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Abstract:  

Improving Cancer Classification with domain adaptation techniques 

 

Background: As the quantity and complexity of oncological data continue to increase, machine 

learning (ML) has become an important tool in helping clinicians better understand malignancies 

and provide personalized care. Diagnostic image analysis, in particular, has benefited from the 

advent of ML methods to improve image classification and generate prognostic information from 

imaging collected in routine clinical practice [1-3]. Deep learning, a subset of ML, has especially 

achieved remarkable performance in medical imaging, including segmentation [4, 5], object 

detection, classification [6], and diagnosis [7]. 

 

Despite the notable success of deep learning computer vision models on oncologic imaging data, 

recent studies have identified notable weaknesses in deep learning models used on diagnostic 

images. Specifically, deep learning models have difficulty generalizing to data that was not well 

represented during training. One potential solution is the use of domain adaptation (DA) 

techniques, which improve the generalizability of a deep learning model trained on one domain 

to better generalize to data of a target domain.  

 

Techniques: In this study, we explain the efficacy of four common DA techniques – MMD, 

CORAL, iDANN, and AdaBN - used on deep learning models trained on common diagnostic 

imaging modalities in oncology. We used two datasets of mammographic imaging and CT scans 

to test the prediction accuracy of models using each of these DA techniques and compared them 

to the performance of transfer learning.  



 

 

Results: In the mammographic imaging data, MMD, CORAL, and iDANN increased the target 

test accuracy for all four domains. MMD increased target accuracies by 3.6 - 45%, CORAL by 

4- 48%, and iDANN by 1.5-49.4%. For the CT scan dataset, MMD, CORAL, and iDANN 

increased the target test accuracy for all domains. MMD increased the target accuracy by 2.0 – 

13.9%, CORAL by 2.4 - 15.8%, and iDANN by 2.0 – 11.1%. in both the mammographic 

imaging data and the CT scans, AdaBN performed worse or comparably to transfer learning. 

 

Conclusion: We found that DA techniques significantly improve model performance and 

generalizability. These findings suggest that there’s potential to further study how multiple DA 

techniques can work together and that these can potentially help us create more robust, 

generalizable models.  
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Introduction:    

Artificial Intelligence in Medicine 

Artificial intelligence (AI) refers to the ability of a machine or computer system to 

perform tasks that typically require human-like intelligence, such as learning, problem-solving, 

and decision-making. The use of AI in medicine has represented numerous new possibilities in 

the clinical management of patients. In particular, medical specialties that heavily rely on 

images, such as pathology, oncology, and radiology, show the greatest promise for the use of AI 

in clinical applications [8]. Most commonly in these medical specialties, AI is being used to aid 

physicians in diagnoses, disease prognoses, image segmentations, individualized treatment 

planning, and outcome predictions [9, 10]. Many of these tasks can be time-consuming and 

vulnerable to physician bias, but AI has allowed for automation that has reduced physician 

workload and increased accuracy and efficiency.   

AI has opened new doors for early diagnosis and a better understanding and management 

of diseases. Predictive models used in internal medicine have been capable of making complex 

diagnoses. They have also been used to classify tumors as benign or malignant, and to predict 

continuous values such as survival time or treatment dose requirements from a set of input data [8, 

11]. The performance of these models has shown accuracies equal to or greater than specialists in 

those respective fields. As a result, today we are closer than ever to having AI become a regular 

part of the whole medical field.  

ML is a subset of AI that involves the use of algorithms and statistical models to allow a 

system to learn from and make predictions or decisions based on data, without being explicitly 

programmed to perform the task, mimicking characteristics of human intelligence. For example, 

an artificial neural network (NN) is a type of ML model that teaches computers how to process 
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data in a method similar to how the human brain functions. NNs have interconnected models of 

mathematical cells, or “neurons,” that process and transmit information by collecting dendritic-

like input into a weighted sum that triggers an axonal-like output through a nonlinear activation 

function. Input data is processed through the layers of neurons, and the output is a prediction or 

decision made by the model. NNs are trained using a large dataset, and the connections between 

neurons are typically adjusted through a process called backpropagation, in order to make more 

accurate predictions [12]. NNs start as generic predictive models that once given input data can 

learn to perform specific tasks and have been used for a wide variety of applications, including 

image and speech recognition, and natural language processing, among many others.  

NNs can have different numbers of layers. A single-layer network it’s called a multilayer 

perceptron while NNs that go beyond the classical shallow structure, are known as deep learning 

(DL) [8]. DL can stack multiple layers of simple, trainable features leading to a hierarchical 

learning model structure. These models can be used to approximate more complex functions and 

their capacity is roughly proportional to the number of synaptic weights or parameters [12].  

DL is particularly well-suited for tasks that involve analyzing and interpreting complex and 

unstructured data, such as medical images. 
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Fig. 1 Demonstration of a Multilayer perceptron and deep learning a neural network 

 

Convolutional Neural Networks in Medicine 

In medicine, the most successful type of model used to analyze images has been the 

convolutional neural networks (CNNs) [9]. CNNs are a type of neural network that are 

particularly well-suited for analyzing and interpreting complex and unstructured grid-structure, 

such as images and audio. They were inspired by the human visual system to use the spatial 

arrangement of data within medical images [12]. The principal difference between CNNs and 

other types of neural networks is the use of convolutional layers, which apply a set of filters to 

the input data to extract features and patterns.  

In CNNs input data is converted into a numerical representation and passed into the first 

layer of neurons. Subsequent data is passed through a series of intermediate layers that each 
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learns to perform a specific task. The input for subsequent layers is the output of the previous 

layer. In this architecture, each neuron only responds to a specific area of the previous layer, 

forming an output known as an activation map [12, 13]. 

