296 research outputs found

    Improving Cancer Classification With Domain Adaptation Techniques

    Get PDF
    Background: As the quantity and complexity of oncological data continue to increase, machine learning (ML) has become an important tool in helping clinicians better understand malignancies and provide personalized care. Diagnostic image analysis, in particular, has benefited from the advent of ML methods to improve image classification and generate prognostic information from imaging collected in routine clinical practice [1-3]. Deep learning, a subset of ML, has especially achieved remarkable performance in medical imaging, including segmentation [4, 5], object detection, classification [6], and diagnosis [7]. Despite the notable success of deep learning computer vision models on oncologic imaging data, recent studies have identified notable weaknesses in deep learning models used on diagnostic images. Specifically, deep learning models have difficulty generalizing to data that was not well represented during training. One potential solution is the use of domain adaptation (DA) techniques, which improve the generalizability of a deep learning model trained on one domain to better generalize to data of a target domain. Techniques: In this study, we explain the efficacy of four common DA techniques – MMD, CORAL, iDANN, and AdaBN - used on deep learning models trained on common diagnostic imaging modalities in oncology. We used two datasets of mammographic imaging and CT scans to test the prediction accuracy of models using each of these DA techniques and compared them to the performance of transfer learning. Results: In the mammographic imaging data, MMD, CORAL, and iDANN increased the target test accuracy for all four domains. MMD increased target accuracies by 3.6 - 45%, CORAL by 4- 48%, and iDANN by 1.5-49.4%. For the CT scan dataset, MMD, CORAL, and iDANN increased the target test accuracy for all domains. MMD increased the target accuracy by 2.0 – 13.9%, CORAL by 2.4 - 15.8%, and iDANN by 2.0 – 11.1%. in both the mammographic imaging data and the CT scans, AdaBN performed worse or comparably to transfer learning. Conclusion: We found that DA techniques significantly improve model performance and generalizability. These findings suggest that there’s potential to further study how multiple DA techniques can work together and that these can potentially help us create more robust, generalizable models

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd

    The Effectiveness of Transfer Learning Systems on Medical Images

    Get PDF
    Deep neural networks have revolutionized the performances of many machine learning tasks such as medical image classification and segmentation. Current deep learning (DL) algorithms, specifically convolutional neural networks are increasingly becoming the methodological choice for most medical image analysis. However, training these deep neural networks requires high computational resources and very large amounts of labeled data which is often expensive and laborious. Meanwhile, recent studies have shown the transfer learning (TL) paradigm as an attractive choice in providing promising solutions to challenges of shortage in the availability of labeled medical images. Accordingly, TL enables us to leverage the knowledge learned from related data to solve a new problem. The objective of this dissertation is to examine the effectiveness of TL systems on medical images. First, a comprehensive systematic literature review was performed to provide an up-to-date status of TL systems on medical images. Specifically, we proposed a novel conceptual framework to organize the review. Second, a novel DL network was pretrained on natural images and utilized to evaluate the effectiveness of TL on a very large medical image dataset, specifically Chest X-rays images. Lastly, domain adaptation using an autoencoder was evaluated on the medical image dataset and the results confirmed the effectiveness of TL through fine-tuning strategies. We make several contributions to TL systems on medical image analysis: Firstly, we present a novel survey of TL on medical images and propose a new conceptual framework to organize the findings. Secondly, we propose a novel DL architecture to improve learned representations of medical images while mitigating the problem of vanishing gradients. Additionally, we identified the optimal cut-off layer (OCL) that provided the best model performance. We found that the higher layers in the proposed deep model give a better feature representation of our medical image task. Finally, we analyzed the effect of domain adaptation by fine-tuning an autoencoder on our medical images and provide theoretical contributions on the application of the transductive TL approach. The contributions herein reveal several research gaps to motivate future research and contribute to the body of literature in this active research area of TL systems on medical image analysis

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page

    Deep Gaze Velocity Analysis During Mammographic Reading for Biometric Identification of Radiologists

    Get PDF
    Several studies have confirmed that the gaze velocity of the human eye can be utilized as a behavioral biometric or personalized biomarker. In this study, we leverage the local feature representation capacity of convolutional neural networks (CNNs) for eye gaze velocity analysis as the basis for biometric identification of radiologists performing breast cancer screening. Using gaze data collected from 10 radiologists reading 100 mammograms of various diagnoses, we compared the performance of a CNN-based classification algorithm with two deep learning classifiers, deep neural network and deep belief network, and a previously presented hidden Markov model classifier. The study showed that the CNN classifier is superior compared to alternative classification methods based on macro F1-scores derived from 10-fold cross-validation experiments. Our results further support the efficacy of eye gaze velocity as a biometric identifier of medical imaging experts
    • …
    corecore