1 (81.6%) 1 (93.1%) 1 (97.4%) 1 (98.9%) 1 (99.6%) 2 (99.8%) 3 (99.999%)
10000 1 (81.6%) 1 (93.2%) 1 (97.5%) 1 (99.1%) 1 (99.8%) 1 (99.9%) 2 (99.9998%)

The entry X(Y %) means that the optimal threshold is X and the success rate is Y .
Imp — it is impossible to gather the amount of data required in this case.

We note that while for attacks based on linear cryptanalysis, the probability
of success can be approximated using the Normal distribution (see, e.g., [1, 35])



in attacks based on differential cryptanalysis (like the attacks discussed in this
paper) the Normal approximation may be inaccurate. The reason for the dif-
ference is that while in linear-based attacks, the value of the measured random
variable is big (close to M/2), in differential-based attacks the value is usually
very small (e.g., 1 ≤ Threshold ≤ 10). For such small values, the approximation
of a random variable assuming only integer values by a Normal distribution is
inaccurate, and hence approximation using a Poisson random variable is prefer-
able.13

Practical Lower Bounds for p̂ and q̂ In practical attacks, the probabil-
ity of the related-key boomerang distinguisher (given by Equation 2) cannot
be computed. Moreover, even the computation of the lower bound given by In-
equality (3) is infeasible in most of the cases. Instead, the adversary finds high-

probability differential characteristics

(
α

E0−−−−→
∆Kab

β

)
and

(
γ

E1−−−−→
∆Kac

δ

)
. Then,

the adversary computes lower bounds for p̂ and q̂ by considering only part of the
possible β′ and γ′ values. For example, she can take into consideration all the

characteristics

(
α

E0−−−−→
∆Kab

β′

)
that coincide with the characteristic

(
α

E0−−−−→
∆Kab

β

)

in all the rounds except for the last one, and take all possible values in the output
difference of the last round.

In certain cases, especially when a good differential cannot be found, the
following simple proposition is useful as a generic lower bound for p̂ and q̂.

Proposition 3. Consider related-key differentials through E0 with input differ-
ence α and key difference ∆K. If there exist only m differences β′ such that

Pr
[
α

E0−−→
∆K

β′
]

> 0, then p̂ ≥
√

1/m. Moreover, equality holds if and only if all

the m differentials (α −−→
∆K

β′) with non-zero probability have probability 1/m

each.

Proof. Recall that the Cauchy-Schwarz inequality asserts that for any two se-
quences {a1, a2, . . . , am} and {b1, b2, . . . , bm} of non-negative numbers, we have

m∑

i=1

ai · bi ≤

√√√√
m∑

i=1

a2
i ·

√√√√
m∑

i=1

b2
i .

13 In [35] the success probabilities of both a linear attack and a differential attack are
approximated using the Normal distribution. The experiments presented in [35] show
that the approximation is much more accurate in the case of linear cryptanalysis. It
is possible that using a Poisson approximation would result in a better accuracy in
the differential case, as explained above.



Denote the probabilities of the differentials of the form
(
α −−→

∆K
β′
)

by p1, p2, . . . , pm

(ignoring the differentials with zero probability). Clearly, we have

m∑

i=1

pi = 1, and p̂ =

√√√√
m∑

i=1

p2
i .

We apply the Cauchy-Schwarz inequality for the sequences {p1, p2, . . . , pm} and
{1, 1, . . . , 1} and get

1 =

m∑

i=1

pi · 1 ≤

√√√√
m∑

i=1

p2
i ·

√√√√
m∑

i=1

1 = p̂
√

m,

and hence p̂ ≥
√

1/m, as asserted. Furthermore, since equality in the Cauchy-
Schwarz inequality holds if and only if the sequences {ai}m

i=1 and {bi}m
i=1 are

proportional (i.e., there exists c such that ai = c · bi for all i), in our case
equality holds if and only if all the pi’s are equal.

The generic lower bound given by Proposition 3 can be combined with a “good”
differential for part of the rounds.

Proposition 4. Consider related-key differentials through E0 with input dif-
ference α and key difference ∆K. Assume that there exists a decomposition
E0 = E01 ◦ E00, and a difference α′, such that:

1. Pr
[
α

E00−−→
∆K

α′
]

= p′, and

2. There exist only m differences β′ such that Pr[α′ E01−−→
∆K

β′] > 0.

Then p̂ ≥ p′
√

1/m.

Proof. We compute a lower bound on p̂ by considering only the characteristics(
α

E0−−→
∆K

β′
)

for E0 whose restriction to E00 is
(
α

E00−−→
∆K

α′
)
. By the assumptions,

there are only m such differentials (ignoring differentials with probability zero),
and the sum of their probabilities is p′. The assertion follows from the Cauchy-
Schwarz inequality by the same argument as used in the proof of Proposition 3.

Clearly, the same arguments apply also for the computation of q̂. Propositions 3
and 4 are used in our attacks on KASUMI and AES-192, presented in Sections 3
and 4.



2.3 The Related-Key Rectangle Attack

The transformation of the related-key boomerang attack into the related-key
rectangle attack is similar to the transformation of the boomerang attack to the
rectangle attack in the single-key model. The related-key rectangle distinguisher
involves four different unknown (but related) keys — Ka, Kb = Ka ⊕ ∆Kab,
Kc = Ka ⊕∆Kac, and Kd = Ka ⊕ ∆Kab ⊕∆Kac. For fixed values α and δ, the
algorithm of the distinguisher is as follows:

1. Choose M plaintexts Pa, and compute Pb = Pa ⊕α. Ask for the ciphertexts
Ca = EKa

(Pa) and Cb = EKb
(Pb).

2. Choose M plaintexts Pc, and compute Pd = Pc ⊕ α. Ask for the ciphertexts
Cc = EKc

(Pc) and Cd = EKd
(Pd).

3. Set a counter C to zero.
4. For each of the M2 choices for (Pa, Pc) (and the corresponding (Pb, Pd)):

(a) Check whether both conditions Ca⊕Cc = δ and Cb⊕Cd = δ are satisfied.
If yes, increase the value of the counter C by 1.

5. If C > Threshold, output “The cipher E”. Otherwise, output “Random
Permutation”.

The value of Threshold will be specified later in this section.
It is easy to see that for a random permutation, the probability that both

conditions Ca ⊕ Cc = δ and Cb ⊕ Cd = δ are satisfied is 2−2n. The probability
that the conditions are satisfied for E is given in the following proposition:

Proposition 5. Consider a quartet of plaintexts and their corresponding cipher-
texts ((Pa, Ca), (Pb, Cb), (Pc, Cc), (Pd, Cd)) constructed by the algorithm described
above. We have

Pr
[
(Ca ⊕ Cc = δ) ∧ (Cb ⊕ Cd = δ)

]
≈

≈ 2−n
∑

β1⊕β2⊕γ1⊕γ2=0

Pr

[
α

E0−−−−→
∆Kab

β1

]
·Pr

[
α

E0−−−−→
∆Kab

β2

]
·Pr

[
γ1

E1−−−−→
∆Kac

δ

]
·Pr

[
γ2

E1−−−−→
∆Kac

δ

]
.

(12)
In particular,

Pr
[(

Ca ⊕ Cc = δ
)
∧
(
Cb ⊕ Cd = δ

)]
≥ 2−n(p̂q̂)2, (13)

where

p̂ =

√∑

β′

Pr[α
E0−−−−→

∆Kab

β′]2, and q̂ =

√∑

γ′

Pr[γ′ E1−−−−→
∆Kac

δ]2.

Proof. The proof is similar to the proof of Proposition 1. Consider a quartet
((Pa, Ca), (Pb, Cb), (Pc, Cc), (Pd, Cd)) constructed by the algorithm. Denote the
intermediate values (E0(Pa), E0(Pb), E0(Pc), E0(Pd)) (where the encryption is



under the respective keys) by (Xa, Xb, Xc, Xd). For all β1, β2, γ1, we say that
the event Sβ1,β2,γ1

occurs, if the following conditions are satisfied:

Xa ⊕ Xb = β1, Xc ⊕ Xd = β2, Xa ⊕ Xc = γ1.

Since the events {Sβ1,β2,γ1
} for different values of (β1, β2, γ1) are disjoint and

their union is the entire space, we have

Pr
[(

Ca ⊕ Cc = δ
)
∧
(
Cb ⊕ Cd = δ

)]
=

=
∑

β1,β2,γ1

Pr
[(

Ca ⊕ Cc = δ
)
∧
(
Cb ⊕ Cd = δ

)∣∣∣Sβ1,β2,γ1

]
· Pr[Sβ1,β2,γ1

]. (14)

If the event Sβ1,β2,γ1
occurs, then

Xb ⊕ Xd = (Xb ⊕ Xa) ⊕ (Xa ⊕ Xc) ⊕ (Xc ⊕ Xd) =

β1 ⊕ γ1 ⊕ β2.

