1,777 research outputs found

    Balancing Relevance and Diversity in Online Bipartite Matching via Submodularity

    Full text link
    In bipartite matching problems, vertices on one side of a bipartite graph are paired with those on the other. In its online variant, one side of the graph is available offline, while the vertices on the other side arrive online. When a vertex arrives, an irrevocable and immediate decision should be made by the algorithm; either match it to an available vertex or drop it. Examples of such problems include matching workers to firms, advertisers to keywords, organs to patients, and so on. Much of the literature focuses on maximizing the total relevance---modeled via total weight---of the matching. However, in many real-world problems, it is also important to consider contributions of diversity: hiring a diverse pool of candidates, displaying a relevant but diverse set of ads, and so on. In this paper, we propose the Online Submodular Bipartite Matching (\osbm) problem, where the goal is to maximize a submodular function ff over the set of matched edges. This objective is general enough to capture the notion of both diversity (\emph{e.g.,} a weighted coverage function) and relevance (\emph{e.g.,} the traditional linear function)---as well as many other natural objective functions occurring in practice (\emph{e.g.,} limited total budget in advertising settings). We propose novel algorithms that have provable guarantees and are essentially optimal when restricted to various special cases. We also run experiments on real-world and synthetic datasets to validate our algorithms.Comment: To appear in AAAI 201

    Incentive Mechanism Design in Mobile Crowdsensing Systems

    Get PDF
    In the past few years, the popularity of Mobile Crowdsensing Systems (MCSs) has been greatly prompted, in which sensory data can be ubiquitously collected and shared by mobile devices in a distributed fashion. Typically, a MCS consists of a cloud platform, sensing tasks, and mobile users equipped with mobile devices, in which the mobile users carry out sensing tasks and receive monetary rewards as compensation for resource consumption ( e.g., energy, bandwidth, and computation) and risk of privacy leakage ( e.g., location exposure). Compared with traditional mote-class sensor networks, MCSs can reduce the cost of deploying specialized sensing infrastructures and enable many applications that require resources and sensing modalities beyond the current mote-class sensor processes as today’s mobile devices (smartphones (iPhones, Sumsung Galaxy), tablets (iPad) and vehicle-embedded sensing devices (GPS)) integrate more computing, communication, and storage resources than traditional mote-class sensors. The current applications of MCSs include traffic congestion detection, wireless indoor localization, pollution monitoring, etc . There is no doubt that one of the most significant characteristics of MCSs is the active involvement of mobile users to collect and share sensory data. In this dissertation, we study the incentive mechanism design in mobile crowdsensing system with consideration of economic properties. Firstly, we investigate the problem of joining sensing task assignment and scheduling in MCSs with the following three considerations: i) partial fulfillment, ii) attribute diversity, and iii) price diversity. Then, we design a distributed auction framework to allow each task owner to independently process its local auction without collecting global information in a MCS, reducing communication cost. Next, we propose a cost-preferred auction scheme (CPAS) to assign each winning mobile user one or more sub- working time durations and a time schedule-preferred auction scheme (TPAS) to allocate each winning mobile user a continuous working time duration. Secondly, we focus on the design of an incentive mechanism for an MCS to minimize the social cost. The social cost represents the total cost of mobile devices when all tasks published by the MCS are finished. We first present the working process of a MCS, and then build an auction market for the MCS where the MCS platform acts as an auctioneer and users with mobile devices act as bidders. Depending on the different requirements of the MCS platform, we design a Vickrey-Clarke-Groves (VCG)-based auction mechanism for the continuous working pattern and a suboptimal auction mechanism for the discontinuous working pattern. Both of them can ensure that the bidding of users are processed in a truthful way and the utilities of users are maximized. Through rigorous theoretical analysis and comprehensive simulations, we can prove that these incentive mechanisms satisfy economic properties and can be implemented in reasonable time complexcity. Next, we discuss the importance of fairness and unconsciousness of MCS surveillance applications. Then, we propose offline and online incentive mechanisms with fair task scheduling based on the proportional share allocation rules. Furthermore, to have more sensing tasks done over time dimension, we relax the truthfulness and unconsciousness property requirements and design a (ε, μ)-unconsciousness online incentive mechanism. Real map data are used to validate these proposed incentive mechanisms through extensive simulations. Finally, future research topics are proposed to complete the dissertation
    • …
    corecore