An activation map shows the effects that a given filter can have on the input data of a 

layer in a CNN. Each layer in a CNN is scanned by a convolutional kernel of a fixed size to 

create a features map. The output of the convolutional layers is passed through a series of fully 

connected layers, which combine the extracted features to make a prediction or decision. 

Training of these CNNs is accomplished by minimizing a loss function between the desired input 

and output. This is done using partial derivatives or gradients of the loss function with respect to 

the parameters being used. Each neural connection is then given a weight which, in the training 

phase, is continuously being optimized by the kernels [13].  

One of the main advantages of CNNs is their ability to work with changing data which 

enables them to perform well on tasks such as object recognition, where the position and 

orientation of the object in the image may vary. CNNs have been proven to be useful in 

visualizing anatomical structures in different modalities. For example, Moeskops et al. showed 

that CNNs could be trained to perform multi-organ segmentation on brain MRI, breast MRI, and 

cardiac CTA [14-16]. Additionally, significant work has been done on using CNNs to segment 

organs at risk (OARs) during radiotherapy from CT images. OARs are healthy tissue or organs 

located near a targeted malignancy in a patient with cancer. Their proximity to the clinical target 

site makes them likely to suffer damage from irradiation when the patient is undergoing 

treatment. Accurate segmentation of OARs is critical in minimizing the toxicity to these healthy 

structures. The current standard of care is a manual delineation of the OARs, but thanks to the 
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implementation of CNNs on CT images, many OARs such as the spinal cord, mandible, parotid 

glands, submandibular glands, larynx, pharynx, eye globes, optic nerves, optic chiasm, and 

cardiac structures have been successfully segmented [17-19]. The CNN’s architecture of multiple 

convolutions allows its networks to first extract simple features, such as shapes or edges, and 

incrementally gain complexity until it is able to identify full organs. For organs with poorly 

visible boundaries on CT, adding information from MR images can improve their segmentation. 

Segmentation of medical images requires the differentiation of pixels belonging to organs 

and malignant lesions from those of background information found on CTs or MRIs [13]. To use 

CNNs on medical images, local features must first be extracted in an unsupervised method that 

aims to discover patterns within the data. Parameters learned from this data are then stacked to 

allow high-level features to become evident [12]. Because this method is done in an unsupervised 

fashion, some of the extracted features may be irrelevant or redundant and must therefore be 

assigned a null weight to signal it as non-important.   

These advancements promise to drastically reduce the workload on radiologists and 

increase the accuracy of the results. For example, over five hundred thousand people are 

diagnosed with head and neck cancer around the world every year, and treatment of these tumors 

often puts patients at risk of adverse effects from irradiation [19, 20]. To prevent this, OARs are 

segmented manually by radiologists to avoid radiation in these areas. This task is not only time-

consuming, often taking up to eight hours for cardiac structures and greater than four hours for 

most other cases, but can be highly variable in accuracy. Using CT scans and CNNs, researchers 

have been able to surpass the performance of experienced radiographers [20]. 
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The Paradigms of Machine Learning 

Within ML, there are three major types of learning paradigms - supervised learning, 

unsupervised learning, and transfer learning. These three approaches differ in how the model is 

trained and the type of data it is trained on. In supervised learning, a model is trained on labeled 

data and its main goal is to learn a function that maps input data to the correct output labels. The 

model can then apply what it has learned about the relationship between the input data and the 

corresponding labels to new, unseen examples and make predictions about this data. Most 

commonly, supervised learning is applied to classification tasks where a model is trained to label 

a given input, or to regression, where a model is trained to predict a continuous output given a 

certain input value. Because these models are trained to yield the desired output, they have a 

simpler, more constrained framework to guarantee these results [20]. Although supervised 

learning is the most commonly used type of ML, the training data used in these models need to 

be well annotated – including labels for input features and corresponding correct outputs - and is, 

therefore, more time-consuming, expensive, and requires expert knowledge.  

Unsupervised learning, on the other hand, is a type of ML in which a model can use more 

data as it is not given any labels in training. Instead, the model must discover patterns and 

relationships in the data on its own. For instance, one class of unsupervised learning techniques 

aims to minimize the measure of distance between features extracted from the source and the 

target domains [8]. This is known as the maximum mean discrepancy (MMD), which creates a 

task-specific loss and learns domain-invariant and semantically meaningful features [12]. 

Unsupervised learning is most commonly used for clustering tasks, where a model is trained to 

group similar objects together, or for dimensionality reduction, where a model can be trained to 
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identify the most important features of a given set of data. Although supervised learning is easier 

to implement, unsupervised learning tends to be more flexible and adaptable. Most recently, 

unsupervised training has been used for well-known NLP models such as ChatGPT.  

Transfer learning is another type of ML where pre-trained models can be fine-tuned and 

applied to a different task or data. This allows users to retain knowledge from different but 

related domains, which makes this technique particularly useful in situations where it may be 

difficult, time-consuming, or expensive to collect and label new large datasets for training a 

model. Instead of having to re-train a model, a pre-trained model can be used as a starting point 

and fine-tuned to perform a new task on a smaller dataset of interest. Another way in which 

transfer learning can be used is to use a pre-trained model as a feature extractor. The learned 

features are then used with a new model to perform a specific task [21].  

