17,498 research outputs found

    Cross-lingual Question Answering with QED

    Get PDF
    We present improvements and modifications of the QED open-domain question answering system developed for TREC-2003 to make it cross-lingual for participation in the CrossLinguistic Evaluation Forum (CLEF) Question Answering Track 2004 for the source languages French and German and the target language English. We use rule-based question translation extended with surface pattern-oriented pre- and post-processing rules for question reformulation to create and English query from its French or German original. Our system uses deep processing for the question and answers, which requires efficient and radical prior search space pruning. For answering factoid questions, we report an accuracy of 16% (German to English) and 20% (French to English), respectively

    Cross-lingual question answering

    Get PDF
    Question Answering has become an intensively researched area in the last decade, being seen as the next step beyond Information Retrieval in the attempt to provide more concise and better access to large volumes of available information. Question Answering builds on Information Retrieval technology for a first touch of possible relevant data and uses further natural language processing techniques to search for candidate answers and to look for clues that accept or invalidate the candidates as right answers to the question. Though most of the research has been carried out in monolingual settings, where the question and the answer-bearing documents share the same natural language, current approaches concentrate on cross-language scenarios, where the question and the documents are in different languages. Known in this context and common with the Information Retrieval research are three methods of crossing the language barrier: by translating the question, by translating the documents or by aligning both the question and the documents to a common inter-lingual representation. We present a cross-lingual English to German Question Answering system, for both factoid and definition questions, using a German monolingual system and translating the questions from English to German. Two different techniques of translation are evaluated: • direct translation of the English input question into German and • transfer-based translation, by using an intermediate representation that captures the “meaning” of the original question and is translated into the target language. For both translation techniques two types of translation tools are used: bilingual dictionaries and machine translation. The intermediate representation captures the semantic meaning of the question in terms of Question Type (QType), Expected Answer Type (EAType) and Focus, information that steers the workflow of the question answering process. The German monolingual Question Answering system can answer both factoid and definition questions and is based on several premises: • facts and definitions are usually expressed locally at the level of a sentence and its surroundings; • proximity of concepts within a sentence can be related to their semantic dependency; • for factoid questions, redundancy of candidate answers is a good indicator of their suitability; • definitions of concepts are expressed using fixed linguistic structures such as appositions, modifiers, and abbreviation extensions. Extensive evaluations of the monolingual system have shown that the above mentioned hypothesis holds true in most of the cases when dealing with a fairly large collection of documents, like the one used in the CLEF evaluation forum.Innerhalb der letzten zehn Jahre hat sich Question Answering zu einem intensiv erforschten Themengebiet gewandelt, es stellt den nächsten Schritt des Information Retrieval dar, mit dem Bestreben einen präziseren Zugang zu großen Datenbeständen von verfügbaren Informationen bereitzustellen. Das Question Answering setzt auf die Information Retrieval-Technologie, um mögliche relevante Daten zu suchen, kombiniert mit weiteren Techniken zur Verarbeitung von natürlicher Sprache, um mögliche Antwortkandidaten zu identifizieren und diese anhand von Hinweisen oder Anhaltspunkten entsprechend der Frage als richtige Antwort zu akzeptieren oder als unpassend zu erklären. Während ein Großteil der Forschung den einsprachigen Kontext voraussetzt, wobei Frage- und Antwortdokumente ein und dieselbe Sprache teilen, konzentrieren sich aktuellere Ansätze auf sprachübergreifende Szenarien, in denen die Frage- und Antwortdokumente in unterschiedlichen Sprachen vorliegen. Im Kontext des Information Retrieval existieren drei bekannte Ansätze, die versuchen auf unterschiedliche Art und Weise die Sprachbarriere zu überwinden: durch die Übersetzung der Frage, durch die Übersetzung der Dokumente oder durch eine Angleichung von sowohl der Frage als auch der Dokumente zu einer gemeinsamen interlingualen Darstellung. Wir präsentieren ein sprachübergreifendes Question Answering System vom Englischen ins Deutsche, das sowohl für Faktoid- als auch für Definitionsfragen funktioniert. Dazu verwenden wir ein einsprachiges deutsches System und übersetzen die Fragen vom Englischen ins Deutsche. Zwei unterschiedliche Techniken der Übersetzung werden untersucht: • die direkte Übersetzung der englischen Fragestellung ins Deutsche und • die Abbildungs-basierte Übersetzung, die eine Zwischendarstellung verwendet, um die „Semantik“ der ursprünglichen Frage zu erfassen und in die Zielsprache zu übersetzen. Für beide aufgelisteten Übersetzungstechniken werden zwei Übersetzungsquellen verwendet: zweisprachige Wörterbücher und maschinelle Übersetzung. Die Zwischendarstellung erfasst die Semantik der Frage in Bezug auf die Art der Frage (QType), den erwarteten Antworttyp (EAType) und Fokus, sowie die Informationen, die den Ablauf des Frage-Antwort-Prozesses steuern. Das deutschsprachige Question Answering System kann sowohl Faktoid- als auch Definitionsfragen beantworten und basiert auf mehreren Prämissen: • Fakten und Definitionen werden in der Regel lokal auf Satzebene ausgedrückt; • Die Nähe von Konzepten innerhalb eines Satzes kann auf eine semantische Verbindung hinweisen; • Bei Faktoidfragen ist die Redundanz der Antwortkandidaten ein guter Indikator für deren Eignung; • Definitionen von Begriffen werden mit festen sprachlichen Strukturen ausgedrückt, wie Appositionen, Modifikatoren, Abkürzungen und Erweiterungen. Umfangreiche Auswertungen des einsprachigen Systems haben gezeigt, dass die oben genannten Hypothesen in den meisten Fällen wahr sind, wenn es um eine ziemlich große Sammlung von Dokumenten geht, wie bei der im CLEF Evaluationsforum verwendeten Version

