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Visual recognition has always been a fundamental problem in computer vision.

Its task is to learn visual categories using labeled training data and then identify

unlabeled new instances of those categories. However, due to the large variations in

visual data, visual recognition is still a challenging problem. Handling the variations

in captured images is important for real-world applications where unconstrained

data acquisition scenarios are widely prevalent.

In this dissertation, we first address the variations between training and test-

ing data. Particularly, for cross-domain object recognition, we propose a Grassmann

manifold-based domain adaptation approach to model the domain shift using the

geodesic connecting the source and target domains. We further measure the dis-

tance between two data points from different domains by integrating the distance

of their projections through all the intermediate subspaces along the geodesic. Our

proposed approach that exploits all the intermediate subspaces along the geodesic

produces a more accurate metric. For cross-view action recognition, we present two

effective approaches to learn transferable dictionaries and view-invariant sparse rep-

resentations. In the first approach, we learn a set of transferable dictionaries where

each dictionary corresponds to one camera view. The set of dictionaries is learned

simultaneously from sets of correspondence videos taken at different views with the



aim of encouraging each video in the set to have the same sparse representation.

In the second approach, we relaxes this constraint by encouraging correspondence

videos to have similar sparse representations. In addition, we learn a common dictio-

nary that is incoherent to view-specific dictionaries for cross-view action recognition.

The set of view-specific dictionaries is learned for specific views while the common

dictionary is shared across different views. In this way, we can align view-specific

features in the sparse feature spaces spanned by the view-specific dictionary set and

transfer the view-shared features in the sparse feature space spanned by the common

dictionary.

In order to handle the more general variations in captured images, we also

exploit the semantic information to learn discriminative feature representations for

visual recognition. Class labels are often organized in a hierarchical taxonomy based

on their semantic meanings. We propose a novel multi-layer hierarchical dictionary

learning framework for region tagging. Specifically, we learn a node-specific dictio-

nary for each semantic label in the taxonomy and preserve the hierarchial semantic

structure in the relationship among these node-dictionaries. Our approach can also

transfer knowledge from semantic label at higher levels to help learn the classifiers

for semantic labels at lower levels. Moreover, we exploit the semantic attributes for

boosting the performance of visual recognition. We encode objects or actions based

on attributes that describe them as high-level concepts. We consider two types of

attributes. One type of attributes is generated by humans, while the second type

is data-driven attributes extracted from data using dictionary learning methods.

Attribute-based representation may exhibit variations due to noisy and redundant

attributes. We propose a discriminative and compact attribute-based representa-

tion by selecting a subset of discriminative attributes from a large attribute set.

Three attribute selection criteria are proposed and formulated as a submodular op-

timization problem. A greedy optimization algorithm is presented and its solution

is guaranteed to be at least (1-1/e)-approximation to the optimum.
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Chapter 1: Introduction

1.1 Motivation

Visual recognition has always been a fundamental problem in computer vision.

Its task is to learn visual categories using labeled training data and then identify

unlabeled new instances of those categories. Many vision task relies on the ability

to recognize objects, scenes and categories. Visual recognition itself has many real-

world applications, such as face identification, object recognition, action recognition,

image search and retrieval, video surveillance and so on. Meanwhile, there exist a

variety of literature on feature extraction and learning methods for recognition.

However, visual recognition is challenging due to the large variations in captured

images. For example, in face and object recognition applications, images may be

acquired from different viewpoints and illumination conditions. Other factors re-

sulting in the variation may include partial occlusions and unrelated background

clutter. Different instances of the same category can exhibit significant variations in

appearance. Handling the variations in captured images is important for real-world

applications where unconstrained data acquisition scenarios are widely prevalent.

Recently, a very fruitful line of work is proposed to address the variances

between training (source domain) and testing data (test domain) [95, 51, 33, 32].
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The varia between the training and testing data may be caused by many factors

including viewpoints, illuminations, and background clutters. These varia will result

in distribution shift between the training and testing domain. In this scenario,

most traditional visual recognition approaches that directly apply the classifiers

trained from the training domain to the test domain often yields poor recognition

performance. What’s worse, the instances of the same category between the training

and test domains may be much larger than the varia among instances of the same

category within each domain. This is referred the domain adaptation problem.

Another line of work for dealing with varia in captured images focus on learning

discriminative feature representations [1, 121, 43, 23, 53, 66, 60]. Feature represen-

tation are critical for the visual recognition performance. A good discriminative

feature representation is often the one that is robust to varia of instances of the

same category. Dictionary learning methods have been proposed to learn discrim-

inative sparse representations for visual recognition [1, 121, 43]. These dictionary

learning methods can learn both representative and discriminative dictionaries, and

the corresponding sparse coefficients are discriminative for classification. Semantic

information has also been exploited in [53, 66, 60] to learn robust feature represen-

tations. The semantic information includes the structured taxonomy of class labels,

and the high-level concepts called attributes.

In this dissertation, a Grassmann manifold-based algorithm for cross-domain

object and face recognition was first presented. This approach models the domain

shift using the geodesic connecting the source and target domains on a Grassmann

manifold. For the action recognition problem, domain shift may be caused by

2



changes in camera viewpoints and background clutter. In order to solve the domain

shift caused by camera views, two dictionaries corresponding to two camera views

are learned for cross-view action recognition. The problem of learning representative

and discriminative features for images and videos is also studied in this dissertation.

Semantic class labels are often organized in a hierarchical taxonomy based on their

semantic meanings. In order to exploit the semantic information in the taxonomy,

a novel multi-layer hierarchical dictionary learning framework is proposed for image

tagging. The proposed method transfers knowledge from semantic label at higher

levels to help learn the classifiers for semantic labels at lower levels. Finally, the

concept of attributes and its application for representation and recognition of action

videos is introduced. In order to derive effective attribute-based representation, a

novel method on attributes learning and selection for action recognition is further

presented.

1.2 A Grassmann Manifold-based Domain Adaptation Approach

In the first part of the dissertation, we consider the problem of domain adap-

tation in object and face recognition [142]. Recently a Grassamnn manifold-based

domain adaptation algorithm that models the domain shift using intermediate sub-

spaces along the geodesic connecting the source and target domains was presented

in [33]. We build upon this work and propose replacing the step of concatenating

feature projections on a very few sampled intermediate subspaces by directly inte-

grating the distances between feature projections along the geodesic. The proposed

3



approach considers all the intermediate subspaces along the geodesic. Thus, it is a

more principled way of quantifying the cross-domain distance. Our approach has

two major advantages. Experimental results on two standard datasets show that

the proposed algorithm yields favorable performance over previous approaches. Note

that while this work was under review for ICPR 2012, we became aware of a paper

presented at CVPR 2012 by [32] discussing a similar approach.