 

The Challenges of Artificial Intelligence in Medical Imaging 

The detection of breast cancer is another medical task in which ML has been 

demonstrated to have great diagnostic strength. The main reason for the common application of 

AI to mammograms is the widespread use of this modality all over the world. Mammography 

screenings have gained large popularity since the 1980s due to their ability to detect breast 

cancer and decrease mortality by 20-40% [9]. Despite the increase in people obtaining routine 

mammograms, over six hundred thousand people still die from breast cancer worldwide each 

year [8]. One of the explanations for this is the significantly high rate of false negative reads of 

mammograms. Although studies indicated that in a false negative read of a mammogram, 20-

60% of the time an indicator of cancer was available to be found on the image, reading 
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mammograms can be difficult and time-consuming. With an increase in the volume of screenings 

each year to over 40 million, radiologists are pressured to read them faster, making it difficult to 

find small abnormalities found in only 0.5% of people screened [22]. 

Although the increase in the volume of mammographs has created many challenges, 

recent studies have shown promising results for the use of ML on the classification of these 

images as either benign or malignant. NNs outperformed five out of five full-time breast imaging 

specialists with an average increase in sensitivity of 14% [8]. Additionally, they were able to 

detect cancers in patients with prior negative mammogram reads and among populations with 

low screening rates.  

Despite the notable success of deep learning computer vision models on medical imaging 

data, recent studies have identified notable weaknesses in deep learning models used on 

diagnostic images. Most deep networks are trained and tested on datasets with images of the 

same distribution. Although these models are effective when tested within these parameters, they 

underperform in settings where they must analyze a related sample from a different target 

domain such as those of a different site, with a different imaging protocol, a different imaging 

modality, or a different patient population. For example, studies have shown deep learning 

models of chest x-rays are unable to generalize to female patients when a substantial portion of 

their training data is composed of male patients [12, 23]. Similarly, a mathematical model using 

Bayesian statistics was created to recognize patterns in symptoms to diagnose abdominal pain 

and meningitis. Although it was successful with these diseases, when it was applied to other 

symptoms, it was not able to generalize to these new pieces of information [8]. To further 

investigate this phenomenon, Albadway et al. 2018 studied the generalizability of CNNs models 
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for outlining glioblastomas [24]. They tested three models - one on a dataset with patients from 

the same institution as the training data, one on a dataset with patients from a different 

institution, and one on a dataset with patients from both the same and different institutions to 

those of the training data. This study showed a very strong effect on performance due to 

differences in the training versus test datasets.  

The reason why these results have been observed is due to poor model generalizability. 

Generalizability is an important consideration in the development and deployment of AI 

applications for medical imaging. It refers to the ability of a model to perform well on a range of 

different data types and samples, rather than just the specific data it was trained on. Medical data 

can be highly variable and commonly subject to bias. For example, this phenomenon can be seen 

in datasets of MRIs from different centers where there are differences in machine vendor, 

software, sequence parameters, and frequency of coils [9, 25]. Most frequently, source and target 

domains vary in brightness, resolution, or texture while maintaining high-level features like 

class, object types, numbers, etc. consistent [26, 27]. Differences in protocols and patient 

characteristics can also create bias. Dataset bias is especially common with deep learning models 

that are trained on single institutional datasets making them subject to local training biases.  

If a model is not able to generalize well, it may perform poorly when applied to new data 

or situations that differ from the training data rendering it clinically irrelevant [18]. Given the 

relative heterogeneity of cancer patients and the wide variety of anatomical structures in medical 

images even across the same imaging modalities, deep learning models within oncology have 

shown similar limitations in their generalizability [28, 29]. The consequences of incorrect or 

unreliable results from AI models applied to medical imaging are misdiagnosis or incorrect 
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treatment plans that could have serious effects on patient care, disease prognosis, and survival 

[30].  

Additionally, there are concerns regarding data distribution shifts that occur when there 

are differences in the parameters or protocols between the images that the model is learning on 

and those to which it is being applied [9, 12]. Although these may be of similar modality and on a 

common object, data distribution shifts can result, especially in medical imaging where it is rare 

to have labeled, available data from the same center and modality to both train and test on.  

There are several ways to improve the generalizability of AI models for medical imaging. 

One approach is to use a diverse and representative dataset for training, to ensure that the model 

is exposed to a wide range of data types and characteristics. Another approach is to use 

techniques such as regularization and data augmentation to reduce overfitting [31, 32]. There have 

also been multiple efforts at data fusion techniques such as combining disease samples from 

different data sources. Unfortunately, these have not proven to be effective in solving dataset 

bias [1]. The major challenge in medical imaging is the limited availability of annotated data. 

Collecting and annotating medical images can be a time-consuming and expensive process, often 

requiring experts to define relevant features and to have knowledge of the domains being 

analyzed [33]. The performance of models is limited by the quality and quantity of datasets and as 

a result, many models can fail to obtain a large enough dataset to obtain a high level of accuracy. 

Collecting large enough datasets is especially difficult among cancer patients given known data 

silos that exist in healthcare. Since data collection automatization is still poor and the amount and 

quality of training data are dominant influences on an ML model’s performance, there is an 

urgent need to find better ways to collect, annotate, and reuse medical imaging data as well as a 
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need to find better methods to mitigate local training biases and improve generalizability across 

different datasets [34]. 

A solution to both problems is the use of DA techniques. DA refers to the process of 

adapting an ML model that was trained on a larger, more diverse dataset to perform on a 

different but related, dataset, oftentimes with fewer annotations [26]. DA is also commonly used 

for domain shifts, where it can align high-level features between source and target domains while 

getting rid of low-level features. Additionally, DA in medical imaging has the ability to adapt a 

model to different imaging modalities. Different medical imaging techniques, such as CT, MRI, 

and ultrasound, all produce different types of images with distinct characteristics. A model 

trained on one modality may not perform well on images from another modality, even if the 

images depict the same underlying condition and anatomy. By using DA techniques, it is 

possible to adapt a model trained on one modality to perform well on images from a different 

modality.  