Hence, by the independence assumption,

Pr
[(

Ca ⊕ Cc = δ
)
∧
(
Cb ⊕ Cd = δ

)∣∣∣Sβ1,β2,γ1

]
= Pr

[
γ1

E1−−−−→
∆Kac

δ

]
·Pr

[
γ2

E1−−−−→
∆Kac

δ

]
,

(15)
where γ2 = β1 ⊕ γ1 ⊕ β2. Applying again the independence assumption, we have

Pr[Sβ1,β2,γ1
] = Pr

[
Xa ∈ G−1

Ka

(
α

E0−−−−→
∆Kab

β1

) ∣∣∣
(
Xc ∈ G−1

Kc

(
α

E0−−−−→
∆Kab

β2

))∧(
Xa ⊕ Xc = γ1

)]
·

·Pr

[
Xc ∈ G−1

Kc

(
α

E0−−−−→
∆Kab

β2

) ∣∣∣Xa ⊕ Xc = γ1

]
· Pr [Xa ⊕ Xc = γ1] =

= Pr

[
α

E0−−−−→
∆Kab

β1

]
· Pr

[
α

E0−−−−→
∆Kab

β2

]
· Pr(Xa ⊕ Xc = γ1). (16)

Since Pa and Pc are chosen independently, then

Pr[Xa ⊕ Xc = γ1] ≈ 2−n. (17)

Note that for any fixed value of Pa ⊕ Pc and γ1, this approximation is rather
inaccurate. For an ideal cipher, it is expected that for a fraction e−1/2 of the
possible values of γ1, we have Pr[Xa ⊕ Xc = γ1] = 0, and for the other values,
the probability is at least 2−n+1. However, when the probability is averaged over
many different pairs (Pa, Pc), the approximation becomes reasonable.

Substituting Equations (15), (16), and (17) into Equation (14) yields Equa-
tion (12). The proof of Equation (13) given Equation (12) is identical to the
derivation of Equation (3) from Equation (2) in the proof of Proposition 1.



Proposition 5 shows that if p̂q̂ > 2−n/2, then the probability that the conditions
(Ca ⊕ Cc = δ) and (Cb ⊕ Cd = δ) hold simultaneously, is higher for E than for
a random permutation, and hence Step 2 of the distinguisher makes sense.

The optimal choice of Threshold and the computation of the success proba-
bility of the distinguisher given the probability

p0 = Pr
[(

Ca ⊕ Cc = δ
)
∧
(
Cb ⊕ Cd = δ

)]

are very similar to the respective steps for the related-key boomerang distin-
guisher presented in Section 2.2, and hence are omitted here. A key recovery
attack based on the related-key rectangle distinguisher is more complicated than
the respective related-key boomerang attack, due to the abundance of quartets
the adversary has to examine. We do not describe the key-recovery algorithm
here, and refer the reader to the algorithm of the rectangle key-recovery attack
in [8], that can be easily adopted to the related-key model. We note that Table 2
can also be applied to the case of the rectangle attack, with a different value for
p0, c and x: For the related-key rectangle attack p0 = 2−n(p̂q̂)2, x = p0/2−2n,
and c is the number of expected quartets (i.e., given M =

√
c/p0 pairs).

2.4 The Independence Assumptions

All statistical cryptanalytic techniques require various randomness assumptions.
For example, the construction of differential characteristics uses the assumption
that the cipher is a Markov cipher (see [6]), which implies that the characteris-
tics of single rounds are independent of each other and can be combined. Linear
cryptanalysis is based on Matsui’s Piling up Lemma [31], which essentially asserts
that linear approximations of single rounds are independent. These randomness
assumptions allow a rigorous treatment of the techniques, as well as better appli-
cability (since the search of differentials and linear approximations can be done
for each round separately). It is easy to construct artificial examples of ciphers
that do not satisfy the randomness assumptions, which would result in failure
of the differential or the linear attacks. However, based on many experimental
results, it is reasonable to assume that most of the ciphers satisfy the random-
ness assumptions. Moreover, if some cipher does not satisfy these assumptions,
then this non-randomness is probably exploitable in some other attack, e.g.,
impossible differential attack. Nevertheless, it is important to verify the attacks
experimentally whenever possible in order to assure that the assumptions indeed
hold in the specific case of interest.

The randomness assumption used in the related-key boomerang and rect-
angle attacks (i.e., Assumption 1) has two parts. The second part of the as-
sumption, that essentially asserts that differentials of different parts of the ci-
pher are independent, is similar to the standard assumption that the cipher is
Markovian, which is used in differential cryptanalysis. However, the first part
of Assumption 1 is relatively stronger than the assumptions used in differential
cryptanalysis.



Differential cryptanalysis is based on the assumption that for any fixed
key K and any (related-key) differential (α → β), the set GK(α → β) is
distributed randomly and uniformly in the plaintext space.14 In the related-
key boomerang and rectangle attacks, the assumption deals with the distribu-

tion of pairs of sets of the class GK

(
α

E0−−−→
∆K0

β

)
. We assume that any two

pairs of such sets are independent, i.e., the events X ∈ GK

(
γ1

E1−−−→
∆K1

δ

)
and

X ⊕ β1 ∈ GK⊕∆K0

(
γ2

E1−−−→
∆K1

δ

)
are independent, for any value of γ1, γ2, β1, δ,

and K.

To show the problem that may exist in the independence assumptions, we give
the following simple artificial example, which uses high probability differentials.

Assume that for given K, α, and β, for which MSB(β) = 0 (i.e., the most

significant bit of β is 0), we have G−1
K (α

E0−−−→
∆K0

β) = {X |MSB(X) = 1}

and G−1
K⊕∆K1

(α
E0−−−→

∆K0

β) = {X |MSB(X) = 0} (in particular, it follows that

Pr[α
E0−−−→

∆K0

β] = 1/2). Further assume that for some γ such that MSB(γ) = 0

and for some δ, Pr[γ
E1−−−→

∆K1

δ] = 1/2. By the independence assumptions, it is

expected that the probability in a related-key boomerang distinguisher based on

the differentials

(
α

E0−−−→
∆K0

β

)
and

(
γ

E1−−−→
∆K1

δ

)
is at least (1/4)2 = 1/16. How-

ever, consider a right quartet with respect to this distinguisher and denote the

intermediate encryption values by (Xa, Xb, Xc, Xd). Since Xa ∈ G−1
K (α

E0−−−→
∆K0

β),

we have MSB(Xa) = 1, and thus, since MSB(γ) = 0, necessarily MSB(Xc) =

1. This implies that Xc 6∈ G−1
K⊕∆K1

(α
E0−−−→

∆K0

β), and thus, the actual probability

of the distinguisher is zero!15

This example demonstrates failure of the first part of Assumption 1 (indepen-
dence inside the same sub-cipher). Similarly, the second part of the assumption

fails if we assume that for some K, α, β, γ and δ, we have G−1
K

(
α

E0−−−→
∆K0

β

)
=

{X |MSB(X) = 1} and GK

(
γ

E1−−−→
∆K1

δ

)
= {X |MSB(X) = 0}, since in this

14 There are cases in which this cannot be satisfied even in a regular cipher as shown
in [17], where the behavior of differential characteristics with probability lower than
2−n is shown to be dependent on the key. This is also the case for weak key classes,
i.e., classes of keys which behave significantly different than random.

15 Actually, the probability of the distinguisher may be higher due to differentials of the

form (α
E0−−−→

∆K0

β′) for β′ 6= β. However, if there are no high-probability differentials

of this form, the probability of the distinguisher is still significantly lower than the
predicted value 1/16.



case Xa cannot be element in both G−1
K

(
α

E0−−−→
∆K0

β

)
and GK

(
γ

E1−−−→
∆K1

δ

)
si-

multaneously.
We note that in several specific cases, deviations from the prediction of the

independence assumptions were detected in “real” ciphers. Such an example is
the ladder switch described in [14], where higher probability for the related-key
boomerang distinguisher is obtained using dependencies.

Luckily, in the related-key boomerang and rectangle attacks, there are sev-
eral mechanisms which may overcome dependence problems. The first is the
fact that in the attack we count over many differentials (all β1, β2, γ1, γ2 such
that β1 ⊕ β2 ⊕ γ1 ⊕ γ2 = 0), which ensures that even if there is a problem in
some combination of differentials, it is expected that other combinations still
succeed. The second one is the fact that four different keys are used (in the case
∆K0 6= ∆K1),and thus, even if there is a dependence between the differentials,
it is slightly countered by the different keys.

Experimental Verification of the Randomness Assumption As follows
from the discussion above, in the related-key boomerang and rectangle attacks
it is very important to verify the independence assumption practically in any
specific case. Unfortunately, in many of the cases it is impossible due to the high
complexity of the attack. Moreover, for the rectangle attack such verification
is inherently impossible: the data complexity of the attack is lower-bounded by
2n/2 and infeasible for any block cipher with block size of 128 bits or more
(e.g., AES). For the boomerang attack, it is sometimes possible to challenge
the independence assumptions for a reduced-round variant of the attack, e.g.,
for a variant containing one or two rounds in each sub-cipher. However, this
verification is not fully sufficient, since in the full attack, the overall probability
of the distinguisher is an average taken over many possible differentials, while in
the reduced-round variant only a small subset of the differentials is considered. It
is possible that while the reduced-round attack does not satisfy the independence
assumption, the full attack does satisfy it, since the deviations from independence
for different characteristics cancel each other.

As an example of the validity of Assumption 1, we experimentally verified
the related-key boomerang distinguisher on 6-round KASUMI, presented in Sec-
tion 3.3. The predicted rate of experiments with at least one quartet of 86.5%
was met with an 87% of the experiments showing one such quartet after 10,000
experiments, proving the validity of the analysis for 6-round KASUMI. For more
details, we refer the reader to Section 3.3.

2.5 Generalizations of the Related-Key Boomerang and Rectangle
Attacks

In this section we briefly present two generalizations of the basic related-key
boomerang and rectangle attacks.



Using Structures of Keys The related-key differentials used in the attack
are usually based on fixed subkey differences. If the key schedule of the attacked
cipher is linear, such differences can be achieved by choosing the appropriate key
difference. However, if the key schedule is nonlinear, a fixed key difference does
not ensure fixed subkey differences. Instead, the adversary can apply differential
cryptanalysis to the key schedule. By studying the differential properties of the
key schedule, the adversary can find a key difference that leads to the required
subkey differences with a relatively high probability. Then, the adversary can
repeat the attack for many pairs of related-keys and expect that in one of the
pairs, the required subkey differences are satisfied and the basic related-key
boomerang/rectangle attack can be applied.