1.3 Transferable Dictionary Learning for Action Recognition

In the second part of this dissertation, we study the problem of cross-view ac-

tion recognition where the domain shift is caused by camera viewpoints in [141, 138].

Discriminative appearance features are effective for recognizing actions in a fixed

view, but may be poor at generalizing to a new view. We present two effective

approaches to learn transferable dictionaries for robust action recognition across

views. In the first approach, we learn a set of transferable dictionaries where each

dictionary corresponds to one camera view. The set of dictionaries is learned si-

multaneously from sets of correspondence videos taken at different views with the

aim of encouraging each video in the set to have the same sparse representation.

In the second approach, we also learn a common dictionary that is incoherent to

view-specific dictionaries for cross-view action recognition. The set of view-specific

dictionaries is learned for specific views while the common dictionary is shared across

different views. Our approach represents videos in each view using both the corre-

sponding view-specific dictionary and the common dictionary. More importantly, it

4



encourages the set of videos taken from different views of the same action to have

similar sparse representations. In this way, we can align view-specific features in the

sparse feature spaces spanned by the view-specific dictionary set and transfer the

view-shared features in the sparse feature space spanned by the common dictionary.

The learned common dictionary not only has the capability to represent actions

from unseen views, but also makes our approach effective in a semi-supervised set-

ting where no correspondence videos exist and only a few labels exist in the target

view. Extensive experiments using three public datasets demonstrate that the pro-

posed approach outperforms recently developed approaches for cross-view action

recognition.

1.4 Semantic Taxonomy Aware Dictionary Learning for Image Tag-

ging

In the third part of this dissertation, we exploit the semantic taxonomy to learn

discriminative sparse representations for image tagging [139]. Tags of image regions

are often arranged in a hierarchical taxonomy based on their semantic meanings.

Using the given tag taxonomy, we propose to jointly learn multi-layer hierarchical

dictionaries and corresponding linear classifiers for region tagging. Specifically, we

generate a node-specific dictionary for each tag node in the taxonomy, and then con-

catenate the node-specific dictionaries from each level to construct a level-specific

dictionary. The hierarchical semantic structure among tags is preserved in the rela-

tionship among node-dictionaries. Simultaneously, the sparse codes obtained using

5



the level-specific dictionaries are summed up as the final feature representation to

design a linear classifier. Our approach not only makes use of sparse codes obtained

from higher levels to help learn the classifiers for lower levels, but also encourages

the tag nodes from lower levels that have the same parent tag node to implicitly

share sparse codes obtained from higher levels. Experimental results using three

benchmark datasets show that the proposed approach yields the best performance

over recently proposed methods.

1.5 Attribute Learning and Selection for Visual Recognition

In the final part of this dissertation, we exploit the semantic attributes for

boosting the performance of visual recognition [140]. In real-world visual recognition

problems, low-level features cannot adequately characterize the semantic content in

images, or the spatio-temporal structure in videos. In this work, we encode objects

or actions based on attributes that describe them as high-level concepts. We consider

two types of attributes. One type of attributes is generated by humans, while the

second type is data-driven attributes extracted from data using dictionary learning

methods. Attribute-based representation may exhibit variations due to noisy and

redundant attributes. We propose a discriminative and compact attribute-based rep-

resentation by selecting a subset of discriminative attributes from a large attribute

set. Three attribute selection criteria are proposed and formulated as a submodular

optimization problem. A greedy optimization algorithm is presented and its solution

is guaranteed to be at least (1-1/e)-approximation to the optimum. Experimental
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results on four public datasets demonstrate that the proposed attribute-based repre-

sentation significantly boosts the performance of visual recognition algorithms and

outperforms most recently proposed recognition approaches.

1.6 Contributions of the Dissertation

In this dissertation, we make the following contributions.

• We have extensively studied the problem of domain adaptation for cross-

domain face and object recognition. Our proposed manifold-based domain

adaptation approach has two advantages. First, it avoids ad-hoc sampling of

intermediate subspaces in [33]. Second, it is more expressive because it im-

plicitly projects data onto all the subspaces along the geodesic and smoothly

accumulate the distance between data projections along the geodesic. Lastly,

it does not suffer from information lass that occurs in [33] due to discrete

sampling.

• We present two dictionary learning approaches for cross-view action recogni-

tion by transferring sparse representations across views. The first approach

directly exploits the video-level correspondence and bridges the gap of sparse

representations of pairs of videos taken from different views of the same action.

The second approach simultaneously learns a set of view-specific dictionaries

to exploit the video-level correspondence across views and a common dictio-

nary to model the common patterns shared by different views. Both frame-

works are very general and can be applied to cross-view and multi-view action
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recognition under both unsupervised and supervised settings.

• We present a multi-layer supervised dictionary learning framework that simul-

taneously learns multi-layer dictionaries and classifiers. We are the first to use

the supervised dictionary learning to explore the semantic structure among

tags, which not only takes advantages of the compactness and efficiency of

dictionary learning, but also explores different group structures among image

regions. Our approach proposes to sum up sparse codes from different levels

as the feature representation to learn a linear classifier, which enables us to

make use of discriminative information encoded in sparse codes from different

levels. Our approach is robust to datasets with unbalanced tag classes.

• We exploit human-labeled attributes and data-driven attributes for improving

the performance of visual recognition. We propose three attribute selection

criteria for the selection of discriminative and compact attributes. We formu-

late the selection procedure as one of optimizing a submodular function based

on the entropy rate of a random walk and weighted maximum coverage func-

tion. The selected attributes not only have strong and similar discrimination

capability for all pairwise classes, but also maximize the sum of largest dis-

crimination capability that each pairwise classes can obtain from the selected

attributes.

8



1.7 Organization of the Dissertation

The rest of the dissertation proposal is organized as follows. We first introduce

a Grassman manifold-based domain adaptation approach for cross-domain object

recognition in Chapter 2. In order to solve the domain shift caused by camera

views, we present two novel methods for cross-view action recognition in Chapter

3. In chapter 4, we describe a hierarchical dictionary learning method for region

tagging. In Chapter 5, we present an attribute-based representation to overcome

the large variations in low-level features. We conclude the dissertation and discuss

future directions in chapter 6.
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Chapter 2: A Grassmann Manifold-based Domain Adaptation Ap-

proach

2.1 Related Work

Traditional visual object recognition methods assume that testing and train-

ing data are sampled from the same distribution. However, in practice, the training

and testing data are captured under different conditions and exhibit different distri-

butions. Failing to model this shift often leads to inferior results. Methods that can

handle domain shift are essential for improving the recognition performance. This

is referred as the domain adaptation problem.