 

Domain Adaptation Techniques 

DA techniques offer the potential to train a model using both labeled synthetic data that is 

often abundantly available and unlabeled real data [25]. They have been effective at mitigating the 

bias of deep learning models in a variety of settings including chest x-ray analysis [35], diagnostic 

models [36], and speaker [37], facial [38], and location [39] recognition among many others. Similarly, 

there have been several proposed DA techniques that have shown some efficacy on computer 

vision tasks, but their efficacy on diagnostic images in oncology remains unknown [40]. 



 

  12 

 

There are several types of DA techniques that can be used to mitigate this problem. These 

techniques can be broadly classified into two categories: supervised DA and unsupervised DA. 

Supervised DA techniques assume that labeled data is available in both the source and target 

domains, and the goal is to use this labeled data to learn a model that can perform well on the 

target domain. Unsupervised DA techniques, on the other hand, do not assume that labeled data 

is available in the target domain. Instead, they assume that there is an underlying relation that is 

shared between the source and target domains. In this study, we focus on three unsupervised DA 

techniques because they are more general tools, and also include one supervised technique for 

proper comparison [41].  

Four commonly used DA techniques are Maximum Mean Discrepancy (MMD), Instance-

level Domain Adaptive Neural Network (iDANN), CORrelation Alignment (CORAL), and 

Adaptive Batch Normalization (AdaBN). MMD is an unsupervised DA technique that aims to 

reduce the difference between the source and target domains by minimizing the maximum mean 

discrepancy between them. To do this, a model is trained to minimize the difference between the 

mean feature vectors of the source and the target domains while also trying to maximize its 

classification accuracy on the target domain. By minimizing the distance between the 

distribution of the source and target domain, the model attempts to generalize well to the target 

domain.  

iDANN is another type of unsupervised DA technique that aims to reduce the difference 

between the source and target domains by aligning the feature distributions at the instance level. 

This is done by training a model to transform the source domain data to have the same feature 
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distribution as the target domain data. At the same time, the model also tries to preserve a high 

classification accuracy in the source domain. 

CORAL is also an unsupervised DA technique that aims to align the correlations between 

the source and target domains by minimizing the distance between their second-order statistics. 

To do this, a model is trained to transform the target domain data to have the same second-order 

statistics as the source domain data. Simultaneously, the model also attempts to preserve the 

classification performance on the source domain. 

Lastly, AdaBN is a supervised DA technique that adapts the batch normalization layers of 

a neural network to the distribution of the target domain data. Batch normalization is a technique 

that is used to normalize the activations of a neural network across different batches of data. This 

helps to stabilize the training process and improve the generalization performance of the model. 

However, when the distribution of the target domain data differs significantly from the 

distribution of the source domain data, the batch normalization layers may not be effective, and 

the model may not perform well on the target domain. To address this problem, AdaBN adapts 

the batch normalization layers of the neural network to the distribution of the target domain data 

[42]. This is done by estimating the mean and standard deviation of the target domain data and 

using these estimates to adjust the batch normalization layers of the model. This allows the 

model to perform well on the target domain, even when the data distributions between the source 

and target domains differ significantly. 

 

 

 



 

  14 

 

Statement of purpose:  

We aimed to test the utility of applying DA techniques to deep learning models in order 

to improve their generalizability to a target domain different from which the model had been 

trained. With the implementation of these methods, we also hoped to be able to apply these 

models to target domains with insufficiently annotated data that more closely resembles real-life 

medical imaging applications. To do so, we created models from publicly available training 

datasets of mammograms from breast cancer screening and thoracic computed tomography (CT) 

scans for lung cancer screening, to classify lesions on both imaging modalities as benign or 

malignant. We tested four commonly used DA techniques on each of these datasets and analyzed 

their performance on four specific domains for each imaging modality – density, image view, 

mass margin, and mass shape for mammograms, and spiculation, subtlety, margin, and contrast 

for the CT scans. We expected the application of DAs would successfully improve our deep 

learning models’ accuracies on target domains, as past studies have shown considerable 

improvements with models of widely used, non-medical imaging datasets. We also expected to 

find one specific DA that improved accuracies across both imaging modalities on all domains. 

However, although we did not find one DA that outperformed all others, we did find that three 

out of the four tested significantly increased the accuracy of the target domain compared to 

transfer learning. We also expected to obtain higher accuracies on combined datasets of images 

from both source and target samples, which proved to be consistent with our results. Lastly, we 

expected each DA to perform uniquely but to observe some consistency in task performance 

across those that performed best. We found this to be the case and observed sustained agreement 

across the best-performing DAs compared to transfer learning.  
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Specific Aims  

1. Train a CNN on two datasets of medical imaging using transfer learning.  

a. Divide images into subcategories within four domains using their intrinsic 

properties. 

b. Randomly assign some to the training set and some to the test set.  

c. Train a CNN on our source training data and evaluated on source test data.  

d. Adjust model parameters and used obtained weights to test it on the target training 

set. 

e. Obtain transfer learning source validation accuracy (Val Acc), target training 

accuracy (Train Acc), and target test accuracy (Test Acc). 

2. Train CNN with all each of the four DA techniques using saved weights 

a. Save the DA weights at 5 incrementing quantities of epochs to select for highest 

target training accuracy 

b. Apply weights to obtain Train Acc and Test Acc.  

3. Test transfer learning and DA techniques on combined dataset. 

a. Randomly select a certain amount of source test data and target training data to 

create a combined dataset  

b. Train all four DA techniques and transfer learning on this dataset.  

4. Obtain a statistical analysis of the performance of each model. 

a. Test the stability of DA techniques using bootstrap to calculate the confidence 

interval of each model’s performance. 
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b. Use a one-sided t-test to compare the accuracies of each DA technique to those of 

transfer learning. 