    Delving Deeper into Cross-lingual Visual Question Answering

    Full text link
    Visual question answering (VQA) is one of the crucial vision-and-language tasks. Yet, existing VQA research has mostly focused on the English language, due to a lack of suitable evaluation resources. Previous work on cross-lingual VQA has reported poor zero-shot transfer performance of current multilingual multimodal Transformers with large gaps to monolingual performance, without any deeper analysis. In this work, we delve deeper into the different aspects of cross-lingual VQA, aiming to understand the impact of 1) modeling methods and choices, including architecture, inductive bias, fine-tuning; 2) learning biases: including question types and modality biases in cross-lingual setups. The key results of our analysis are: 1) We show that simple modifications to the standard training setup can substantially reduce the transfer gap to monolingual English performance, yielding +10 accuracy points over existing methods. 2) We analyze cross-lingual VQA across different question types of varying complexity for different multilingual multimodal Transformers, and identify question types that are the most difficult to improve on. 3) We provide an analysis of modality biases present in training data and models, revealing why zero-shot performance gaps remain for certain question types and languages.Comment: Findings of EACL 202

    Evaluating and Modeling Attribution for Cross-Lingual Question Answering

    Full text link
    Trustworthy answer content is abundant in many high-resource languages and is instantly accessible through question answering systems, yet this content can be hard to access for those that do not speak these languages. The leap forward in cross-lingual modeling quality offered by generative language models offers much promise, yet their raw generations often fall short in factuality. To improve trustworthiness in these systems, a promising direction is to attribute the answer to a retrieved source, possibly in a content-rich language different from the query. Our work is the first to study attribution for cross-lingual question answering. First, we collect data in 5 languages to assess the attribution level of a state-of-the-art cross-lingual QA system. To our surprise, we find that a substantial portion of the answers is not attributable to any retrieved passages (up to 50% of answers exactly matching a gold reference) despite the system being able to attend directly to the retrieved text. Second, to address this poor attribution level, we experiment with a wide range of attribution detection techniques. We find that Natural Language Inference models and PaLM 2 fine-tuned on a very small amount of attribution data can accurately detect attribution. Based on these models, we improve the attribution level of a cross-lingual question-answering system. Overall, we show that current academic generative cross-lingual QA systems have substantial shortcomings in attribution and we build tooling to mitigate these issues.Comment: Published as a long paper at EMNLP 202

    Improving the Cross-Lingual Generalisation in Visual Question Answering

    Full text link
    While several benefits were realized for multilingual vision-language pretrained models, recent benchmarks across various tasks and languages showed poor cross-lingual generalisation when multilingually pre-trained vision-language models are applied to non-English data, with a large gap between (supervised) English performance and (zero-shot) cross-lingual transfer. In this work, we explore the poor performance of these models on a zero-shot cross-lingual visual question answering (VQA) task, where models are fine-tuned on English visual-question data and evaluated on 7 typologically diverse languages. We improve cross-lingual transfer with three strategies: (1) we introduce a linguistic prior objective to augment the cross-entropy loss with a similarity-based loss to guide the model during training, (2) we learn a task-specific subnetwork that improves cross-lingual generalisation and reduces variance without model modification, (3) we augment training examples using synthetic code-mixing to promote alignment of embeddings between source and target languages. Our experiments on xGQA using the pretrained multilingual multimodal transformers UC2 and M3P demonstrate the consistent effectiveness of the proposed fine-tuning strategy for 7 languages, outperforming existing transfer methods with sparse models. Code and data to reproduce our findings are publicly available

    Improving the Cross-Lingual Generalisation in Visual Question Answering

    Full text link
    While several benefits were realized for multilingual vision-language pretrained models, recent benchmarks across various tasks and languages showed poor cross-lingual generalisation when multilingually pre-trained vision-language models are applied to non-English data, with a large gap between (supervised) English performance and (zero-shot) cross-lingual transfer. In this work, we explore the poor performance of these models on a zero-shot cross-lingual visual question answering (VQA) task, where models are fine-tuned on English visual-question data and evaluated on 7 typologically diverse languages. We improve cross-lingual transfer with three strategies: (1) we introduce a linguistic prior objective to augment the cross-entropy loss with a similarity-based loss to guide the model during training, (2) we learn a task-specific subnetwork that improves cross-lingual generalisation and reduces variance without model modification, (3) we augment training examples using synthetic code-mixing to promote alignment of embeddings between source and target languages. Our experiments on xGQA using the pretrained multilingual multimodal transformers UC2 and M3P demonstrate the consistent effectiveness of the proposed fine-tuning strategy for 7 languages, outperforming existing transfer methods with sparse models. Code and data to reproduce our findings are publicly available

    Synthetic Data Augmentation for Zero-Shot Cross-Lingual Question Answering

    Full text link
    Coupled with the availability of large scale datasets, deep learning architectures have enabled rapid progress on the Question Answering task. However, most of those datasets are in English, and the performances of state-of-the-art multilingual models are significantly lower when evaluated on non-English data. Due to high data collection costs, it is not realistic to obtain annotated data for each language one desires to support. We propose a method to improve the Cross-lingual Question Answering performance without requiring additional annotated data, leveraging Question Generation models to produce synthetic samples in a cross-lingual fashion. We show that the proposed method allows to significantly outperform the baselines trained on English data only. We report a new state-of-the-art on four multilingual datasets: MLQA, XQuAD, SQuAD-it and PIAF (fr).Comment: 7 page
    • …
    corecore