Several methods have been proposed to handle domain shift for support vector

machines [127, 41, 19]. In the field of visual object recognition, [95, 51] computed

domain-invariant metrics to quantify the similarity between objects of different do-

mains. Recently, Gopalan et al. modeled the domain shift using the geodesic con-

necting the source and target domains on a Grassmann manifold [33]. The key

idea was to synthesize intermediate domains using intermediate subspaces along the

geodesic and represent an object by concatenating its projections on these subspaces.

In this chapter, we present an alternative Grassmann manifold-based approach
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Figure 2.1: Finite sampling versus continuous integration. (a) Gopalan et al. [33]

sample several intermediate subspaces along the geodesic connecting two domains

on the Grassmann manifold, represent the data by the concatenation of data pro-

jections on the sampled subspaces, and perform cross-domain class analysis using

the concatenated representation. (b) We measure the similarity between two data

points from different domains by integrating the distance of their projections to the

intermediate subspace along the geodesic. We consider all the intermediate subspace

which renders a smoother metric.

to address the domain adaptation problem. Specifically, we propose replacing the

concatenation of very few intermediate subspace projections in [33] by integrating

the distance between feature projections on all the intermediate subspaces along the

geodesic. Fig 2.1 illustrates the difference between our approach and that of [33].

Note that we developed this work independent of [32] which discussed a similar

approach.
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2.2 Geodesic on the Grassman Manifold

A Grassmann manifold Gn,d is the set of all the d-dimensional subspaces of

the vector space Rn. We denote a subspace S ∈ Gn,d using a matrix S in Rn×d

whose columns are orthogonal and form a basis for this subspace. Note that if S

is right-multiplied by a d-dimensional orthogonal matrix, it still denotes S because

the subspace spanned by the columns of S remains the same.

Let S0 and S1 be two matrices in Rn×d whose columns are orthogonal bases

for the d-dimensional subspaces S0 and S1 respectively. Let U1ΓV T
1 be a singular

value decomposition (SVD) of the d × d matrix ST0 S1. The geodesic ψ(t) on the

Grassmann manifold Gn,d starting from S0 to S1 is given by

ψ(t) = Qexp(tB)J s.t.

{ ψ(0) = S0

ψ(1) = S1

(2.1)

where J =

 Id

On−d,d

 , Id is a d × d identity matrix, and On−d,d is a matrix with

all zeros [109]. Here, Q is an orthogonal matrix with determinant +1 and is given

by

Q =

 S01 − Id

S02

 [Id − ST01]−1[ST01 − IdST02]. (2.2)

The matrices S01 ∈ Rd×d and S02 ∈ R(n−d)×d are the upper and lower parts of S0

respectively, i.e., S0 =

 S01

S02

 , and the matrix B is asymmetric and block-diagonal

12



given by B =

 Od,d AT

−A Od,d

 where A ∈ R(n−d)×d.

Instead of directly calculating ψ(t), we use the approach proposed by Gallivan

et al. [30] which calculates the equivalent geodesic ψ̄(t) = ψ(t)U1 connecting S0 and

S1 such that ψ̄(0) = S0U1 and ψ̄(1) = S1V1. The intuition behind this is that the

subspaces represented by ψ(t), S0, and S1 will be the same when these matrices are

right multiplied by an orthogonal matrix.

Now the geodesic ψ̄(t) connecting S0 and S1 is given by

ψ̄(t) = Q exp(tB)JU1 s.t.

{ ψ̄(0) = S0U1

ψ̄(1) = S1V1

(2.3)

Using the results pertaining to the geodisc on Grassmann manifold [30], the geodesic

ψ̄(t) can be further simplified to

ψ̄(t) = Q

 U1Γ(t)

−Ũ2Σ(t)

 , (2.4)

where Ũ2 ∈ R(n−d)×d is made up of d orthogonal columns. The derivation of Ũ2

makes use of the boundary condition ψ̄(1) = S1V1 and will be given. The matrices

Γ(t),Σ(t) ∈ Rd×d are diagonal with diagonal elements being γi = cos(tθi) and σi =

sin(tθi) respectively where 0 ≤ θ1 ≤ ... ≤ θd ≤ π/2. Note that the {θi}di=1 form

the rotation angles from S0 to S1. We use Θ to denote the diagonal matrix with

diagonal elements given by {θi}di=1. Further details of the derivation can be found

in [30].

Later on in the chapter, we use the derived geodesic form to construct a

measure that quantifies the distance between samples of different domains.
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2.3 Domain-adaptive Similarity Function on the Grassmann Mani-

fold

Let Xs ∈ Rn×ms and X t ∈ Rn×mt denote the feature representation of ms and

mt samples in source and target domains respectively where each column xi ∈ Rn

denotes a sample and n is the feature dimension.

In [33], Gopalan et al. propose an approach which performs cross-domain

class analysis using intermediate subspace along the geodesic on the Grassmann

manifold. Specifically, they first apply the principle component analysis (PCA)

on Xs and X t respectively, which generates two d-dimensional subspaces denoted

by matrices S0, S1 ∈ Rn×d. The geodesic path ψ̄(t) from S0 to S1 is then given

by Eq. (2.3). Since each point on the geodesic is a subspace, the intermediate

subspaces can be obtained by sampling the geodesic ψ̄(t) at different time points

ti. Let Ŝ = {St}tkt=t1 denote the collection of the k sampled intermediate subspaces,

where 0 = t1 ≤ ... ≤ tk = 1. They then project each sample from both domains

onto k subspaces in Ŝ and concatenate all the k projections to form a long vector of

size d× k. A discriminative classifier is then trained to classify samples of unknown

labels based on the long vector representation using the samples whose labels are

known. Note that in the semi-supervised classification task, labels of some samples

in the target domain are also known.

The sampling approach of [33] has two main disadvantages. First, it is not clear

which sampling method should be used since different sampling methods result in
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different intermediate subspace representations and the final classification recogni-

tion degrades if an inferior sampling method is used. Second, the number of sampled

points is limited because a large number of sampled points along the geodesic results

in a very high dimensional feature vector which increases computational complexity.

In order to overcome the two disadvantages, we propose an alternative approach.

Instead of sampling some points along the geodesic, we integrate the distance of

data projections onto the subspaces along the geodesic. This yields a cross-domain

distance metric which can be used for cross-domain class analysis. Our approach

consists of the following three steps.