Furthermore, we observe that the number of keys used in the attack can be
reduced by using structures of keys. Instead of finding a single key difference
leading to the required subkey differences with a high probability, the adversary
can find many such key differences (possibly with lower probabilities). Then,
the adversary can use structures of keys such that each structure contains many
pairs of keys corresponding to different “key characteristics”, and thus reduce
the number of keys required for the attack.

A concrete example of this improvement can be found in the attack on AES-
192 in Section 4. The improvement uses 127 key characteristics in parallel, and
succeeds to reduce the number of keys required for the attack from 256 to 64.

Generalizing the Key Relation While XOR relations are common and inher-
ent to the majority of differential-based related-key attacks, in some cases other
key relations are more suitable (either due to the environment of the attack
or in order to obtain higher probabilities of the differentials). The related-key
boomerang and rectangle attacks can be applied almost without a change when
the XOR key relations are replaced by any relation satisfying a condition speci-
fied below.

Denote the relation between the keys K and K ′ by R(K, K ′). We note that
R can be any relation which is symmetric, and covers all keys. At the same time,
we recall the fact that the more complex the relation R is, the applicability of
the related-key attack may be affected. For example, in the basic related-key
boomerang and rectangle attacks we can set R(K, K ′) = K ⊕ K ′.

The boomerang and rectangle attacks can be applied whenever the key rela-
tion satisfies the following condition:

∀(Ka, Kb, Kc, Kd),
(
R(Ka, Kc) = R(Kb, Kd)

)
=⇒

(
R(Ka, Kb) = R(Kc, Kd)

)
. (18)

Condition (18) ensures that in each of the sub-ciphers, the same key relation is
used in both differentials. For example, for XOR differences

(Ka ⊕ Kc = Kb ⊕ Kd) =⇒ (Ka ⊕ Kb = Kc ⊕ Kd),



and hence the condition holds.
Condition (18) is satisfied for a wide variety of key relations, including ad-

ditive differences (e.g., R(K, K ′) = (K − K ′) mod 2n) and rotations. On the
other hand, the condition does not hold if the relation used in the first sub-
cipher (i.e., between (Ka, Kb) and (Kc, Kd)) and the relation used in the second
sub-cipher (i.e., between (Ka, Kc) and (Kb, Kd)) are of different classes (e.g.,
XOR differences in the first sub-cipher and modular differences in the second
sub-cipher).

We note that the basic related-key boomerang and rectangle attacks can be
extended to use different values α, α′ in the related-key differentials of E0, and
δ, δ′ in the related-key differentials of E1. Similarly, the attack can use different
key differences ∆K0, ∆K ′

0 and ∆K1, ∆K ′
1 in the differentials of E0 and E1, re-

spectively. This allows to extend Condition (18) to the following:

Proposition 6. The related-key boomerang attack can be applied with two key
relations R1, R2, as long as for every quadruple (Ka, Kb, Kc, Kd) the relations
R1(Ka, Kb), and R2(Ka, Kc), R2(Kb, Kd) imply the relation R1(Kc, Kd). The
related-key rectangle attack can be applied if the relations R1(Ka, Kb), R1(Kc, Kd)
and R2(Ka, Kc) imply the relation R2(Kb, Kd).

Finally, even if the condition of Proposition 6 is not satisfied, in some cases the
attack can be still applied using structures of keys, as described earlier.

2.6 Comparison With Other Related-Key Attacks

For any new technique constructed as a combination of existing techniques,
a natural question to ask is whether there are cases in which the combined
attack is better than each of its components taken separately. In this section we
briefly describe several important cases in which the related-key boomerang and
rectangle attacks are expected to outperform each of their components. Concrete
examples of the advantage of related-key boomerang and rectangle attacks over
other attack techniques are given in Sections 3 and 4.

The main advantage of the related-key differential attacks over ordinary dif-
ferential attacks is the ability of the adversary to use the subkey differences to
cancel the plaintext difference in the input of one (or more) of the non-linear
parts of the cipher. As a result, the adversary obtains one (or more) rounds in the
differential that hold with probability 1, allowing the extension the differential
by one (or more) rounds.

In the related-key boomerang and rectangle attacks, the adversary can enjoy
this advantage twice, once in each of the sub-ciphers. As a result, the overall dis-
tinguisher can be extended by two (and in some cases even more) rounds. This
is a significant advantage of the related-key boomerang/rectangle attack over
all other differential-based related-key attacks (e.g., related-key differential at-
tack, related-key impossible differential attack and related-key differential-linear
attack) that can enjoy the advantage of the related-key model only once.



The advantage of gaining a single additional round (or two rounds) to the
distinguisher is significant in ciphers in which the number of rounds is small
and each round function is relatively strong. Hence, the gain of the related-key
boomerang/rectangle attack is expected to be significant in ciphers like AES [32]
and KASUMI [36].

Another property of the cipher required for the success of related-key boomerang
and rectangle attacks is simplicity of the key schedule. The basic version of the
attack is applicable only to ciphers with a linear key schedule, but using struc-
tures of keys the attack can be applied to ciphers with a nonlinear key schedule
as well. However, if the key schedule of the cipher is complex enough and does
not have “good” differential properties, then the number of keys required for the
attack becomes infeasibly big.

Summarizing the discussion above, the related-key boomerang and rectangle
attacks are expected to be successful if the attacked cipher has the following
properties:

– A small number of relatively strong rounds.
– A relatively simple key schedule.

The class of ciphers satisfying these properties includes widely used ciphers
such as AES [32], KASUMI [36], and IDEA [30]. These three ciphers can be in-
deed attacked efficiently using the related-key boomerang/rectangle attack tech-
nique.

3 Related-Key Boomerang/Rectangle Attacks on
KASUMI

3.1 The KASUMI Block Cipher

KASUMI [36] is a 64-bit block cipher with 128-bit keys, with a recursive Feistel
structure, following its ancestor, MISTY1. The cipher has eight Feistel rounds,
where each round is composed of two functions: the FO function which is in itself
a 3-round 32-bit Feistel construction, and the FL function that mixes a 32-bit
subkey with the data in a linear way. The order of the two functions depends on
the round number: in the even rounds the FL function is applied first, and in
the odd rounds the FO function is applied first.

The FO function also has a recursive structure: its F -function, called FI, is
a four-round Feistel construction. The FI function uses two non-linear S-boxes
S7 and S9 (where S7 is a 7-bit to 7-bit permutation and S9 is a 9-bit to 9-bit
permutation), and accepts an additional 16-bit subkey, that is mixed with the
data. In total, a 96-bit subkey enters FO in each round — 48 subkey bits are
used in the FI functions and 48 subkey bits are used in the key mixing stages.

The FL function accepts a 32-bit input and two 16-bit subkey words. One
subkey word affects the data using the OR operation, while the second one affects
the data using the AND operation. We outline the structure of KASUMI and
its parts in Fig. 2.



Fig. 2. Outline of KASUMI
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Table 3. KASUMI’s Key Schedule Algorithm

Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3

1 K1 ≪ 1 K′
3 K2 ≪ 5 K6 ≪ 8 K7 ≪ 13 K′

5 K′
4 K′

8

2 K2 ≪ 1 K′
4 K3 ≪ 5 K7 ≪ 8 K8 ≪ 13 K′

6 K′
5 K′

1

3 K3 ≪ 1 K′
5 K4 ≪ 5 K8 ≪ 8 K1 ≪ 13 K′

7 K′
6 K′

2

4 K4 ≪ 1 K′
6 K5 ≪ 5 K1 ≪ 8 K2 ≪ 13 K′

8 K′
7 K′

3

5 K5 ≪ 1 K′
7 K6 ≪ 5 K2 ≪ 8 K3 ≪ 13 K′

1 K′
8 K′

4

6 K6 ≪ 1 K′
8 K7 ≪ 5 K3 ≪ 8 K4 ≪ 13 K′

2 K′
1 K′

5

7 K7 ≪ 1 K′
1 K8 ≪ 5 K4 ≪ 8 K5 ≪ 13 K′

3 K′
2 K′

6

8 K8 ≪ 1 K′
2 K1 ≪ 5 K5 ≪ 8 K6 ≪ 13 K′

4 K′
3 K′

7

(X ≪ i) — X rotated to the left by i bits

The key schedule of KASUMI is very simple and the subkeys are derived
from the key linearly. The 128-bit key K is divided into eight 16-bit words:
K1, K2, . . . , K8. Each Ki is used to compute K ′

i = Ki ⊕ Ci, where the Ci’s are
fixed constants (we omit these from the paper as they have no effect on our
results). We denote the bits of the subkeys by Ki = (K15

i , K14
i , . . . , K0

i ), where
K15

i is the most significant bit.
In each round, eight words are used as the round subkey (up to some in-word

rotations). Therefore, the 128-bit subkey of each round is linearly dependent
on the secret key in a very simple way. We give the key schedule algorithm of
KASUMI in Table 3.

3.2 Related-Key Differentials of KASUMI

In our attacks we use three related-key differentials: a 4-round differential for
rounds 1–4, and 3-round differentials for rounds 4–6 and rounds 5–7. Note that
the change in the order between FO and FL requires to use two 3-round differ-
entials.

