8,277 research outputs found

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Exploiting Cross Domain Relationships for Target Recognition

    Get PDF
    Cross domain recognition extracts knowledge from one domain to recognize samples from another domain of interest. The key to solving problems under this umbrella is to find out the latent connections between different domains. In this dissertation, three different cross domain recognition problems are studied by exploiting the relationships between different domains explicitly according to the specific real problems. First, the problem of cross view action recognition is studied. The same action might seem quite different when observed from different viewpoints. Thus, how to use the training samples from a given camera view and perform recognition in another new view is the key point. In this work, reconstructable paths between different views are built to mirror labeled actions from one source view into one another target view for learning an adaptable classifier. The path learning takes advantage of the joint dictionary learning techniques with exploiting hidden information in the seemingly useless samples, making the recognition performance robust and effective. Second, the problem of person re-identification is studied, which tries to match pedestrian images in non-overlapping camera views based on appearance features. In this work, we propose to learn a random kernel forest to discriminatively assign a specific distance metric to each pair of local patches from the two images in matching. The forest is composed by multiple decision trees, which are designed to partition the overall space of local patch-pairs into substantial subspaces, where a simple but effective local metric kernel can be defined to minimize the distance of true matches. Third, the problem of multi-event detection and recognition in smart grid is studied. The signal of multi-event might not be a straightforward combination of some single-event signals because of the correlation among devices. In this work, a concept of ``root-pattern\u27\u27 is proposed that can be extracted from a collection of single-event signals, but also transferable to analyse the constituent components of multi-cascading-event signals based on an over-complete dictionary, which is designed according to the ``root-patterns\u27\u27 with temporal information subtly embedded. The correctness and effectiveness of the proposed approaches have been evaluated by extensive experiments

    Domain Transfer Learning for Object and Action Recognition

    Get PDF
    Visual recognition has always been a fundamental problem in computer vision. Its task is to learn visual categories using labeled training data and then identify unlabeled new instances of those categories. However, due to the large variations in visual data, visual recognition is still a challenging problem. Handling the variations in captured images is important for real-world applications where unconstrained data acquisition scenarios are widely prevalent. In this dissertation, we first address the variations between training and testing data. Particularly, for cross-domain object recognition, we propose a Grassmann manifold-based domain adaptation approach to model the domain shift using the geodesic connecting the source and target domains. We further measure the distance between two data points from different domains by integrating the distance of their projections through all the intermediate subspaces along the geodesic. Our proposed approach that exploits all the intermediate subspaces along the geodesic produces a more accurate metric. For cross-view action recognition, we present two effective approaches to learn transferable dictionaries and view-invariant sparse representations. In the first approach, we learn a set of transferable dictionaries where each dictionary corresponds to one camera view. The set of dictionaries is learned simultaneously from sets of correspondence videos taken at different views with the aim of encouraging each video in the set to have the same sparse representation. In the second approach, we relaxes this constraint by encouraging correspondence videos to have similar sparse representations. In addition, we learn a common dictionary that is incoherent to view-specific dictionaries for cross-view action recognition. The set of view-specific dictionaries is learned for specific views while the common dictionary is shared across different views. In this way, we can align view-specific features in the sparse feature spaces spanned by the view-specific dictionary set and transfer the view-shared features in the sparse feature space spanned by the common dictionary. In order to handle the more general variations in captured images, we also exploit the semantic information to learn discriminative feature representations for visual recognition. Class labels are often organized in a hierarchical taxonomy based on their semantic meanings. We propose a novel multi-layer hierarchical dictionary learning framework for region tagging. Specifically, we learn a node-specific dictionary for each semantic label in the taxonomy and preserve the hierarchial semantic structure in the relationship among these node-dictionaries. Our approach can also transfer knowledge from semantic label at higher levels to help learn the classifiers for semantic labels at lower levels. Moreover, we exploit the semantic attributes for boosting the performance of visual recognition. We encode objects or actions based on attributes that describe them as high-level concepts. We consider two types of attributes. One type of attributes is generated by humans, while the second type is data-driven attributes extracted from data using dictionary learning methods. Attribute-based representation may exhibit variations due to noisy and redundant attributes. We propose a discriminative and compact attribute-based representation by selecting a subset of discriminative attributes from a large attribute set. Three attribute selection criteria are proposed and formulated as a submodular optimization problem. A greedy optimization algorithm is presented and its solution is guaranteed to be at least (1-1/e)-approximation to the optimum

    Identifying First-person Camera Wearers in Third-person Videos

    Full text link
    We consider scenarios in which we wish to perform joint scene understanding, object tracking, activity recognition, and other tasks in environments in which multiple people are wearing body-worn cameras while a third-person static camera also captures the scene. To do this, we need to establish person-level correspondences across first- and third-person videos, which is challenging because the camera wearer is not visible from his/her own egocentric video, preventing the use of direct feature matching. In this paper, we propose a new semi-Siamese Convolutional Neural Network architecture to address this novel challenge. We formulate the problem as learning a joint embedding space for first- and third-person videos that considers both spatial- and motion-domain cues. A new triplet loss function is designed to minimize the distance between correct first- and third-person matches while maximizing the distance between incorrect ones. This end-to-end approach performs significantly better than several baselines, in part by learning the first- and third-person features optimized for matching jointly with the distance measure itself
    • …
    corecore