Calculate the Θ: Given S0 and S1, the matrix Q in 2.4 can be computed

according to 2.2 and QTS1 is given by QTS1 =

 ST0 S1

S12 − S02Z
T

 where Z ∈ Rd×d

satisfies Z(Id − ST01) = (ST1 S0 − ST11). Since

ψ(1) = Q

 U1Γ(t)

−Ũ2Σ(t)

 = S̄1 = S1V1, (2.5)

we have

QTS1 =

 U1Γ(1)V T
1

−Ũ2Σ(1)V T
1

 =

 U1 0

0 Ũ2


 Γ(1)

−Σ(1)

V T
1 (2.6)

Note that Ũ2 and Θ can be obtained by computing the thin CS decomposition of

QTS1 [30].

Calculate geodesic ψ̄(t): With the matrix Θ and Ũ2, one can obtain Γ(t)

and Σ(t) using their definitions. By substituting Γ(t) and Σ(t) in (2.4), we obtain
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the geodesic starting from the source domain S0 to the target domain S1:

ψ̄(t) = Q

 U1Γ(t)

−Ũ2Σ(t)

 (2.7)

Calculate domain-invariant distances: For a given pair of examples (x1,x2)

where x1 and x2 come from the source and target domain respectively, we project

them onto the subspace ψ̄(t) indexed by t on the geodesic to obtain x̃1 = ψ̄(t)Tx1

and x̃2 = ψ̄(t)Tx2. The final distance between x̃1 and x̃2 is calculated by integration

given by

d(x̃1, x̃2) =

∫ 1

0

(x̃1 − x̃2)T (x̃1 − x̃2)dt (2.8)

= (x1 − x2)T
(∫ 1

0

ψ̄(t)ψ̄(t)Tdt

)
(x1 − x2) (2.9)

= Q

 U1 0

0 Ũ2

P
 UT

1 0

0 ŨT
2

QT . (2.10)

where the matrix P can be easily determined using the subspace angles between S0

and S1. Note that (2.10) is an analytical form and can be computed in constant

time. Finally, we calculate the distance between a test sample and all the labeled

samples from both domains and use a nearest neighbor algorithm for classification.

2.4 Experiments

We experimented the proposed algorithm on the tasks of cross-domain object

category recognition and face recognition under different imaging conditions.
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(a) amazon (b) dslr (c)webcam

Figure 2.2: Sample images from the benchmark dataset [95]. We show several images

from the object categories of bike helmet, keyboard, and mug in the three domains

of amazon, dslr, and webcam. Domain shift in the dataset is mainly due to changes

in image resolution, object pose, and scene lighting.

2.4.1 Cross-domain Object Recognition

We evaluated the proposed algorithm on the cross-domain object category

classification task using the benchmark dataset [95], which contains images from

31 object categories. Depending on the acquisition condition, the dataset images

are divided into three domains, namely amazon, dslr and webcam. The amazon

domain includes an average of 90 product images for each category, downloaded

from the Amazon’s website. Both dslr and webcam domains have about 30 images

per category; they are captured by a DSLR and a webcam respectively. We show

some of the images in Fig 2.2. One can see that domain shift in the dataset is

mainly due to changes in image resolution, object pose, background clutters, and

scene lighting.

We used an image representation based on SURF [5] features similar to [95, 33].
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Settings source domain target domain [95] (asymm) [95] (symm) [33] proposed

same-category

webcam dslr 25 27 37 66

dslr webcam 30 31 36 61

amazon webcam 48 44 57 45

new-category webcam dslr 53 49 59 66

Table 2.1: Classification accuracies (in percentage) of our approach and state of the

art [95, 33] under different settings. Asymm and symm are two variants proposed

in [95].

Specifically, we extracted SURF features for all the images in the amazon domain

and used a random subset of the features to learn a codebook of 800 codewords. The

codebook was used to encode the SURF features and each image in the dataset was

denoted by an 800-dimensional histogram. We further normalized the histograms so

that it sums up to one. To obtain the final representation, the histograms of images

in the same domain were further normalized to assure a zero mean and unit deviation

for each dimension. Note that PCA is performed on the final representation.

There were two evaluation settings on the benchmark: same-category and

new-category. In the same-category setting, there were labeled images for all the

categories and for both domains. In the new-category setting, there were labeled

images for all the categories in the source domain, but only half of the categories in

the target domain contained labeled images.

The classification accuracies of different approaches are shown in Table 2.1.
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The accuracies of each approach are averaged over 20 trials; each trial contained a

random set of labeled images in both source and target domains. We observe that

the proposed algorithm yields a better performance for two out of three tasks in the

same-category setting. In addition, the proposed algorithm significantly improves

the performance for the task in the new-category setting—by a margin of more than

10%. This shows the benefit of the integration-based approach which accumulated

the distance along the geodesic over the previous approach [33]. However, we note

that the proposed algorithm is not effective for the adaptation from amazon to

webcam. We believe the reason is because the proposed algorithm only uses a simple

nearest neighbor classification technique, while [95] and [33] were based on powerful

machine learning algorithms of information theoretic metric learning [16] and partial

least squares method [120].

2.4.2 Face recognition across blur and illuminations

We conducted face recognition experiments using the CMU-PIE dataset [100].

This dataset consists of images from 68 subjects captured under 21 different illumi-

nation conditions. We randomly selected 11 illumination conditions. All the images

captured under these 11 conditions constituted the source domain data, while the

remaining ones formed the target domain data. The images in the source domain

were labeled, but not those in the target domain.

We synthesized domain shifts by applying two different types of blur kernels to

the target domain data: 1) the Gaussian blur kernel, and 2) the motion blur kernel.
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σ = 1.0 σ = 4.0 σ = 3.0 σ = 2.0 σ = 5.0 Original L = 1 L = 13 L = 9 L = 5 L =17 

Gaussian blur Motion blur 

Figure 2.3: Target image samples. We illustrate several synthesized target images

under different Gaussian blur and motion blur. The variable σ denotes the standard

deviation, while L denotes the motion speed.

Gaussian blur σ=1.0 σ=1.5 σ=2.0 σ=2.5 σ=3.0 σ=3.5 σ=4.0 σ=4.5 σ=5.0

[33] 93.8 86.8 86.3 70.9 57.5 43.7 28.4 21.5 17.7

Proposed 94.9 88.7 88.2 74.6 62.7 47.4 31.9 24.3 19.4

Table 2.2: Comparison of recognition accuracy under different Gaussian blur. We

vary the standard deviation of the Gaussian blur from 1 to 5 and compare our

recognition performance with [33].