A 4-Round Related-Key Differential for Rounds 1–4 Our attack on the
full KASUMI uses a related-key differential of rounds 1–4 of KASUMI which
is an extension by one round of the related-key differential presented in [15].
The input difference of this differential is α = (0x, 0020 0000x), where the key
difference is ∆Kab = (0, 0, 1, 0, 0, 0, 0, 0), i.e., only the third key word has a non-
zero difference ∆K3 = 0001x. The first three rounds of the characteristic have
probability 1/4, and due to the Feistel structure, the α difference can propagate
to at most 232 differences after round 4. Hence, by Proposition 4, we have

p̂ ≥ 1

4
·
√

2−32 = 2−18.

We outline the differential in Figure 3.
It was further observed in [15] that the probability of the differential can be

increased by controlling two plaintext bits. If the adversary assigns one bit of



Fig. 3. 4-Round Related-Key Differential Characteristic of KASUMI
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the plaintexts to be one (thus fixing one bit of the output of the OR operation
in FL1) and one bit of the plaintexts to be zero (thus fixing one bit of the
output of the AND operation in FL1), then the probability of the differential
described in [15] is increased to 1/2. As a result, for our 4-round differential we
have p̂ ≥ 2−17.16

We note that it is possible to rotate all the words of the key difference ∆Kab

and of the differential by the same number of bits, without changing the prob-
ability of the differential. Hence, the above differential can be replaced by 15
equivalent differentials.

3-Round Related-Key Differential for Rounds 5–7 The 3-round related-
key differential used in rounds 5–7 is the 3-round differential of [15] shifted by four
rounds and rotated by one position to the right. The key difference is ∆Kac =
(0, 0, 0, 0, 0, 0, 8000x, 0), and the data differences are γ = (0x, 0010 0000x) →
(0x, 0010 0000x) = δ. Since we use a single differential (and not count over other
possibilities), we have

q̂ = q = 1/4.

As before, it is possible to obtain 15 equivalent differentials by rotating the key
difference in ∆K7 and rotating the data differences correspondingly.

16 Note that if the differential is used in the backward direction, the lower bound
remains 2−18.



3-Round Related-Key Differential for Rounds 4–6. In rounds 4–6 we use
conditional related-key differential characteristics [3], i.e., characteristics that
depend on some unknown key bit.

Let δ0 = (0010 0000x, 0x), δ1 = (0010 0040x, 0x), and δ′ = (0001 0000x, 0x).
If K4

5 = 0 (i.e., the fifth least significant bit of K5 equals zero), we use the
two differentials δ0 → δ0 and δ0 ⊕ δ′ → δ0. If K4

5 = 1, we use the differentials
δ1 → δ1 and δ1 ⊕ δ′ → δ1. The key difference of all the characteristics is ∆Kac =
(0, 0, 0, 0, 0, 1, 0, 0). Each of the four characteristics has probability 1/4, if K4

5

has the corresponding value.
For example, we describe the difference propagation in the backward direc-

tion of the characteristics δ0 → δ0 and δ0 ⊕ δ′ → δ0. Consider a pair with
ciphertext difference δ0 = (0010 0000x, 0x). In round 6 the zero difference is pre-
served with probability 1/2 (i.e., the key difference is cancelled with probability
1/2). In round 5, we need a difference of 0010 0000x after FL5, which is then
cancelled with the key difference in KO5,1. If K4

5 = 0, then this is indeed the
case with probability 1. In round 4, the zero difference is preserved by the FO4
function. As in round 6, it has probability 1/2 to be preserved also by FL4, and
probability 1/2 to evolve into δ0⊕δ′. Thus, the input difference of the differential
characteristic is either δ0 or δ0 ⊕ δ′, with probability 1/4 each.

In the attack, we apply the distinguisher twice, once with each pair of char-
acteristics, and expect that in one of the applications, both differentials hold
with probability 1/4.17 For that application, we have

q̂ =
√

(1/4)2 + (1/4)2 = 1/
√

8.

We note that the four conditional differential characteristics we use can be
rotated along with the key difference, to produce 15 similar sets of differential
characteristics with the same probabilities.

3.3 Related-Key Boomerang Distinguisher on 6-Round KASUMI

In this section we present a related-key boomerang distinguisher for 6-round
KASUMI. The distinguisher we present applies to rounds 1–6 of KASUMI, but
it can be easily adapted to rounds 2–7 or 3–8, as well. Let E0 be rounds 1–3,
and let E1 be rounds 4–6. In E0 we use the differential α = (0x, 0020 0000x) →
(0x, 0020 0000x) with key difference ∆Kab = (0, 0, 1, 0, 0, 0, 0, 0). As shown in
Section 3.2, the probability of the differential in the forward direction is 1/2
(after adding constraints on the plaintexts), and the probability in the backward
direction is 1/4. In E1 we use the two pairs of differentials (δ0 → δ0, δ0⊕δ′ → δ0),
and (δ1 → δ1, δ1⊕δ′ → δ1), both with key difference ∆Kac = (0, 0, 0, 0, 0, 1, 0, 0).
As shown in Section 3.2, one of the pairs of differentials yields overall probability
of q̂ = 1/

√
8 (where the “successful” pair depends on the value of the key bit

K4
5 ).

17 We note that the knowledge of the “successful” pair of characteristics reveals the
value of the key bit K4

5 .



The attack essentially performs two standard related-key boomerang dis-
tinguishers, one for each possible value of the key bit K4

5 . To reduce the data
complexity of the attack, we share some of the chosen plaintexts between the
two distinguishers. The attack algorithm requires four keys:

Ka; Kb = Ka ⊕ ∆Kab; Kc = Ka ⊕ ∆Kac; Kd = Kb ⊕ ∆Kac.

The algorithm of the distinguisher is as follows:

1. Choose M pairs of plaintexts (Pa,i, Pb,i) (for 1 ≤ i ≤ M) such that Pa,i ⊕
Pb,i = α. For each pair, ask for the encryption of Pa,i and Pb,i under the
keys Ka and Kb, respectively, and denote the corresponding ciphertexts by
Ca,i and Cb,i.

2. For 1 ≤ i ≤ M , calculate Cc,i = Ca,i ⊕ δ0 and Cd,i = Cb,i ⊕ δ0. For all i, ask
for the decryption of Cc,i and Cd,i under the keys Kc and Kd, respectively,
and denote the corresponding plaintexts by Pc,i and Pd,i.

3. For 1 ≤ i ≤ M , calculate Ce,i = Ca,i ⊕ δ1 and Cf,i = Cb,i ⊕ δ1. For all i, ask
for the decryption of Ce,i and Cf,i under the keys Kc and Kd, respectively,
and denote the corresponding plaintexts by Pe,i and Pf,i.

4. Check whether Pc,i ⊕ Pd,i = α and count the number of such occurrences.
5. Check whether Pe,i ⊕ Pf,i = α and count the number of such occurrences.
6. If one of the two counters from Steps 4 and 5 is greater than zero, then

output “6-Round KASUMI”. Otherwise, output “Not 6-Round KASUMI”.

The total probability of the boomerang process of this distinguisher is18

(1/2) · (1/4) · (1/
√

8)2 = 1/64, either for quartets counted in Step 4 or for
quartets counted in Step 5. Therefore, for M = 128 we expect to find two right
quartets in Step 4 or in Step 5 (either for the quartets (Pa,i, Pb,i, Pc,i, Pd,i) or for
the quartets (Pa,i, Pb,i, Pe,i, Pf,i)). The right quartets can be detected effectively
as for a random cipher the probability of the event Pc,i ⊕Pd,i = α (or the event
Pe,i ⊕ Pf,i = α) is 2−64.

We note that if two right quartets are expected, then the probability that
none is found is about 14%, i.e., the success rate of the attack is about (86% +
100%)/2 = 93%. The data complexity is 3 · 128 · 2 = 768 adaptively chosen
plaintexts and ciphertexts, such that 256 chosen plaintexts are encrypted and
512 adaptively chosen ciphertexts are decrypted. The time complexity of the
attack is negligible.

We verified the distinguishing attack experimentally. We sampled 10,000 ran-
dom keys, and ran the above distinguisher with M = 128. By the analysis pre-
sented above, we expected that in 86.5% of the experiments there will be at
least one right quartet. Our experiments revealed that in 87% there was at least
one such quartet. We outline in Table 4 the number of quartets suggested in
each experiments and compare it with the expected number based on Poisson
distribution with a mean of 2. As can be seen from the table, the figures seem
to be highly correlated.

18 Recall that the first differential has probability 1/2 for the pair (Pa, Pb) due to fixing
the plaintexts correctly.



Table 4. The Number of Found Quartets in 10,000 Experiments

Quartets 0 1 2 3 4 5 6 7 8 9 10

Experiments 1302 2695 2692 1879 907 348 127 27 9 4 0

Poisson (mean = 2) 1353 2707 2707 1804 902 361 120 34 9 2 < 1

As noted in [10], this distinguisher can be transformed into a key recovery
attack. The key recover attack has a total data and time complexities of 213.
The number of keys used in the attack is 34.

3.4 The Basic Related-Key Rectangle Attack on the Full KASUMI

Our attack on the full KASUMI applies the related-key rectangle distinguisher in
rounds 1–7 and retrieves subkey material in round 8. Let ∆Kab = (0, 0, 1, 0, 0, 0, 0, 0)
and ∆Kac = (0, 0, 0, 0, 0, 8000x, 0, 0), and let Ka, Kb = Ka ⊕ ∆Kab, Kc =
Ka ⊕ ∆Kac, and Kd = Kc ⊕ ∆Kab be the unknown related keys we want to re-
trieve. In rounds 1–4 we use the related-key differential presented in Section 3.2
that has an input difference α = (0x, 0020 0000x), a key difference ∆Kab and for
which p̂ = 2−17.19 In rounds 5–7 we use the related-key differential presented in
Section 3.2 that has an output difference δ = (0x, 0010 0000x), a key difference
∆Kac and for which q̂ = 2−2.20

We start with N = 251 pairs of plaintexts encrypted under Ka and Kb, and
the same number of plaintext pairs encrypted under Kc and Kd. This data set
contains N2 = 2102 quartets, of which about N2 ·2−64 ·2−34 ·2−4 = 2102 ·2−102 =
1 are expected to be right rectangle quartets. In the attack we identify the
candidate quartets out of all possible quartets, and then analyze them to retrieve
the subkey of round 8.