5. Analyze agreement in performance between each DA technique.  

a. Create heatmaps to show what images that were incorrectly identified by transfer 

learning were correctly identified by each DA technique.  

b. Obtain quantification of agreement using Kappa statistics.  
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Methods: 

Student contributions:  

The experiments were performed using two publicly available datasets. Yongfeng (Miles) 

Hui, MPH developed CNN models and performed the statistical analysis. Data analysis with 

medical applications and the generation of figures and tables were conducted by the author 

(Juliana Veira) with guidance from Dr. Sanjay Aneja. 

 

Ethics statement:  

The research was conducted in accordance with the Declaration of Helsinki guidelines 

and approved by the Yale University Institutional Review Board (Protocol ID: 

HIC#2000027592). 

 

Participants and Data Collection:  

We studied the performance of four DA techniques on mammographic imaging and CT 

scans from two publicly available datasets– the Curated Breast Imaging Subset of Digital 

Database for Screening Mammography (CBIS-DDSM) and the Lung Image Database 

Consortium image collection (LIDC-IDRI) (Table 1). For each imaging modality, we used a 

separate CNN model. To do this, each dataset was divided into two groups: the training set and 

the testing set at a 2:1 ratio [43].  

The mammography imaging from the CBIS-DDSM dataset contained 1,696 lesions from 

1,566 patients at four clinical sites across the United States. Of these lesions, there were 753 

cases of calcification and 891 cases of mass findings. The outcome of interest was the 
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pathological labeling of these lesions - whether malignant or benign – based on regions of 

interest that were verified by pathologic reports. For this imaging, we considered four domains: 

density, image view, mass margins, and mass shape. These are commonly found characteristics 

of mammographic lesions utilized by radiologists to determine whether they are malignant or 

benign.  

CT imaging data from the LIDC-IDRI dataset made up of 1,018 thoracic CT scans from 

patients in 15 clinical sites across the United States. These scans contained a total of 2,600 lung 

nodules that were identified by experienced thoracic radiologists. The outcome of interest was 

the pathological labeling of these lesions from verified pathologic reports. In the case of patients 

without pathologic confirmation, malignancy was determined by radiologist interpretation. For 

these scans, we also considered four domains: spiculation, subtlety, margin, and contrast. These 

are commonly found characteristics of lesions on CT scans utilized by radiologists to determine 

whether they are malignant or benign.
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CBIS-DDSM Dataset LIDC-IDRI Dataset 

 Training Test  Training Test 

Density 

(N = 1696) 

 

 

Spiculation 

(N = 6342) 

 

 

<= 2 765 (45.11%) 329 (19.40%) <= 2 4074 (64.24%) 1746 (27.53%) 

>2 421 (24.82%) 181 (10.67%) >=4 365 (5.76%) 157 (2.48%) 

Image View 

(N = 1696) 
 

Subtlety 

(N = 6859) 
  

Craniocaudal (CC) 548 (32.31%) 236 (13.92%) <=3 1694 (24.70%) 726 (10.58%) 

Mediolateral oblique (MLO) 638 (37.62%) 274 (16.16%) >=4 3107 (45.30%) 1332 (19.42%) 

Mass Margins 

(N = 1638) 
 

Margin 

(N = 6859) 
 

Spiculated 284 (52.50%) 123 (22.53%) =5 1981 (28.88%) 849 (12.38%) 

Not Spiculated 860 (17.34%) 369 (7.51%) <=4 2820 (41.11%) 1209 (17.63%) 

Mass Shape 

(N = 1692) 
 

Contrast 

(N = 6859) 
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Regular 368 (21.75%) 158 (9.34%) True 1637 (23.87%) 702 (10.23%) 

Irregular 816 (48.23%) 350 (20.69%) False 3164 (46.13%) 1356 (19.77%) 

 

Table 1. This table shows the two datasets (CBIS-DDSM and LIDC-IDRI), their respective domains (in bold), and the number of images used in the 

training and test groups for each domain. 
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Method Description:  

Deep Learning Models 

All models used a convolutional neural network with the VGG19 architecture as a 

baseline.  We also used an embedded TensorFlow data augmentation method to generate batches 

with real-time data augmentation, the parameters of which can be found in Table 2. Unless 

otherwise specified, we use a Stochastic Gradient Descent (SGD) optimizer, with a learning rate 

of 0.01 without momentum. Our implementation was developed using Keras and will be publicly 

available on GitHub. All the equations for these methods can be found in the Data Supplement.  

Hyperparameters 

Batch size 64 

Total epochs 500 

Image size (116,116,3) 

Learning rate 0.01 

Optimizer stochastic gradient descent 

momentum 0.0/0.9 

regularization Dropout (0.5) 

Image Data Generator  

Rotation range 30 

Zoom range 0.2 

Width shift range 0.3 

Height shift range 0.15 

Shear range 0.3 
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Horizontal flip True 

Fill mode nearest 

Table 2.  - Hyperparameter used in the experiments 

 

Domain Adaptation Techniques 

Typically, DA assumes access to two related datasets, a target domain (the domain of 

interest) that lacks labeled data and a source domain that has abundant labeled data (but differs 

from the target domain in some respect). DA techniques then train a network in a supervised 

fashion on the labels in the source domain, while simultaneously adjusting model parameters so 

that unlabeled data from the target domain ‘matches’ data from the source domain [44].  

The DA techniques we study are designed to encourage the network to view images from 

the source domain and images from the target domain as coming from similar distributions. Two 

of these DA techniques, MMD and CORAL, use metrics that calculate the distance between two 

distributions. During training, they align the source and target domains by minimizing the 

distance metric on latent embeddings generated from the source and target domain respectively 

[5]. MMD is a kernel method that calculates distances on probability measures, while CORAL 

calculates the difference of second-order statistics. We apply the MMD loss and CORAL loss to 

the latent representations output by each linear layer (except for the final prediction).  