Moreover, we gradually increased the kernel sizes to synthesize different degrees of

domain shifts. For the Gaussian blur, we varied the standard deviation from 1 to 5.

For the motion blur, we varied the motion speed, from 1 to 17 pixels. (The motion

angle was set to 30 degrees.) Some of the target images were visualized in Fig. 2.3.

In Table 2.2 and 2.3, we compare the proposed algorithm to [33] (without

applying the partial least square analysis) for the Gaussian and motion blurs re-

spectively. It can be seen that the recognition accuracy of both methods decreases

as the domain shift increases. However, the proposed algorithm consistently yielded

a better performance than [33].
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Motion blur L=1 L=3 L=5 L=7 L=9 L=11 L=13 L=15 L=17

[33] 95.0 93.4 90.4 86.0 77.5 65.2 53.2 43.4 36.8

Proposed 95.2 94.0 92.1 88.2 82.8 70.3 58.8 53.8 42.7

Table 2.3: Comparison of recognition accuracy under different motion blur. We vary

the motion speed from 1 to 17 pixels per sensor integration time and compare our

recognition performance with [33].

2.5 Summary

We presented a cross-domain classification approach based on integrating the

distance between data projections on the subspaces along the geodesic on a Grass-

mann manifold. We showed that the integration-based approach yields a better

performance as compared to the previous approach that only samples few interme-

diate subspaces along the geodesic. In future, we plan to extend proposed approach

by incorporating powerful machine learning methods.
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Chapter 3: Transferable Dictionary Learning for Action Recognition

3.1 Related Work

Human action recognition has been receiving significant attention in computer

vision over the past decades. The interest in action recognition is motivated by many

real-world applications, such as large video archives, video search and editing, hu-

man computer interaction, autonomous vehicles and video surveillance. The task

of human action recognition is to automatically analyze and recognize the action

category from an unknown video. However, action recognition is challenging due to

the large variations in action videos as shown in [68, 46]. For example, different sub-

jects who perform the same action may have different expression, posture, clothing

and motion rate; different environments in which the action takes place may result

in different viewpoints, background, camera motions, lighting conditions and occlu-

sions. Therefore, developing methods for action recognition that can generalize over

all variations within one class and distinguish between actions of different classes

becomes a major challenge.

In order to accurately recognize human actions, various approaches focus on

developing robust and discriminative features from image sequences. These feature

representations can be divided into two categories: global and local representa-
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tions. Global representations encode the visual observations as a whole and are

obtained from silhouettes, edges, trajectories and optical flow. For example, [9, 116]

introduced a binary motion energy image by aggregating differences of silhouettes

between subsequence frames of an actions. [118, 13] aligned and combined silhou-

ettes from multiple cameras to obtain a new feature representation by using motion

history volumes. Instead of using silhouette shape, [20, 4] extracted spatio-temporal

motion patterns from the optical flow for human actio recognition. The methods

presented in [132, 7] formed a 3D spatio-temporal volume by stacking silhouettes

over a given sequence to extract local descriptors. Local representations describe

the observation as a collection of local descriptors extracted from densely sampled

patches or around space-time interest points. For example, [54, 17] used the Har-

ris corner detector to detect space-time interest points and derive local descriptors.

[119, 47, 97] extended 2D SURF features [5], HOG features, SIFT features[73] to 3D

respectively.[56, 55] bin histograms of oriented gradients and flow extracted at in-

terest points into a spatio-temporal grid. [97, 64, 67] exploited correlations between

local descriptors for selection to construct higher-level descriptors.

These approaches are effective for recognizing actions taken from similar view-

points, but they perform poorly when viewpoints vary significantly. Extensive exper-

iments in [68, 141, 138] have shown that failing to handle feature variations caused

by viewpoints may yield inferior results. This is because the same action looks

quite different from different viewpoints. Thus action models learned from one view

become less discriminative for recognizing actions in a much different view.

Many view-invariant approaches that use 2D image data acquired by multiple
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cameras have also been proposed. [89, 82, 81] proposed view-invariant representa-

tions based on view-invariant canonical body poses and trajectories in 2D invariance

space. [46, 45] captured the structure of temporal similarities and dissimilarities

within an action sequence using a Self-Similarity Matrix. [110] proposed a view-

invariant matching method based on epipolar geometry between actor silhouettes

without tracking and explicit point correspondences. [59] learned two view-specific

transformations for source and target views, and then generated a sequence of linear

transformations of action descriptors as the virtual views to connect two views. [58]

proposed the Hankel matrix of a short tracklet which is a view-invariant feature to

recognize actions across different viewpoints.

Another fruitful line of work for cross-view action recognition concentrates on

using the 3D image data. The method introduced in [116] employed three dimen-

sional occupancy grids built from multi-view points to model actions. [124] devel-

oped a 4D view-invariant action feature extraction to encode the shape and motion

information of actors observed from multiple views. These approaches lead to com-

putationally intense algorithms because they need to find the best match between a

3D model and a 2D observation over a large model parameter space. [117] developed

a robust and view-invariant hierarchical classification method based on 3D HOG to

represent a test sequence.

Recently, several transfer learning techniques have been proposed for cross-

view action recognition [24, 68, 36, 113]. Specifically, [24] proposed to generate the

same split-based features for correspondence video frames from both source and

target views. It is computationally expensive because it requires the construction
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of feature-to-feature correspondence at the frame-level and learning an additional

mapping from original features to the split-based features. [68] used a bipartite graph

to model the relationship between two view-dependent codebooks. [113] proposed

a statistical translation framework (STF) to estimate the transfer probabilities of

visual words in different views. Even though approaches in [68, 113] exploit the

codebook-to-codebook correspondence between the two views, they can not guaran-

tee that videos taken at different views of shared actions will have similar features.

[36] used canonical correlation analysis to derive a correlation subspace as a joint

representation from different bag-of-words models at different views and incorpo-

rate a corresponding correlation regularizer into the formulation of a support vector

machine.