Denote the 64-bit plaintext P by (PL, PR), where each 32-bit half is composed
of two 16-bit halves, i.e., P = ((PLL, PLR), (PRL, PRR)). The attack algorithm
is as follows:

1. Data Collection Phase:
(a) Choose a structure of 251 pairs of plaintexts (Pa, Pb), where Pb = Pa⊕α,

P 0
aLL

= 0 (i.e., the least significant bit of PaLL
is fixed to zero for all the

plaintexts in the structure), and P 1
aLR

= 1.21 For each pair, ask for the
encryption of Pa and Pb under the keys Ka and Kb, respectively, and
insert each pair of ciphertexts into a hash table indexed by the 64-bit
value of (CaRL

, CaRR
, CbRL

, CbRR
).

19 In this rectangle attack the differentials are used only in the forward direction and
hence p̂ is 2−17 rather than 2−18, as shown in Section 3.2.

20 We note that we picked a slightly rotated version of δ0 to ensure maximal indepen-
dence between the two sub-ciphers, thus validating the independence assumptions.

21 Fixing a bit in Pa also fixes the corresponding bit in its counterpart Pb, due to the
difference α.



Table 5. Possible Values of KL8,2 and KL8,1

OR — KL8,2 AND — KL8,1

(X′

bd, Y ′

bd) (X′

bd, Y ′

bd)
(X′

ac, Y ′

ac) (0,0) (0,1) (1,0) (1,1) (X′

ac, Y ′

ac) (0,0) (0,1) (1,0) (1,1)
(0,0) {0,1} — 1 0 (0,0) {0,1} — 0 1
(0,1) — — — — (0,1) — — — —
(1,0) 1 — 1 — (1,0) 0 — 0 —
(1,1) 0 — — 0 (1,1) 1 — — 1

∗ The two bits of the differences are denoted by (input difference, output difference): (X′

1
, Y ′

1
) for

one pair and (X′

2
, Y ′

2
) for the other pair.

(b) Choose a structure of 251 pairs of plaintexts (Pc, Pd), where Pd = Pc⊕α,
P 0

cLL
= 0, and P 1

cLR
= 1. For each pair, ask for the encryption of Pc and

Pd under the keys Kc and Kd, respectively. Then, access the hash table
in the entry corresponding to the value (CcRL

⊕ 0010x, CcRR
, CdRL

⊕
0010x, CdRR

). For each pair (Pa, Pb) found in this entry, apply Step 2 on
the quartet (Pa, Pb, Pc, Pd).

In the first step described above, the (251)2 = 2102 possible quartets are
filtered according to a condition on the 64 bits of difference which are known
(due to the output difference δ), which leaves about 238 quartets to Step 2.
In this step, we treat all the remaining quartets as right quartets. Under this
assumption, we know not only the actual inputs to round 8, but also the output
differences. We guess 32 bits of the key (KO8,1, KI8,1), and try to deduce KL8,2.

2. Analyzing Quartets:

(a) For each remaining quartet (Ca, Cb, Cc, Cd) guess the 32-bit value of
KO8,1 and KI8,1. For the two pairs (Ca, Cc) and (Cb, Cd) use the value
of the guessed key to compute the input and output differences of the
OR operation in the last round of both pairs. For each bit of this 16-bit
OR operation of FL8, the possible values of the corresponding bit of
KL8,2 are given in Table 5. On average (8/16)16 = 2−16 values of KL8,2

are suggested by each quartet and guess of KO8,1 and KI8,1.

(b) For each quartet and values of KO8,1, KI8,1 and KL8,2 suggested in
Step 2(a), guess the 32-bit value of KO8,3 and KI8,3, and use this infor-
mation to compute the input and output differences of the AND opera-
tion in both pairs. For each bit of the 16-bit AND operation of FL8, the
possible values of the corresponding bit of KL8,1 are given in Table 5.
On average (8/16)16 = 2−16 values of KL8,1 are suggested by each quar-
tet and guess of KO8,1, KI8,1, KO8,3, KI8,3, and the computed value of
KL8,2.

3. Finding the Right Key: For each quartet and value of (KO8,1, KI8,1,
KO8,3, KI8,3, KL8,1 ,KL8,2) suggested in Step 2, guess the remaining 32
bits of the key, and perform a trial encryption.



3.5 Analysis of the Attack

We first analyze Step 2(a), and show that given the input and output differences
of the OR operation in the two pairs of the quartet, the expected number of
suggestions for the key KL8,2 is 2−16.

Let us examine a difference in some bit j. For each pair, there are four
combinations of input difference and output difference in this bit. Table 5 lists
the values that the two pairs suggest for the respective key bit.

In the table there are nine entries that contain no value, which means a
contradiction. For example, a difference 0 can never lead to a difference 1 by any
linear function. Another possible contradiction occurs when one pair suggests
that the key bit is 0, while the second pair suggests that the key bit is 1. The
total number of suggestions for the key bit is 8. Since the table has 16 entries,
the average number of suggested values for the key bit is 1/2. In total, for the
16 bits there are (1/2)16 = 2−16 key suggestions on average. A similar analysis
can be applied to Step 2(b).

We note that the identification of suggested values (or of the found contradic-
tions) can be done efficiently in a bit-sliced manner. Hence, we conclude that this
step can be implemented efficiently (for each quartet and initial subkey guess).

Step 2 starts with 238 quartets. In Step 2(a), the 238 · 232 = 270 (quartet,
subkey guesses) tuples suggest 270 · 2−16 = 254 values for the 48 subkey bits
(KO8,1, KI8,1, KL8,2). Similarly, after the additional guess of KO8,3 and KI8,3

in Step 2(b), we get 254 · 232 · 2−16 = 270 suggestions for the 96 subkey bits
(KO8,1, KI8,1, KL8,2, KO8,3, KI8,3, KL8,1).

Step 3 goes over all 270 suggestions for the 96 key bits, and tries to complete
the remaining 32 key bits by an exhaustive search. This can be performed easily
due to the linear key schedule of KASUMI. The time complexity of this step
is 2102 trial encryptions. As the complexity of Step 3 is dominant, the total
complexity of this attack is 2102 trial encryptions.

3.6 Improvements of the Attack

In this section we present several improvements of the attack that allow to
decrease its time complexity considerably.

Improvement of Step 3 Step 3 can be improved by using key ranking tech-
niques. Taking 252.6 plaintexts encrypted under four different keys (i.e., three
times the data as before), we expect nine right quartets. Instead of completing
the missing key bits by an exhaustive key search, we count how many (quartet,
subkey guess) tuples suggest each value of the 96 bits of KO8,1, KI8,1, KO8,3,
KI8,3, KL8,1 and KL8,2. Only a few possible wrong key values are expected to
get more than five suggestions. On the other hand, the right key has probability
88.4% to have at least this number of suggestions. Therefore, we identify which
96-bit values have more than five suggestions, and exhaustively search over the
remaining bits of these cases. After this modification, the time complexity of



Step 3 becomes negligible compared to that of Step 2(b). This reduces the time
complexity of the attack to 286.2 full KASUMI encryptions, while increasing the
data complexity to 254.6 related-key chosen plaintexts.

First Improvement of Step 2(b) Another improvement of the attack is based
on the observation that Step 2(b) can be implemented in two sub-steps. In the
first one, we guess KO8,3 and the 9-bit subkey KI8,3,2, and find the value of
only 9 bits of KL8,1. Hence, we generate 9 · 254 · 225 = 282.2 (quartet, subkey
guess) tuples where the subkey guess is of 73 bits. As this improvement deals
only with 9 bits of KL8,1, the expected number of remaining (quartet, subkey
guess) values is 273.2. Then, in the second sub-step we guess the 7 bits of KI8,3,1

and find the value of the 7 remaining bits of KL8,1. The time complexity of the
attack is now dominated by the first sub-step of Step 2(b), whose complexity is
equivalent to about 279.2 KASUMI encryptions.

Second Improvement of Step 2(b) Our next improvement uses the fact
that Step 2(b) depends only partially on Step 2(a). After Step 2(a) there are
254 tuples of the form (quartet, subkey guess), where the subkey guess is of 48
bits. However, Step 2(b) uses only 32 bits of the guessed subkey, namely, the
value of KO8,1 and KI8,1. As mentioned earlier, a given quartet suggests about
216 values for the 48 bits of KO8,1, KI8,1, KL8,2. However, it suggests only 212.9

values for the 32 bits of KO8,1, KI8,1.
This observation is used to reduce the complexity of the attack: The purpose

of Step 2(a) is now to find the list of about 212.9 values for KO8,1, KI8,1 that
a quartet suggests, and then Step 2(b) finds the list of about 212.9 values for
KO8,3, KI8,3. Only then, in Step 3, we take into consideration the possible values
of KL8,1 and KL8,2. This reduces the time complexity of the attack to 276.1

KASUMI encryptions.

