227,175 research outputs found

    Radio emission from the high-mass X-ray binary BP Cru: first detection

    Full text link
    BP Cru is a well known high-mass X-ray binary composed of a late B hypergiant (Wray 977) and a neutron star, also observed as the X-ray pulsar GX 301-2. No information about emission from BP Cru in other bands than X-rays and optical has been reported to date in the literature, though massive X-ray binaries containing black holes can have radio emission from a jet. In order to assess the presence of a radio jet, we searched for radio emission towards BP Cru using the Australia Compact Array Telescope during a survey for radio emission from Be/X-ray transients. We probed the 41.5d orbit of BP Cru with the Australia Telescope Compact Array not only close to periastron but also close to apastron. BP Cru was clearly detected in our data on 4, possibly 6, of 12 occasions at 4.8 and 8.6 GHz. Our data suggest that the spectral index of the radio emission is modulated either by the X-ray flux or the orbital phase of the system. We propose that the radio emission of BP Cru probably arises from two components: a persistent component, coming from the mass donor Wray 977, and a periodic component connected to the accretion onto the neutron star, possibly coming from a (weak and short lived) jet.Comment: 2 figures, accepted for publication in A+A letter

    Climate Change: Scottish Implications Scoping Study

    Get PDF
    CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CRU CR

    The Physical Characteristics of the Small-Scale Interstellar Structure towards Mu Crucis

    Get PDF
    We present HST/GHRS echelle observations of multiple interstellar lines of CI, MgI, CrII, and ZnII towards both stars in the mu Cru binary system. Despite large differences in the profiles of the neutral species, no significant variations between the stars are seen in the CrII and ZnII line profiles. In particular, the ZnII absorption observed at -8.6 km/sec towards mu Cru is constant despite greatly enhanced columns of the neutral species at this velocity towards mu^1 Cru. An analysis of the fine-structure excitation of CI in this cloud implies that the density is n_H < 250 cm^{-3}. From the lack of variation in the (optical) NaI D2 line profiles towards mu^1 and mu^2 Cru in spectra taken 21 months apart, we can place a lower limit to the size of the structures of ~10 AU. These results are discussed in the context of recent radio and optical studies of apparently pervasive high density small-scale interstellar structure.Comment: 10 pages, 2 figures, to appear in the Astrophysical Journal (Letters

    The Nature of the Hard-X-Ray Emitting Symbiotic Star RT Cru

    Full text link
    We describe Chandra High-Energy Transmission Grating Spectrometer observations of RT Cru, the first of a new sub-class of symbiotic stars that appear to contain white dwarfs (WDs) capable of producing hard X-ray emission out to greater than 50 keV. The production of such hard X-ray emission from the objects in this sub-class (which also includes CD -57 3057, T CrB, and CH Cyg) challenges our understanding of accreting WDs. We find that the 0.3 -- 8.0 keV X-ray spectrum of RT Cru emanates from an isobaric cooling flow, as in the optically thin accretion-disk boundary layers of some dwarf novae. The parameters of the spectral fit confirm that the compact accretor is a WD, and they are consistent with the WD being massive. We detect rapid, stochastic variability from the X-ray emission below 4 keV. The combination of flickering variability and a cooling-flow spectrum indicates that RT Cru is likely powered by accretion through a disk. Whereas the cataclysmic variable stars with the hardest X-ray emission are typically magnetic accretors with X-ray flux modulated at the WD spin period, we find that the X-ray emission from RT Cru is not pulsed. RT Cru therefore shows no evidence for magnetically channeled accretion, consistent with our interpretation that the Chandra spectrum arises from an accretion-disk boundary layer.Comment: 3 figures, accepted for publication in Ap

    BANANA IV: Two aligned stellar rotation axes in the young eccentric binary system EP Crucis: primordial orientation and tidal alignment

    Get PDF
    With observations of the EP Cru system, we continue our series of measurements of spin-orbit angles in eclipsing binary star systems, the BANANA project (Binaries Are Not Always Neatly Aligned). We find a close alignment between the sky projections of the rotational and orbital angular momentum vectors for both stars (beta_p = -1.8+-1.6 deg and |beta_s|<17 deg). We also derive precise absolute dimensions and stellar ages for this system. The EP Cru and DI Her systems provide an interesting comparison: they have similar stellar types and orbital properties, but DI Her is younger and has major spin-orbit misalignments, raising the question of whether EP Cru also had a large misalignment at an earlier phase of evolution. We show that tidal dissipation is an unlikely explanation for the good alignment observed today, because realignment happens on the same timescale as spin-orbit synchronization, and the stars in EP Cru are far from syncrhonization (they are spinning 9 times too quickly). Therefore it seems that some binaries form with aligned axes, while other superficially similar binaries are formed with misaligned axes.Comment: ApJ accepted, 10 pages, 7 figure

    Chandra Spectroscopy Of The Hot Star β Crucis And The Discovery Of A Pre-Main-Sequence Companion

    Get PDF
    In order to test the O star wind-shock scenario for X-ray production in less luminous stars with weaker winds, we made a pointed 74-ks observation of the nearby early B giant, beta Crucis (beta Cru; B0.5 III), with the Chandra High Energy Transmission Grating Spectrometer. We find that the X-ray spectrum is quite soft, with a dominant thermal component near 3 million K, and that the emission lines are resolved but quite narrow, with half widths of 150 km s(-1). The forbidden-to-intercombination line ratios of Ne IX and Mg XI indicate that the hot plasma is distributed in the wind, rather than confined near the photosphere. It is difficult to understand the X-ray data in the context of the standard wind-shock paradigm for OB stars, primarily because of the narrow lines, but also because of the high X-ray production efficiency. A scenario in which the bulk of the outer wind is shock heated is broadly consistent with the data, but not very well motivated theoretically. It is possible that magnetic channelling could explain the X-ray properties, although no field has been detected on beta Cru. We detected periodic variability in the hard (h nu \u3e 1 keV) X-rays, modulated on the known optical period of 4.58 h, which is the period of the primary beta Cephei pulsation mode for this star. We also have detected, for the first time, an apparent companion to beta Cru at a projected separation of 4 arcsec. This companion was likely never seen in optical images because of the presumed very high contrast between it and beta Cru in the optical. However, the brightness contrast in the X-ray is only 3:1, which is consistent with the companion being an X-ray active low-mass pre-main-sequence star. The companion\u27s X-ray spectrum is relatively hard and variable, as would be expected from a post-T Tauri star. The age of the beta Cru system (between 8 and 10 Myr) is consistent with this interpretation which, if correct, would add beta Cru to the roster of Lindroos binaries - B stars with low-mass pre-main-sequence companions
    corecore