We propose to transfer sparse feature representations of videos across views

for cross-view action recognition. Specifically, we make use of dictionary learning

methods to exploit the video-to-video correspondence by encouraging a set of cor-

respondence videos taken from different views of the same action to have the same

or similar sparse representations. Here we present two different dictionary learning

methods corresponding to different alignment of sparse features of correspondence

videos in different views. In the first method as shown in Figure 3.1(a), we encour-

age the sparse representations of correspondence videos of the same action to be

the same. In order to achieve this goal, we learn a set of view-specific dictionaries

to represent videos from the corresponding view. Moreover, we encourage videos

across views of the same action to have the same sparse representation when en-

coding using the corresponding view-specific dictionary. This procedure enables the
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Figure 3.1: Restricted transferable dictionary learning(DL) versus relaxed transfer-

able dictionary learning(DL). (a) Restricted transferable dictionary learning: We

learn two view-specific dictionaries Ds and Dt corresponding to source and target

views respectively. A pair of videos taken at the same time of the same class is

denoted as y1 and y2. The sparse representations of y1 and y2 when encoded us-

ing the corresponding view-specific dictionaries are equally the same. (b) Relaxed

transferable dictionary learning: We jointly learn two view-specific dictionaries Ds

and Dt and a common dictionary D. Each video in each view is represented by both

the common dictionary and corresponding view-specific dictionary. The sparse rep-

resentations of y1 and y2 share the same sparsity patterns (selecting the same items)

instead of being equally the same.

transfer of the sparse representations across views. However, the assumption in our

first method that sparse representation of videos from different views of the same

action should be equal may be too strong to flexibly model the relationship between

different views.

In order to overcome this drawback, our second approach relaxes this assump-
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tion by encouraging correspondence videos to have similar sparse representations

as shown in Figure 3.1(b). Meanwhile, we also learn a common dictionary shared

by different views to model view-shared features. Both common dictionary and the

corresponding view-specific dictionary are used to represent videos in each view.

Instead of transferring the split-features as in [6], we transfer the indices of the

non-zero elements (i.e., the indices of selected dictionary items) in sparse codes of

videos from the source view to sparse codes of the corresponding videos from the

target view. In other words, we not only use the same subset of dictionary items

from the common dictionary to represent view-shared features in correspondence

videos from different views, but also use the same subset of dictionary items from

different view-specific dictionaries to represent view-specific features. In this way,

videos across different views of the same action tend to have similar sparse represen-

tations. Note that our approach enforces the common dictionary to be incoherent

with view-specific dictionaries, the incoherence between the common dictionary and

view-specific dictionaries enables our approach to drive the shared pattern to the

common dictionary and focus on exploiting the discriminative correspondence videos

taken from different views of the same action using a more flexible method.

Furthermore, actions are categorized into two types: shared actions observed

in both training and test views and test actions that are only observed in the train-

ing view. In addition, we consider two scenarios for the shared actions: (1) shared

actions in both views are unlabeled. (2) shared actions in both views are labeled.

These two scenarios are referred to as unsupervised and supervised settings, re-

spectively, in subsequent discussions. Note that under both settings, only the set
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of videos taken from different views of the shared actions are used for dictionary

learning. This means that the dictionaries will not be affected by videos of orphan

actions.

This chapter is organized as follows: Section 2 briefly reviews sparse coding

and dictionary learning. Sections 3 and 4 present the restricted and relaxed dic-

tionary learning frameworks for cross-view action recognition respectively. Section

5 describes the optimization procedure of the proposed approaches. Section 6 pro-

vides experimental results and analysis on three public multi-view action datasets.

Section 6 concludes the chapter.

3.2 Sparse Coding and Dictionary Learning

In this section, we give a brief review of sparse coding and the K-SVD algo-

rithm [1] for learning an over-complete dictionary.

Let Y = [y1, ..., yN ] ∈ Rn×N be a set of N input signals in a n-dimensional

feature space. Assuming a dictionary D of size K is given, the sparse representations

X = [x1, ..., xN ] ∈ RK×N for Y are obtained by solving:

X = argmin
X
||Y −DX||2F s.t. ∀i, ||xi||0 ≤ s, (3.1)

where ||Y − DX||2F denotes the reconstruction error and ||xi||0 ≤ s is the sparsity

constraint. The sparsity constraint requires that each signal has s or fewer items

in its decomposition. The orthogonal matching pursuit (OMP) algorithm [108] can

then be used to solve ( 3.1).

The performance of sparse representation depends critically on D. The K-
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SVD [1] is well known for efficiently learning an over-complete dictionary from a set

of training signals. It solves the following optimization problem:

(D,X) = argmin
D,X
||Y −DX||22 s.t. ∀i, ||xi||0 ≤ s (3.2)

where D = [d1, ..., dK ] ∈ Rn×K is the learned dictionary, and X = [x1, ..., xN ] are

the sparse representations of Y . K-SVD is an iterative method that alternates

between sparse coding of the signals based on the current dictionary and a process

of updating the dictionary atoms to better fit the data. Later, we will formulate the

problem of learning transferable dictionaries as an optimization problem which can

be efficiently solved using the K-SVD algorithm.

3.3 Restricted Transferable Dictionary Learning

In this section, we present the restricted transferable dictionary learning (RSTDL)

for cross-view action recognition. In this method, we learn a set of view-specific dic-

tionaries such that the sparse representations of correspondence videos of the shared

actions across views are the same. We further consider two settings: unsupervised

setting and supervised setting for learning view-specific dictionaries.

3.3.1 Unsupervised Setting

In the unsupervised setting where labels of shared actions are not available,

our goal is to transfer orphan action models from the source views to the target

view. In other words, we want to learn an action model for orphan actions in the

source views and test it in the target view. We achieve this goal by making use
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of correspondence between a set of correspondence videos of the shared unlabeled

actions taken from different views. Let Y v = [yv1 , ..., y
v
N ] ∈ Rd×N denote the d-

dimensional feature representations of N videos of the shared unlabeled actions

taken in the v-th view. Yi = [y1
i , ..., y

V
i ] are V action videos of the shared action yi

taken from V views, which are referred to as correspondence videos. For each view,

we learn a view-specific dictionary Dv ∈ Rd×Jv
to model and align the view-specific

features. The objective function for learning dictionaries under the unsupervised

setting is as follows:

arg min
Dv ,X

V∑
v=1

||Y v −DvX||22 s.t. ∀i, ||xi||0 ≤ s. (3.3)

where X = [x1, ..., xN ] are the joint sparse representations for yi across V views

where i = 1...N , and s is the sparsity threshold.