Adaptive Batch Normalization (AdaBN), is another DA method that we consider. AdaBN 

makes use of batch normalization (BN) layers to ensure that images from the source and target 

domains are treated as coming from similar distributions [45]. It makes use of the fact that batch 

normalization layers capture statistics of their input distribution. In AdaBN, images from the 
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target domain are used to compute batch normalization statistics that are then applied to images 

of the source domain. To use AdaBN, we added a batch normalization layer following the 

VGG19 layers. 

The final DA method we study is Domain Adaptation Neural Network (DANN). In 

DANN, a domain classification branch is added to the network, in parallel to the label 

classification branch. The domain classification branch is begun with a gradient reversal layer, 

which when combined with a domain classification loss, encourages the network to learn a 

representation that is not able to distinguish between samples from the source and target datasets 

[46]. We use a variant of this method, which we call incremental DANN (iDANN).  In this 

variant, during the training, some samples from the target domain, for which the label classifier 

is confident, are added to the source domain. Following the original DANN paper, we use SGD 

with a learning rate of 0.01, decay of 10−6, and momentum of 0.9. 

A visual explanation of the architecture of these four DA techniques can be found in 

Figure 2.
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Fig. 2: Visual explanation of the architecture of each adaptation domain method. Image A shows the components of the 

MMD and CORAL architecture: input layers, a CNN block, and fully connected layers. Image B shows the components of 

the DANN architecture: a CNN-based feature extractor, a label classifier, and a domain classifier. Image C shows the 

components of the AdaBN architecture: input layers, a CNN block, and a batch normalization layer.
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Domain Adaptation Performance  

To evaluate how different DA techniques influence accuracy on target domain samples, 

we begin by randomly splitting each domain into train (70%) and test (30%) sets. First, we 

pretrain a model on the source-domain training set. We perform early stopping based on the 

source-domain test-set and save the model weights for the epoch that achieved the best source-

domain test set accuracy. All our experimental variants load these saved weights at initialization. 

We compare each DA method against a baseline transfer learning method. In transfer 

learning, the pre-trained model is further finetuned on the training set of the target domain under 

a supervised objective. The inputs for MMD, CORAL, and iDANN were from source training 

data, source training labels, and target training data. Although AdaBN can work using inputs 

from source training data and source training labels alone, target training data was also used to 

improve its performance. We saved the DA weights after 50, 100, 150, 200, and 500 epochs to 

select the highest target training accuracy. Then, we applied these weights to get Train Acc and 

Test Acc. Following this, we created a combined dataset by calculating what two-thirds of the 

source test data set and the target training data set would be. We picked the smaller number and 

then chose this number of items from each test dataset and combined them together.  

 

Statistical Analysis: 

To test the stability of DA techniques, we used the bootstrap method to calculate the 95% 

confidence interval (95% CI) for both the transfer learning and DA techniques. We then 

employed a one-sided t-test to check if each DA method showed statistically significant 

improvement in target domain accuracy compared to transfer learning.  
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Results: 

We used two publicly available datasets of mammograms and CT scans, as described 

above, to compare the accuracy of predictions made by models using one of four different DA 

techniques to those of transfer learning. In our first set of experiments, we studied the target 

accuracy of these models on the four domains for each dataset. We found that the DA techniques 

MMD, CORAL, and iDANN, significantly outperformed the transfer learning on most tasks. 

AdaBN showed similar performance to transfer learning.   

In the mammographic imaging data, MMD, CORAL, and iDANN increased the target 

test accuracy for all four domains - density, image view, mass margins, and mass shape 

compared to transfer learning. MMD increased target accuracies by 3.6 - 45%, CORAL by 4- 

48%, and iDANN by 1.5-49.4%. AdaBN performed comparably to transfer learning. These 

findings are shown in the boxplots of Figure 3 and Table 2. 

For the CT scan dataset, MMD, CORAL, and iDANN increased the target test accuracy 

for all domains - spiculation, subtlety, margin, and contrast compared to transfer learning. MMD 

increased the target accuracy by 2.0 – 13.9%, CORAL by 2.4 - 15.8%, and iDANN by 2.0 – 

11.1%. AdaBN performed comparably to transfer learning. These findings are shown in the 

boxplots of Figure 4 and Table 3. 

The second set of experiments studied the performance of the four DA techniques on 

combination datasets. As explained above, these datasets were made by randomly combining 

images from the source test data and from the target training data. For the mammographic 

imaging combination dataset, MMD, CORAL, and iDANN all increased the target accuracies in 

density, mass margins, and mass shape. No one adaption domain caused any significant changes 
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in accuracy for image view. AdaBN only had a slight increase in accuracy for density. For the 

CT scan validation combination dataset, all four DA techniques increased the target accuracies in 

the margin and contrast domains. MMD and CORAL also significantly increased accuracy in 

spiculation and subtlety, and iDANN in spiculation.
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Fig. 3 These box plots, created using bootstrap calculations, show the accuracies achieved by transfer learning and each adaptation domain method on the CBIS-

DDSM dataset. Each plot shows the performance of the four adaptation domain techniques on a given domain of interest. The top four plots show the accuracies 

on the test set and the bottom four plots show the accuracies on the combined validation set. Outliers were not included in these plots. A blue star was placed 

above a box plot if its results were significantly better than those of transfer learning (p < 0.05).
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Accuracy on Target Domain (% 

change) 

Accuracy on Combination Test set (% change) 