Third Improvement of Step 2(b) Finally, we offer another improvement
that is based on a more delicate attack procedure. We recall that for a random
input/output difference to an S-box, there is on average one pair of actual values
which fit these differences.22

Denote the input and output of FL8 by (Y0, X0) and (Y1, X1), respectively.
The relation between the input and the output of FL8 is given by

X1 = X0 ⊕ ((Y0 ∧ KL8,1) ≪ 1); Y1 = Y0 ⊕ ((X1 ∨ KL8,2) ≪ 1); (19)

Let (Y ′
0 , X ′

0) and (Y ′
1 , X ′

1) be the differences in the input and the output of FL8
for the considered pair. Note that the output difference is known to the adversary,
and after the guess of KO8,1 and KI8,1, the adversary can also compute Y ′

0 .

22 Actually, the number of such ordered pairs is always even. On the other hand, the
probability that no pair satisfies the input/output difference constraint is at least
1/2.



In the modified variant of the attack, in Step 2(b) the adversary guesses only
KO8,3, and not KI8,3. Like in the first improvement of Step 2(b), the step is
divided into two sub-steps. The first sub-step collects suggestions for the 9-bit
subkey KI8,3,1 and the second sub-step collects suggestions for the 7-bit subkey
KI8,3,2.

The First Sub-Step: The knowledge of KO8,3 allows the adversary to
compute the input difference to the second S9 S-box of the function FI8,3.
Moreover, the output difference of that S-box is given by the 9 corresponding
bits of X ′

0. During this sub-step, we abuse the notation and refer by X ′
0 and Y ′

0

to these 9 bits.
When Y ′

0 has 9 − i zeros, the AND operation with the subkey KL8,1 may
affect the difference only in the i active bits, and hence can result in at most 2i

differences. According to Equation (19) each such difference Y ′
0 suggests at most

2i differences in X ′
0. Each such X ′

0, combined with the input difference to the
second S9 S-box of FI8,3, translates to one suggestion on average for the actual
inputs to that S-box, that in turn translates to one candidate on average for the
subkey KI8,3,1.

Hence, assuming that the differences Y ′
0 are distributed uniformly, the ex-

pected number of candidates a pair suggests for KI8,3,1 is

9∑

i=0

(
9
i

)
· 2−9 · 2i = 2−9

9∑

i=0

(
9
i

)
· 2i · 19−i = 2−9 · (1 + 2)9

=
39

29
≈ 25.3.

We note that this is also the average time complexity associated with this proce-
dure (for the first pair). Then, for the analysis of the second pair, one can either
repeat the procedure, and compute the intersection of the two lists, or just try
the keys offered by the first procedure.

Of course, a more efficient approach is to start with the pair that is going
to suggest less keys (i.e., the one for which Y ′

0 has more 0’s). Repeating the
analysis presented above, and taking into consideration this fact, it is expected
that the pair with lower hamming weight requires 24.2 trials on average to find
the list of 24.2 candidate subkeys for KI8,3,1, and an equivalent time to challenge
them for consistency with the second pair. At the end of the process, for a given
quartet, guess of KO8,1, KI8,1 and KO8,3, about 2.88 candidates to KI8,3,1 are
expected to remain. Of course, if no candidates remain, then it is possible to
discard this (quartet, KO8,3, KI8,3) combination. We note that about 39.7% of
the combinations are indeed discarded at this stage. The time complexity of this
sub-step is 9 · 254 · 212.9 · 2 · 24.2 = 275.3 one-round encryptions (when combined
with the previous improvements).

The Second Sub-Step: In this sub-step, for each of the remaining can-
didates, the adversary obtains suggestions for KI8,3,2, by examining the 7 re-
maining bits of X ′

0 and Y ′
0 . This time, the running time for the pair with lower

hamming weight is expected to be 23.2 evaluations on average. Hence, this step



takes 9 · 254 · (2.88 · 212.9) · 2 · 23.2 = 275.9 one-round encryptions. The expected
number of suggested candidates for the subkey KI8,3,2 is 2.25.

After these two sub-steps, the adversary is left with 9 ·251.9 ·216 ·2.88 ·2.25 =
272.8 suggestions for combinations of (quartet, KO8,1, KI8,1, KO8,3, KI8,3). At
this point, the adversary can use the obtained information to get suggestions for
the subkeys KL8,2 and KL8,1, along with an additional filtering. The resulting
number of suggestions for (quartet, KO8,1, KI8,1, KO8,3, KI8,3, KL8,1, KL8,2) is
273.2, like in the basic attack (actually, the number in the basic attack is 270 but
in the modified attack we examine 9 times more quartets). The remaining key
bits can be retrieved efficiently, as was shown earlier. The time complexity of
this attack, is thus dominated by the analysis of the S-boxes S9 and S7 of
the function FI7,3, which takes time of about 275.9 + 275.3 = 276.6 one-round
encryptions, or a total of 273.6 full KASUMI encryptions.

3.7 A Different 8-Round Rectangle Attack

It is also possible to apply a slightly different attack algorithm, which is based
on a 6-round related-key rectangle distinguisher. The distinguisher is used in
rounds 2–7, where the first related-key differential (used in rounds 2–4) is the dif-
ferential of rounds 4–6 presented in Section 3.2 (shifted two rounds backwards),
and the second related-key differential is used in rounds 5–7. The associated
probabilities are p̂ = 1/

√
8, and q̂ = 1/4, respectively. Hence, given 272 quartets

with the right input differences, we expect about 272 · (1/
√

8)2 · (1/4)2 · 2−64 = 2
right quartets.

The attack uses 16 structures, each composed of three sets of 232 plaintexts
each. The structures are of the form P = {A, x} for a fixed A, and all possible x’s
which are encrypted under Ka and Kc, and P0 = {A⊕δ0, x} and P1 = {A⊕δ1, x},
each encrypted under Kb and Kd. For sake of clarity, we describe the attack for
K4

2 = 0 (which means that the differentials in use are based on δ0). The other
case, follows immediately.

We search for quartets composed of ((Pa, Pb), (Pc, Pd)) with input difference
δ0 after the first round (in the pairs (Pa, Pb) and (Pc, Pd)), and difference α
before the last round (in the pairs (Pa, Pc) and (Pb, Pd)). To do so, for each
pair of structures, the adversary finds all the candidate quartets (out of possible
2128 quartets, only 264 satisfy the known ciphertext differences). As there are
162 = 28 pairs of structures, the adversary analyzes 272 quartets, in a manner
very similar to the basic attack:

1. For each candidate quartet, guess KI8,1, KO8,1 and retrieve KL8,2 (similarly
to Step 2(a)).

2. For each candidate (quartet, subkey) tuple, guess KI1,1 and use the known
value of KO1,1 (which is known from KL8,2) to obtain candidate KL1,2.

3. For each candidate (quartet, subkey) tuple, guess KO1,3 and from the knowl-
edge of KL1,1 (which is known from KO8,1), find candidates to KI1,3 (apply
Step 2(b) in a slightly different order).

4. Exhaustively search over all remaining keys.



The first step of the attack takes 272 · 232 = 2104 operations, and results in
272 · 232 · 2−16 = 288 tuples of (quartets, 48-bit key guess). In the second step,
16 more key bits are guessed, each resulting in a consistent suggestion for KL1,2

with probability 2−16. Hence, this step takes 288 · 216 = 2104 operations, and
offers 288 · 216 · 2−16 = 288 tuples of (quartets, 80-bit key guess). In Step 3, we
apply an analysis step which is similar to Step 2(b) (using the fact that we know
the inputs to FI1,3 and its output difference), which allows finding a consistent
suggestion for KI1,3 with probability 2−16 for each KO1,3. Hence, also this step
takes 288 · 216 = 2104 operations, and results in 288 · 216 · 2−16 = 288 tuples of
the form (quartet, 112-bit subkey guess). At this point, exhaustive search takes
288 · 216 = 2104 trial encryptions, which is what the adversary does.

We note that the attack has to be repeated twice, once with δ0 and once with
δ1. However, when using δ0 we are assuming that K4

3 = 0, which means that
there is no need to guess its value, and by reversing the order of Steps 1 and 2,
reduce the total running time to 2104 trial encryptions. The data complexity is
unchanged, i.e., 2 · 16 · 3 · 232 = 238.6 chosen plaintexts in total.

4 Related-Key Rectangle Attacks on AES-192

4.1 The AES Block Cipher

AES encrypts data blocks of 128 bits with 128, 192 or 256-bit keys. According to
the length of the keys, AES uses a different number of rounds Nr, i.e., Nr = 10,
12 and 14 when used with 128, 192 and 256-bit keys, respectively. The rounds
are numbered 0, · · · , Nr−1. The round function of AES consists of the following
four basic operations:

– SubBytes (SB) is a nonlinear byte-wise substitution that applies the same
8 × 8 S-box to every byte.

– ShiftRows (SR) is a cyclic shift of the i’th row by i bytes to the left.
– MixColumns (MC) is a matrix multiplication over a finite field applied to

each column.
– AddRoundKey (ARK) is an exclusive-or with the round subkey.

Each round of AES applies the SB, SR, MC and ARK operations in that
order. Before the first round, an additional ARK operation is performed (using
the whitening key), and in the last round, the MC operation is omitted. For
more details of the above four transformations, we refer the reader to [16].

AES uses different key scheduling algorithms according to the length of
the key. As we deal only with AES-192 (i.e., AES with 192-bit keys), we de-
scribe the key schedule for AES-192: Let the supplied key be 6 words of 32-bits
(W [0], W [1], · · · , W [5]). To generate 13 subkeys of 128 bits (which compose 52
words of 32 bits), the following algorithm is used:

– For i = 6 till i = 51 do the following:
• If i ≡ 0 mod 6, then W [i] = W [i−6]⊕SB(RotByte(W [i−1]))⊕Rcon[i/6],
• else W [i] = W [i − 1] ⊕ W [i − 6],



where RotByte represents one byte rotation to the left and Rcon denotes an
array of fixed constants.