3.3.2 Supervised Learning

In the supervised setting where the action categories of shared action videos

are available in both views, we will leverage this category information to learn dis-

criminative transferrable dictionaries. The key idea is to partition the total dictio-

nary items into disjoint subsets such that each subset is responsible for representing

videos of one action. Specifically, we represent videos of the same action by the same

subset of dictionary items. For videos of different action classes, we represent them

using disjoint subsets of dictionary items. This results in an explicit correspondence

between dictionary items and the labels. The intuition behind this idea is that ac-

tion videos from the same class tend to have same features and each action video
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Figure 3.2: An example of the ideal sparse codes matrices Q for classification

task. Given seven videos (on the leftmost) coming from three classes in the v-

th views, we learn a view-specific dictionary for this view. The dictionary Dv =

[dv1, d
v
2, d

v
3, d

v
4, d

v
5, d

v
6, d

v
7] and Y v = [yv1 , y

v
2 , y

v
3 , y

v
4 , y

v
5 , y

b
6, y

v
7 ], where yv1 , y

v
2 , y

v
3 , d

v
1, d

v
2, d

v
3

are from class 1, yv4 , y
v
5 , d

v
4, d

v
5 are from class 2 and yb6, y

v
7 , d

v
6, d

v
7 are from class 3.

The defined Q are a block diagonal matrix, where each column corresponds to a

discriminative sparse code for an input video.

could be well represented by other videos from the same class. On the contrary,

videos from different classes tend to have different features and thus should be well

represented by disjoint subsets of other videos.

In order to achieve the above goal, we incorporate a label consistent regular-

ization term introduced in [43] to the objective function in (3.3). Now the objective

function for learning dictionaries under the supervised settting is given by:

arg min
Dv ,X,A

V∑
v=1

||Y v −DvX||22 + α||Q− AX||

s.t. ∀i, ||xi||0 ≤ s.

(3.4)

where α controls the tradeoff between the reconstruction error and label consistent

regularization. The matrix Q = [q1, ..., qN ] ∈ RK×N are called the ideal “discrimi-

native” sparse codes of shared action videos in both views. Thus the column vector
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qi = [q1
i , ..., q

K
i ] = [0...1, 1, ..0] ∈ RK in Q is the discriminative sparse code of corre-

spondence videos from the shared action yvi , v = 1, ..., N . Moreover, the non-zeros

values of qi occur at those indices where the correspondence videos of the shared

action yvi and the dictionary items dk share the same label. Figure 3.2 gives an

example of the ideal sparse codes matrices Q.

Matrix A represents a linear transformation which transforms the original

sparse code X to be most discriminative in sparse feature space RK . The term

||Q−AX||2F denotes the discriminative sparse code error, which enforces the sparse

codes X to be more like the discriminative sparse codes Q after a linear transfor-

mation. This term not only forces videos from the same class to have very similar

sparse representations, but also regularizes videos from different classes to have very

different sparse representations. Therefore, the learned view-specific dictionaries are

discriminative which may result in good classification even using a k-NN classifier.

3.4 Relaxed Transferrable Dictionary Learning

In this section, we present the relaxed transferable dictionary learning (RLTDL)

for cross-view action recognition. Note that RSTDL assumed that videos taken at

the same time of the same action across views should be strictly equal. The sec-

ond approach RLTDL, relaxes this assumption, leading to a more flexible model

to represent the relationship between views. Moreover, we not only learn a set of

view-specific dictionaries, bust also learn a common dictionary shared by different

views. The common dictionary models the view-shared features while the view-
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specific dictionaries model and align view-specific features across views. We learn

these dictionaries by using the same subset of dictionary atoms to represent the

correspondence videos of the same action. Therefore, videos across different views

of the same action tend to have similar sparse representations. Similarly, we fur-

ther consider two settings: unsupervised and supervised settings for learning both

common and view-specific dictionaries.

3.4.1 Unsupervised Setting

In the unsupervised setting the goal is to find view-invariant feature repre-

sentations by making use of correspondence between videos of the shared actions

taken from different views. On the one hand, we would like to learn a common

dictionary D ∈ Rd×J with a size of J shared by different views to represent videos

from all views. On the other hand, for each view, we learn a view-specific dictionary

Dv ∈ Rd×Jv
to model and algin the features in the v-th view. The objective function

for learning both common and view-specific dictionaries in the unsupervised setting

is formulated as follows:

arg min
D,Dv

N∑
i=1

{
V∑
v=1

{||yvi −Dxvi ||22 + ||yvi −Dxvi −Dvzvi ||22}

+ λ||Xi||2,1 + λ||Zi||2,1}+ η
V∑
v=1

||DTDv||2F

(3.5)

where Xi = [x1
i , ..., x

V
i ], Zi = [z1

i , ..., z
V
i ] are the joint sparse representations for

yi, i = 1, ..., N across V views. This objective function consists of the following five

terms:

1. The first two terms are the reconstruction errors of videos from different views
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using D only or using both D and Dv. The minimization of the first recon-

struction error enables D to encode view-shared features as much as possible

while the minimization of the second reconstruction error enables Dv to encode

and align view-specific features that can not be modeled by D.

2. The third and fourth terms denote sparse representations via L2,1-norm reg-

ularization using D and Dv respectively. The L2,1-norm minimization for Xi

and Zi can make the entries in each row of the two matrices to be all zeros or

non-zeros at the same time. This means that we not only encourage the use

of the same subset of dictionary items in D to represent the correspondence

videos from different views, but also encourage the use of dictionary items

from Dv with the same index of selected dictionary items to further reduce

the reconstruction error of videos in each view. Therefore, the testing videos

taken from different views of the same action will be encouraged to have similar

sparse representations when encoded using the learned D and Dv.

3. The last term regularizes the common dictionary to be incoherent to the view-

specific dictionaries. The incoherence between D and Dv enables the proposed

approach to separately exploit the discriminative information encoded in the

view-specific features and view-shared features.

In addition, the parameters λ and η control the relative contribution of L2,1 norm

regularization and the incoherence regularization respectively.
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3.4.2 Supervised Learning

In the supervised setting where the action categories of correspondence videos

are available, we can learn discriminative common dictionary and discriminative

views-specific dictionaries by leveraging the category information. Similarly, we

partition the dictionary items in each dictionary into disjoint subsets and associate

each subset with one specific class label. For videos from action class k, we aim

to represent them using the same subset of dictionary items associated with class

k. For videos from different classes, we represent them using disjoint subsets of

dictionary items.