MMD 3.6 – 45.0 -0.4 – 23.7 

CORAL 4.0 – 48.0 -0.8 – 23.7 

AdaBN -25.5 – 4.0 -10.0 – 1.7 

iDANN 1.5 – 49.4 0.9 – 24.6 

 

Table 2. Percent change in target accuracy on all domains compared to transfer learning for CBIS-DDSM Dataset 
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Fig. 4 These box plots, created using bootstrap calculations, show the accuracies achieved by transfer learning and each adaptation domain method on the LIDC-

IDRI dataset. Each plot shows the performance of the four adaptation domain techniques on a given domain of interest. The top four plots show the accuracies on 

the test set and the bottom four plots show the accuracies on the combined validation set. Outliers were not included in these plots. A blue star was placed above a 

box plot if its results were significantly better than those of transfer learning (p < 0.05).
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Accuracy on Target Domain 

(% change) 

Accuracy on Combination Test set (% 

change) 

MMD 2.0 – 13.9 1.3 – 9.3 

CORAL 2.4 – 15.8 1.9 – 9.8 

AdaBN -2.9 – 7.3 -3.9 – 4.4 

iDANN 2.0 – 11.1 -2.1 – 9.2 

 

Table 3. Percent change in target accuracy on all domains compared to transfer learning for LIDC-IDRI 

Dataset. 
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Lastly, we used heatmaps to study the agreement between the four adaptation domain 

techniques, as can be seen in Figure 5. We showed the images that had been incorrectly predicted 

by transfer learning and the DA techniques (red) and those that had been incorrectly predicted by 

transfer learning but correctly predicted by one or more adaptation techniques (green). These 

heatmaps show that different DA techniques can correctly predict many more images that 

transfer learning, and that many of these images are correctly predicted by multiple DA 

techniques. To quantify this agreement between the four tested techniques, we used Kappa 

statistics. In most of the experiments, the Kappa statistics between MMD, CORAL, and iDANN 

were over 0.61, except for the image view domain [47]. These findings show us that there’s 

potential to further study the use of multiple DA at once to create more robust, generalizable 

models.
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Fig. 5 Each square in the heatmaps represents an image predicted wrong by transfer learning. In red are those images incorrectly predicted by both transfer 

learning and all DA techniques. In the different shades of green are images that were incorrectly predicted by transfer learning but correctly predicted by one or 

more of the DA techniques. The light green boxes represent images predicted correctly by only one of the DA techniques. The darker green boxes represent images 

predicted correctly by multiple adaptation domain techniques. The top four heatmaps show the performance of the four adaptation domain techniques on each of 

the four domains for the CBIS-DDSM dataset. The bottom four heatmaps show the performance of the four adaptation domain techniques on each of the four 

domains for the LIDC-IDRI dataset.
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Discussion:  

The fast evolution of deep learning has led to significant advancements in medical 

diagnoses, prognoses, and treatment recommendations. Of special importance is the role of 

CNNs which have shown to be useful in image classification, segmentation, and localization and 

have been applied to detecting malignancies, cardiac structural anomalies, retinal diseases, and 

Alzheimer’s among other illnesses [3]. Despite outperforming medical professionals in many 

clinical settings, deep learning networks have shown to have poor generalizability, and efforts to 

solve this problem have, up to now, proven ineffective.  

In this study, we test four DA techniques on two publicly available datasets of 

mammograms for breast cancer screening and thoracic computed tomography (CT) scans for 

lung cancer screening. For each of these datasets, we examine four specific imaging domains. 

For mammograms, the domains are density, image view, mass margin, and mass shape. For CT 

scans the domains are spiculation, subtlety, margin, and contrast. Although we did not find one 

DA method that outperformed all others, we did find that using three out of the four tested – 

MMR, CORAL, and iDANN – lead to statistically significant improvements to the target domain 

accuracy compared to transfer learning. Moreover, we also found that these DA techniques could 

be used to improve target domain accuracy on combined datasets - images from both source and 

target samples - compared to transfer learning. Furthermore, we found that there was largely 

sustained agreement among the best-performing DA techniques, but they still retained unique 

properties that made their performance highly specific to the dataset and the target domain, 

suggesting the possibility of improvements in models with multiple incorporated DA techniques. 

These findings demonstrate that DA techniques can be of great use to create more robust models 

that will combat current problems of generalizability.  
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Our results corroborate past studies that show that the application of DA techniques to 

deep learning models successfully increased their accuracies on target domains. One of these 

investigations used the Office-31 dataset to evaluate DA techniques and achieved accuracies 

significantly higher than with transfer learning [48]. Similarly, Tzeng et al. showed that the 

accuracy of the target domain in the task from MNIST to USPS was increased by almost twenty 

percent using CoGAN [49, 50]. Despite these impressive results, these studies evaluate their 

techniques on widely used benchmarks like Office Dataset, MNIST, USPS, SVHN digits 

datasets, or other similar datasets composed of synthetic and real data. Our work expands on the 

findings of previous studies by evaluating the performance of DA techniques on commonly used, 

real-world clinical image diagnostic tasks – mammographic imaging and CT scans. 

Although limited by the lack of training data, studies have proven that deep learning 

techniques can effectively model mammogram datasets. Carneiro et al. showed how Imagenet 

can produce an AUC of 0.97(±0.03) on DDSM [51]. Similarly, Li et al proposed DenseNet-II 

neural network model, with an average accuracy of 94.55% on mammogram datasets [52]. Wang 

et al. presented a deep learning model that can achieve a discriminative accuracy of 87.3% in 

breast lesions classification tasks [53]. In our experiment, we showed that by using VGG19 

without fine-tuning, the deep learning model can achieve close to 75%-80% validation accuracy 

in each domain. 

