80,112 research outputs found

    Class-Agnostic Counting

    Full text link
    Nearly all existing counting methods are designed for a specific object class. Our work, however, aims to create a counting model able to count any class of object. To achieve this goal, we formulate counting as a matching problem, enabling us to exploit the image self-similarity property that naturally exists in object counting problems. We make the following three contributions: first, a Generic Matching Network (GMN) architecture that can potentially count any object in a class-agnostic manner; second, by reformulating the counting problem as one of matching objects, we can take advantage of the abundance of video data labeled for tracking, which contains natural repetitions suitable for training a counting model. Such data enables us to train the GMN. Third, to customize the GMN to different user requirements, an adapter module is used to specialize the model with minimal effort, i.e. using a few labeled examples, and adapting only a small fraction of the trained parameters. This is a form of few-shot learning, which is practical for domains where labels are limited due to requiring expert knowledge (e.g. microbiology). We demonstrate the flexibility of our method on a diverse set of existing counting benchmarks: specifically cells, cars, and human crowds. The model achieves competitive performance on cell and crowd counting datasets, and surpasses the state-of-the-art on the car dataset using only three training images. When training on the entire dataset, the proposed method outperforms all previous methods by a large margin.Comment: Asian Conference on Computer Vision (ACCV), 201

    TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents

    Full text link
    To safely and efficiently navigate in complex urban traffic, autonomous vehicles must make responsible predictions in relation to surrounding traffic-agents (vehicles, bicycles, pedestrians, etc.). A challenging and critical task is to explore the movement patterns of different traffic-agents and predict their future trajectories accurately to help the autonomous vehicle make reasonable navigation decision. To solve this problem, we propose a long short-term memory-based (LSTM-based) realtime traffic prediction algorithm, TrafficPredict. Our approach uses an instance layer to learn instances' movements and interactions and has a category layer to learn the similarities of instances belonging to the same type to refine the prediction. In order to evaluate its performance, we collected trajectory datasets in a large city consisting of varying conditions and traffic densities. The dataset includes many challenging scenarios where vehicles, bicycles, and pedestrians move among one another. We evaluate the performance of TrafficPredict on our new dataset and highlight its higher accuracy for trajectory prediction by comparing with prior prediction methods.Comment: Accepted by AAAI(Oral) 201

    Differential Equations Modeling Crowd Interactions

    Full text link
    Nonlocal conservation laws are used to describe various realistic instances of crowd behaviors. First, a basic analytic framework is established through an "ad hoc" well posedness theorem for systems of nonlocal conservation laws in several space dimensions interacting non locally with a system of ODEs. Numerical integrations show possible applications to the interaction of different groups of pedestrians, and also with other "agents".Comment: 26 pages, 5 figure

    Optimal Self-Organization

    Full text link
    We present computational and analytical results indicating that systems of driven entities with repulsive interactions tend to reach an optimal state associated with minimal interaction and minimal dissipation. Using concepts from non-equilibrium thermodynamics and game theoretical ideas, we generalize this finding to an even wider class of self-organizing systems which have the ability to reach a state of maximal overall ``success''. This principle is expected to be relevant for driven systems in physics like sheared granular media, but it is also applicable to biological, social, and economic systems, for which only a limited number of quantitative principles are available yet.Comment: This is the detailled revised version of a preprint on ``Self-Organised Optimality'' (cond-mat/9903319). For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.html and http://angel.elte.hu/~vicsek
    • …
    corecore