The 128-bit block of AES is represented by a 4× 4 byte matrix. Throughout
the paper we treat the internal state as bytes ((0,1,2,3),(4,5,6,7),(8,9,10,11),(12,13,14,15))
(see Figure 4 for a graphical representation).

Fig. 4. Byte coordinates of a 128-bit block of AES (Ri: Row i, Ci: Column i, Xi: Byte
i)
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4.2 Preliminaries

We first define some notation which is used in our attacks on AES. Denote the 10
first rounds of AES-192 by E = Ef ◦E1 ◦E0 ◦Eb, where Eb is round 0 including
the whitening key addition step and excluding the key addition step of round 0,
E0 is rounds 1–4 (starting from the AddRoundKey operation of round 0), E1

is rounds 5–8 and Ef is round 9. In our 10-round AES-192 attack, we use the
related-key differential for E0 depicted in Fig. 5 and the related-key differential
for E1 depicted in Fig. 6. We use these related-key differentials for constructing
a related-key rectangle distinguisher for E1 ◦E0, that allows us to recover some
portion of the keys in Eb and Ef .

Let Ka, Kb, Kc, Kd be a quartet of keys satisfying the subkey differences
required for the related-key differential (or that we conjecture that they satisfy
these subkey differences). Then Kw

x is the whitening key derived from Kx and
Ki

x is the ith round subkey derived from Kx. We use the notation Px to denote
a plaintext encrypted under Kx. The intermediate value in the encryption of Px

is denoted by Ii
x (the input to round i).

Besides the key differences ∆Kab and ∆Kac, we use ∆Ii
ab = Ii

a ⊕ Ii
b = Ii

c ⊕ Ii
d

and ∆Ii
ac = Ii

a ⊕ Ii
c = Ii

b ⊕ Ii
d. Finally, HWb(X) denotes the hamming weight in

bytes of X , x denotes an 8-bit difference, y, z denote (not necessarily different)
8-bit differences such that x can evolve to y or z through the SubBytes operation,
and ∗ denotes an unknown byte difference.



Fig. 5. The related-key differential for E0 (ARK of round 0 and rounds 1-4), and
the preceding Eb (the whitening ARK and most of round 0). ∆Pab denotes a set of
differences.
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Fig. 6. The related-key differential for rounds 5-8 (E1) and the following round (Ef ).
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4.3 8-Round Related-Key Rectangle Distinguisher

Our related-key differentials exploit the slow difference propagation of the key
schedule of AES-192, that allows three consecutive rounds for which the Ham-
ming weight in bytes of the key differences is 2,0,1, respectively, as shown in
Figure 6.

The differential used for E0 is depicted in Figure 5. Its key difference ∆Kab

equals x in bytes 1 of W [0] and W [2], and is zero in all the other bytes (see
Figure 6). The input difference α equals x in bytes X9,13 and zero in the rest
of the bytes, such that it cancels with the subkey difference, and the input
difference to round 1 becomes ∆I1

ab = 0. Since there are at most 239 possible

output differences, it follows from Proposition 3 that p̂ ≥
√

2−39 = 2−19.5.
The second differential, depicted in Figure 6, is a truncated differential. Its

output difference set ∆I9
ac consists of 127 possible output differences that share

all but the first column. The first column of ∆I9
ac can accept any of the values

B = {MC(j, 0, 0, 0) | j = SB(i) ⊕ SB(x ⊕ i),

i = 0, 1, 2, · · · , 255}.

As for the key difference, it appears that the required subkey differences (pre-
sented in Figure 6) cannot be assured by any fixed key difference. The subkey
difference pattern requires some cancellation (in byte 11 of ∆K3

ac), that occurs
with probability 2−7. Hence, this differential can be interpreted as a weak key
class or a conditional differential. Fortunately, the relation can be assured with
a small set of keys.

In order to compute q̂, we take all the possible input differences ∆I5
ac that

can lead after SubBytes, ShiftRows, and MixColumns operations to a state with
difference x in bytes X8,12 and zero difference in the rest of the bytes. Such
difference is then canceled with the key difference ∆K5

ac and leads to zero differ-
ence ∆I6

ac. There are 1278 such input differences, one of them with probability
(2−6)8 = 2−48, 8 · 126 of them with probability (2−6)7 · 2−7 = 2−49, and so forth
until (126)8 of them with probability (2−7)8 = 2−56. Summing over all of them
yields q̂ ≥ 2−27.9.

Therefore, the overall probability of the rectangle distinguisher (i.e., Pr[I9
a ⊕

I9
c , I9

b ⊕ I9
d ∈ ∆I9

ac]) is

2−128 · (2−19.5)2 · (2−27.9)2 = 2−222.8.

We note that since ∆I9
ac consists of 127 differences, the probability that the con-

dition [I9
a ⊕I9

c , I9
b ⊕I9

d ∈ ∆I9
ac] holds for a random permutation is approximately

2−242.

4.4 Key Recovery Attack on 10-Round AES-192 with 256 Related
Keys

Before we present the attack, we address two points arising from the related-key
nature of the attack.



Table 6. The development of the subkey differences
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Multiple Keys. As noted before, the attack requires a quartet of keys sat-
isfying the subkey differences depicted in Figure 6. Since no single key difference
can assure these subkey differences, the simplest solution is to repeat the attack
for all 127 possible byte values y such that difference x can evolve to y through
the SubBytes operation. For each such y, the attack is performed with the same
keys Ka and Kb, and with different keys Kc and Kd that correspond to y. Thus,
the total number of required related keys is 256 (a single pair (Ka, Kb), and

127 pairs (K̃c, K̃d)). Note that since we try all possible values for y, one of the
quartets we consider necessarily satisfies the subkey differences.

The Amount of Guessed Subkey Material. The attack recovers bytes 1,
2, 6, 7, 8, 11, 12, 13 of the whitening key quartet (Kw

a , Kw
b , Kw

c , Kw
d ), and

bytes 0,4,6,7,8,10,12,13 of the subkey quartet (K9
a , K9

b , K9
c , K9

d). While there are
exactly (28)8 = 264 possible values for the eight guessed bytes in the whitening
keys, the number of possible values of the six bytes of K9 is much higher than
(28)8 = 264. This occurs as the subkey difference ∆K9

ab in four of these bytes
is unknown to the adversary (these are bytes 0,8,10,13, whose differences are
denoted in Figure 6 by c, c, e, f , respectively). As a result, the adversary has to
learn not only six bytes of K9

a, but also the values c, e, f . Due to properties of
the key schedule, given the value of e, there are only 127 possible values of f .
Hence, the number of possible guesses in K9 is (28)8 · (28)2 · 27 = 287.

The attack algorithm goes as follows:

Data Collection Phase (Steps 1–3):

1. Choose 249.2 structures S1
a, S2

a, · · · , S249.2

a of 264 plaintexts each, where in
each structure the values of bytes 0, 3, 4, 5, 9, 10, 14, 15 are fixed and
the remaining eight bytes assume all the possible values, and ask for their
encryption under the key Ka.

2. Compute 249.2 structures S1
b , S2

b , · · · , S249.2

b of 264 plaintexts each by XOR-

ing byte 9 of all the plaintexts in S1
a, S2

a, · · · , S249.2

a with x. Ask for the
encryption of these structures under the key Kb.

3. Guess a candidate for the difference y and compute ∆K̃ac. For the key
difference ∆K̃ac, do the following:

(a) Choose 249.2 structures S1
c , S2

c , · · · , S249.2

c of 264 plaintexts each, con-
structed similarly to Sj

a (possibly with different constant values), and

ask for their encryption under the key K̃c = Ka ⊕ ∆K̃ac.

(b) Compute 249.2 structures S1
d , S2

d, · · · , S249.2

d of 264 plaintexts each by

XORing byte 9 of all the plaintexts in S1
c , S2

c , · · · , S249.2

c with x. Ask

for the encryption of these structures under the key K̃d = Kb ⊕ ∆K̃ac.

Analyzing Eb and Finding Candidate Quartets (Step 4):

4. Guess the 64 bits of bytes 1, 2, 6, 7, 8, 11, 12, 13 of Kw
a and derive from

them the corresponding bytes in Kw
b , Kw

c , Kw
d . For each such guess:



(a) Partially encrypt all the plaintexts through the 8 active S-boxes of round 0,
and find all pairs (Pa, Pb) with difference23 α just before the AddRound-
Key of round 0 (where Px is encrypted under Kx). Denote the corre-
sponding ciphertexts by (Ca, Cb) respectively. Each pair of structures
(Sj

a, Sj
b ) is expected to contain 264 such pairs (Ca, Cb), and hence the

total number of pairs at this stage is 249.2 · 264 = 2113.2.

(b) Insert all pairs (Ca, Cb) into a hash table (indexed by bytes 1, 2, 3, 4, 5,
6, 9, 14 of each of the ciphertexts).

(c) Similarly, find all pairs (Pc, Pd) with difference α just before the Ad-

dRoundKey of round 0 (Px is encrypted under K̃x). Denote their corre-
sponding ciphertexts by (Cc, Cd), respectively. As before, the expected
number of pairs (Cc, Cd) at this stage is 2113.2.