Similarly, there have been many studies that show how vulnerable deep learning models 

are to the effects of dataset bias, ultimately impacting their generalizability [54]. Among others, 

collecting new data [55] and using data augmentation [56] have all been proposed as methods to 

solve this problem without success.  In our experiments, we observed a similar drop in accuracy 



 

  36 

 

on the target domain of between 2% to 20% when using transfer learning alone but by using DA 

techniques, we were able to overcome dataset biases and yield more reliable classifiers. 

Past studies report conflicting results on the performance of iDANN and deep CORAL, 

two of the four DA techniques we studied. Some have shown that iDANN performed much 

better than the Deep CORAL method on MNIST, SVNH, and Syn Num datasets [46] while others 

show that Deep CORAL outperformed DAN[57] . When we applied these methods to medical 

images, both produced similar results and significantly outperformed baseline transfer learning. 

Overall, we did not find a method that performed generally better in both datasets across all four 

tested domains although CORAL was the best method as it had the highest improvement in 

accuracy in 5 experiments. Second and third in performance were iDANN, which had the highest 

accuracy improvement in 2 experiments, followed by MMD, with the highest accuracy 

improvement in 1 experiment.  

AdaBN is a technique that modulates all the batch norm layers’ statistics to make each 

layer receive data from a similar distribution. Other studies that evaluated the performance of 

this method on the Office-31 dataset and Caltech-Bing dataset obtained favorable results [52]. In 

our study, AdaBN performed comparable to or worse than transfer learning. This is likely due to 

this technique being more general than the other three. AdaBN does not require the use of any 

labeled data from the target domain, which makes it more versatile and applicable to a wider 

range of scenarios, but in situations where labels are available, it underperforms compared to 

those techniques that do make use of this additional information.  
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Challenges and limitations: 

There are several limitations to our study. First, we only used one CNN architecture, 

VGG19, for all our experiments. Previous studies have shown that Deep CORAL and DAN have 

worked well using VGG16 or AlexNet network, an architecture consisting of five convolutional 

layers and three fully connected layers. Although we do not have enough information to prove 

that VGG19 is the best CNN model, it has proven to have overall better transfer learning 

performance than many other architectures [58]. Additionally, this architecture is widely 

recognized for its application on medical imaging data [39, 59, 60]. 

Secondly, we only calculated the MMD loss and CORAL loss between two domains for a 

single feature layer, and for AdaBN we only added a single BN layer in the network [57]. 

Although past studies have demonstrated advantages to applying CORAL loss to multiple layers 

we wanted to ensure that the network structures of all methods were similar [48]. We also tried to 

mimic real-world settings where CNN models being used have already trained on clinical images 

and where the weights can be applied to DA network architectures. As BN layers, by design, 

change the statistics of the network activations between two layers, it can be challenging to add 

BN layers to a pretrained network without dramatically affecting performance. 

Lastly, we only used two types of medical images – mammograms and CT scans. Thus, 

our findings might not generalize to other many medical diagnostic problems. Despite this, 

mammograms and CT scans are two of the most widely used medical imaging tools and 

improving the accuracy of how models classify these types of images will be of great 

importance.  
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In conclusion, we used two datasets of mammographic imaging and CT scans to test the 

prediction accuracy of models in the classification of lesions as malignant or benign. We added 

one of four DA techniques to these models and compared its performance to that of transfer 

learning. We found that DA techniques significantly improve model performance and 

generalizability, specifically unsupervised DAs like MMD, CORAL, and iDANN. We also 

found that these techniques also helped increase prediction accuracy among combined datasets 

and that while each DA technique had its unique properties, there was significant agreement 

between the best-performing techniques in the images they were able to correctly classify. These 

findings suggest that there’s potential to further study how multiple domain adaptations can work 

together and that these can potentially help us create more robust, generalizable models that will 

continue to facilitate and improve the medical care we can provide to our patients.   

 

 

 

Dissemination: 

The results of this study have been submitted to the journal, Frontiers of Oncology. This 

paper is currently under review and there is therefore not yet a decision on the publication of 

these results.  
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Data Supplement 

 
Table 4 (A-D). This table shows the accuracies of transfer learning and four domain adaptation methods on the training set of the target domain and 

the combination training set. Included are also the confidence interval and p-values. These results are on the mammography dataset, CBIS-DDSM.  
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Table 5 (A-D). This table shows the accuracies of transfer learning and four domain adaptation methods on the training set of the target domain and 

the combination training set. Included are also the confidence interval and p-values. These results are on the CT scan dataset, LIDC-IDRI.   
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Table 6 (A-D). The accuracies of transfer learning and four domain adaptation methods on the training set of the target domain and the combination 

training set, as well as the confidence interval and p-values.  
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Table 7 (A-D). The accuracies of transfer learning and four domain adaptation methods on the training set of the target domain and the combination 

training set, as well as the confidence interval and p-values.  
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Table 8.  Images correctly identified by transfer learning but incorrect by domain adaptation 
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Figure 6. This figure shows mammogram images from different domains. 
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Figure 7. This figure shows CT scan images from different domains.
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Figure 8. Includes all mammogram images that are predicted wrong by transfer learning. Each plot uses one of the domain adaptation methods. 

Boxes in green represent mammographic images that a particular domain adaptation method predicts correctly. Boxes in red represent 

mammographic images a particular domain adaptation method predicts wrong. 
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Figure 9. Includes all CT scan images that are predicted wrong by transfer learning. Each plot uses one of the domain adaptation methods. Boxes in 

green represent CT images that a particular domain adaptation method predicts correctly. Boxes in red represent CT images that a particular domain 

adaptation method predicts wrong. 
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Figure 10. The deep learning network architectures show every layer in the networks. 
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Figure 11. The deep learning network architectures show every layer in the networks. 
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