(d) For every pair (Cc, Cd) check whether there exists a pair (Ca, Cb) such
that Ca⊕Cc and Cb⊕Cd are zero in bytes 1,2,3,5,6,9,14, and x in byte 4.
For each such quartet, check that the difference Ca ⊕ Cc is the same in
bytes 11 and 15 (denoted by zac), and check the same for Cb⊕Cd (where
the difference is denoted by zbd). Check that x input difference to the
S-box may cause zac and zbd output differences (otherwise, discard the
quartet). Starting with (2113.2)2 = 2226.4 quartets, about 2226.4 · 2−112 =
2114.4 quartets satisfy the zero differences in bytes 1,2,3,5,6,9,14, of which
2114.4 · 2−16 = 298.4 satisfy the x differences in byte 4, and amongst
them 298.4 · (2−8)2 · (127/256)2 = 280.4 quartets remain and are further
analyzed.

Analyzing Ef (Steps 5–8):

5. Using the difference in byte 12 of ∆I10
ac and ∆I10

bd , deduce the subkey sug-
gested by the pairs (Ca, Cc) and (Cb, Cd) for byte 12 of K9

a, K9
b , K9

c , K9
d (due

to the subkey differences, the value is the same for these four subkeys).24

If the values disagree, discard the quartet. Of the 280.4 quartets entering
Step 5, we expect 280.4 · 2−8 = 272.4 quartets to remain, each suggesting one
value for subkey byte 12.

6. For each remaining quartet, consider the pairs (Ca, Cc) and (Cb, Cd) sepa-
rately and use the differences zac, zbd to deduce the value of byte 4 in K9

a ,
K9

b , K9
c , K9

d .25 Deduce the value of c from byte 4 of the difference K9
a ⊕K9

b .

23 The difference α is defined in Section 4.3.
24 Recall that a (∆IN , ∆OUT ) pair for the SubBytes operation yields on average one

suggestion for the actual inputs/outputs. In our case, the output difference is known,
and we assume that the input difference is x. This gives us one suggestion on av-
erage for the actual outputs of the SubBytes operation, that in turn yields a single
suggestion on average for byte 12 of the last subkey.

25 For each pair, we consider the generation of byte 11 in K9 in the key schedule
algorithm. At this stage, the input difference to the SubBytes operation in the key
schedule algorithm is x, and the output difference is zac (or zbd for the second pair).
This suggests one value on average for the input of the SubBytes operation, i.e., to
byte 4 of K9.



7. For each quartet, consider the pairs (Ca, Cc) and (Cb, Cd) separately, and
for each of them use the difference in byte 8 of ∆(I10) to deduce the values
suggested by the pairs (Ca, Cc) and (Cb, Cd) for byte 8 of K9

a , K9
b , K9

c , K9
d .

Use the value of byte 8 of the difference K9
a ⊕ K9

b to get a suggestion for c.
If the suggestion disagrees with the value of c obtained for the quartet in
Step 6, discard the quartet. Consistent values are expected with probability
2−8, and about 272.4 · 2−8 = 264.4 quartets remain. Each of the remaining
quartets suggests on average one value for bytes 4, 8, 12 of K9

a , K9
b , K9

c , K9
d ,

and for c.
8. For each remaining (quartet, subkey guess):

(a) Guess byte 0 of K9
a (that along with the knowledge of c is sufficient to

compute byte 0 of K9
b , K9

c , K9
d), and partially decrypt the two pairs to

find the value of byte 0 in the input of round 9.
(b) For each pair, use the knowledge of byte 0 in ∆I9

ac (or ∆I9
bd) to retrieve

the entire difference ∆I9
ac (or ∆I9

bd, respectively). This is possible since
the differences in the other bytes of the first column depend linearly on
the difference in byte 0.

(c) For each pair, use the input and output difference of the SubBytes oper-
ation in byte 3 of round 9 to find the value of byte 7 in K9. If the pairs of
the quartet disagree on that value, discard the (quartet,subkey guess).
For each guess of byte 0, 2−8 of the quartets are expected to suggest
consistent values, and hence on average, each quartet suggests a single
value for bytes 0,7 of K9.

(d) For each pair, use the input and output differences of the SubBytes
operation in bytes 1,2 of round 9 to find the value of bytes 10,13 in K9.
Use the difference in bytes 10,13 of K9

a ⊕ K9
b to retrieve the value of

e, f . If e input difference to the S-box cannot cause f output difference,
discard the (quartet, subkey guess).
At this stage, each of the 264.4 remaining quartets suggests one value on
average for bytes 0, 4, 7, 8, 10, 12, 13 of K9

a, K9
b , K9

c , K9
d , and for c, e, f ,

and half of them are expected to offer consistent suggestion for e and f .

– Finding the Right Key (Step 9):

9. If a subkey combination is suggested by six quartets or more, assume it is
correct, and try to deduce the correct key using exhaustive search of the
remaining bytes.

Analysis of the Attack In Steps 1,2,3 the adversary encrypts 2121.2 chosen
plaintexts (2113.2 plaintexts under each of the keys Ka, Kb, K̃c, and K̃d). Hence,
the data complexity of this attack is about 2121.2 related-key chosen plaintexts.
Steps 4(a) may look as if they take 2121.2 · 264 = 2185.2 partial encryptions each.
However, as the values of the plaintexts in the bytes which are fixed and have
no effect on the actual “pairing”, then it is sufficient to partially encrypt a set
of 264 values under 264 subkeys (and repeat this for each value of y). Hence,
the total time complexity of an optimized implementation of each of these two



steps is 264 ·264 ·27 = 2135 partial encryptions (which are about 2132 encryptions
in total). Steps 4(b) is composed of inserting the pairs found in Step 2(a) into
tables. For each subkey guess there are 2113.2 pairs which are put into the table,
and thus, this step takes 264 · 2113.2 · 27 = 2184.2 memory accesses.

Step 4(c) is similar to Step 4(a), and takes the same time. The same is true
to Step 4(d) and Step 4(b), respectively. We note that Step 4(b) has to be
performed only once and not 27 times like the other steps (as it is independent

of ∆K̃ac), and thus, Step 4 takes in total 2184.2 memory accesses.
Steps 5–8 each analyzes a small number of quartets, in a relatively efficient

manner. Finally, Step 9, exhaustively searches over 2128 keys for each key can-
didate. Hence, we conclude that the running time of the attack is dominated by
Steps 4(c) and 4(d), and is approximately 2184.2 memory accesses.

We can calculate the success rate of the attack by using the Poisson distri-
bution. At the end of Step 8(d), we expect 263.4 (quartet,subkey guess) combi-
nations to remain. Given that there are 279 possible values at this point (c, e, f
suggest values for the related-keys Kb, Kd), we expect a wrong subkey to be sug-
gested by 2−15.6 quartets on average, while the right subkey is expected to be
suggested by 2226.4 ·2−222.8 = 23.6 = 12 quartets. Hence, the probability that any
given wrong tuple of subkeys (of the 279 · 264 = 2143 subkeys) is suggested more
than five times is about 2−103.1. Hence, we expect 2143 · 2−103.1 = 239.9 wrong
subkeys to be analyzed in Step 9, which means that Step 9 has time complexity
of 2167.9 trial encryptions.

The right subkey is expected to be suggested by more than five quartets with
probability about 98.0%. When this is the case, the right key is found, and thus,
the success rate of the attack is about 98.0%.

4.5 Reducing the Number of Related Keys from 256 to 64

The number of related keys used in our attack can be reduced from 256 to 64
using key structures. The following 64 related keys are used in our optimized
attack:

– 16 keys Ki
a (i = 0, 1, · · · , 15) such that Ki

a ⊕Kj
a is zero in all bytes, besides

bytes 3,8,11, and 12, and the difference in bytes 3,11 is fixed to some w and
the difference in bytes 8,12 is fixed to some r (not necessarily w → r).

– 16 keys Ki
b, each computed as Ki

a ⊕ ∆Kab for a specific value of x.
– 16 keys Ki

c (i = 0, 1, · · · , 15) such that Ki
c ⊕ Kj

c is zero in all bytes, besides
bytes 3,8,11, and 12, and the difference in bytes 3,11 is fixed to some w′ and
the difference in bytes 8,12 is fixed to some r′ (not necessarily w′ → r′).

– 16 keys Ki
d, each computed as Ki

c ⊕ ∆Kab for the same value of x used to
generate Ki

b.

Using these delicately chosen key relationships, we generate 256 key quar-
tets (Ki

a, Ki
b, K

j
c , Kj

d) of which one is expected to satisfy the subkey difference
requirement of the attack (the attack can be applied where the value of x in the
first and the second differentials are replaced by x1 and x2, respectively).



As we generate the data set for each possible key only once, the data com-
plexity of the attack is reduced to 2119.2 related-key chosen plaintexts. On the
other hand, the attack is now to be run 256 times rather than 127 times, resulting
in a total running time of 2185.2 memory accesses.

5 Conclusions

In this paper we introduced the related-key boomerang and the related-key rect-
angle attacks. The attacks use weaknesses of the key schedule algorithms to
achieve significant advantage over other attacks techniques. We presented a rig-
orous treatment of the new techniques, thus devising optimal distinguishers.

Both the related-key boomerang attack and the related-key rectangle attack
enjoy the use of key differences twice. Hence, in exchange for an attack model
with 4 related-keys, the adversary is able to attack a significantly larger amount
of rounds than in the standard single-key model or a standard related-key dif-
ferential attack.

Apart from the immediate attacks, another outcome of our results is a better
understanding of the importance of well designed key schedule algorithms for
the security of block ciphers. While it is commonly believed that a linear key
schedule (or one close to it), is of no security concern to a well designed block
cipher, the related-key boomerang and rectangle attacks along with the concept
of structures of keys (for nonlinear key schedule algorithms) show that this belief
is dangerous and at times may be faulty.
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