Assume there are K shared action classes, and D = [D1, ..., DK ] is the common

dictionary where Dk ∈ Rd×Jk ,
∑K

k=1 Jk = J . Let Dv = [Dv
1 , ..., D

v
K ] be the view-

specific dictionary where Dv
k ∈ Rd×Jv

k ,
∑K

k=1 J
v
k = Jv. The objective function

for learning both the common dictionary and view-specific dictionaries under the

supervised setting is given as follows:

arg min
D,Dv ,A,B

N∑
i=1

{
V∑
v=1

{||yvi −Dxvi ||22 + ||yvi −Dxvi −Dvzvi ||22

+ α||qi − Axvi ||22 + α||qvi −Bzvi ||22}+ λ||Xi||2,1

+ λ||Zi||2,1}+ η
V∑
v=1

||DTDv||2F

(3.6)

where qi = [qi1 , ..., qiK ]T ∈ RJ×1 and qvi = [qvi1 , ..., q
v
iK

]T ∈ RJv×1 are called ‘discrimi-

native’ sparse coefficients associated with D and Dv respectively. When a video yvi

is from class k in the v-th view, then qik and qvik are ones and other entries in qi

and qvi are zeros. A ∈ RJ×J and B ∈ RJv×Jv
are called transformation matrices
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which transform xvi and zvi to approximate qi and qvi respectively. The discriminative

sparse-code error terms ||qi−Axvi ||22 and ||qvi −Bzvi ||22 encourage the dictionary items

with class k to be selected to reconstruct those videos from class k. Note that the

L2,1-norm regularization only regularize the relationship between the sparse codes

of correspondence videos, but can not regularize the relationship between the sparse

codes of videos from the same action class in each view. The integration of dis-

criminative sparse code error term in the objective function can address this issue.

In other words, the proposed approach not only encourages the videos taken from

different views of the same action to have similar sparse representations, but also

encourages videos from the same class in each view to have similar sparse represen-

tations.

3.5 Optimization

In the section, we describe optimization procedure for RSTDL and RLTDL

approaches under both unsupervised and supervised settings.

3.5.1 Optimization of Restricted Transferable Dictionary Learning

The objective functions in (3.4) and (3.6) under the supervised setting reduce

to the objective function in (3.3) and (3.5) under the unsupervised setting when

α = 0. Therefore, the optimization procedures of these two objective functions

employ a very similar procedure. Here we only discuss the optimization of procedure

for the objective function in 3.4.
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We use the efficient K-SVD algorithm to find the optimal solution for all

parameters simultaneously. Since we have the same number of shared action videos

across V views, we rewrite the objective function in 3.4 as follows:

< Dv, X >=arg min
Dv ,X
||



Y 1

Y 2

...

Y V

√
αQ


−



D1

D2

...

DV

√
αA


X||22

s.t. ∀i, ||xi||0 ≤ s.

(3.7)

Let Y = [Y 1T , Y 2T , ..., Y V T ,
√
αQT ]T , and D = [D1T , D2T , ..., DV T ,

√
αAT ]T , each

column of D is further normalized to have a L2 norm of 1. The optimization of (3.7)

is equivalent to solving the following problem:

< D,X > = argmin
D,X
||Y −DX||2F

s.t. ∀i, ||xi||0 ≤ s.

(3.8)

Since this is exactly the problem as shown in [1], we follow K-SVD to find the

optimal solution for all parameters simultaneously. For the initialization of A, we

employ the multivariate ridge regression model with the quadratic loss and L2 norm

regularization as follows:

A = argmin
A
||Q− AX0||+ λ2||A||22. (3.9)

This yields the following solution:

A = QX0T (XXT + λ2I)−1. (3.10)

Algorithm 1 summarizes the RSTDL approach.
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Algorithm 1: Restricted Transferable Dictionary Learning

1: Input: Y v = [Y v
1 , ..., Y

v
K ], Q, α, s, v = 1, ..., V

2: Set α = 0 in (3.7) and solve it to obtain the initialization of Dv, v = 1, ..., V

3: Initialize A using (3.10)

4: Reset α to the original given value and compute D by solving (3.7) using

K-SVD algorithm

5: Decompose D into Dv, v = 1, ..., V and A

6: Normalize each column in Dv

7: Output: Dv, v = 1, ..., V

3.5.2 Optimization of Relaxed Transferable Dictionary Learning

In the RLTDL approach, we only describe the optimization of the objective

function in (3.6) while the optimization of (3.5) utilizes the similar procedure except

that A and B components are excluded. This optimization problem is divided into

three subproblems: (1) computing sparse codes with fixed Dv, D and A,B; (2)

updating Dv, D with fixed sparse codes and A,B; (3) updating A,B with fixed

Dv, D and sparse codes.

3.5.2.1 Computing Sparse Codes

Given fixed Dv, D and A,B, we solve the sparse coding problem of the corre-

spondence videos set by set and (3.6) is reduced to:

V∑
v=1

{||yvi −Dxvi ||22 + ||yvi −Dxvi −Dvzvi ||22 + α||qi − Axvi ||22
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+ α||qvi −Bzvi ||22}+ λ||Xi||2,1 + λ||Zi||2,1}. (3.11)

We rewrite (3.11) as follows:

V∑
v=1

||ỹvi − D̃vz̃vi ||22 + λ||Z̃i||2,1 (3.12)

where ỹvi =



yvi

yvi

√
αqi

√
αqvi


, D̃v =



D O1

D Dv

√
αA O2

O3

√
αB


, z̃vi =

 xvi

zvi

 , Z̃i = [z̃1
i , ..., z̃

V
i ] and

O1 ∈ Rd×Jv
, O2 ∈ RJ×Jv

, O3 ∈ RJv×J are matrices of all zeros. The minimization of

(3.12) is known as a multi-task group lasso problem [65] where each view is treated

as a task. We use the software SLEP in [65] for computing sparse codes.

3.5.2.2 Updating Dictionaries

Given fixed sparse codes and A,B, (3.6) is reduced to,

N∑
i=1

V∑
v=1

{||yvi −Dxvi ||22 + ||yvi −Dxvi −Dvzvi ||22}+ η
V∑
v=1

||DTDv||2F (3.13)

We rewrite (3.13) as:

V∑
v=1

{||Y v −DXv||2F + ||Y v −DXv −DvZv||2F}+ η
V∑
v=1

||DTDv||2F (3.14)

where Y v = [yv1 , ..., y
v
N ], Xv = [xv1, ..., x

v
N ], Zv = [zv1 , ..., z

v
N ]. Motivated by [48], we

first fix Dv and then update D = [d1, ..., dJ ] atom by atom, i.e. updating dj while

fixing other column atoms in D. Specifically, let Ŷ v = Y v −
∑

m 6=j dmx
v
(m) where
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xv(m) corresponds to the m-th row of Xv, we solve the following problem for updating

dj in D:

argmin
dj

f(dj) =
V∑
v=1

{||Ŷ v − djxv(j)||2F + ||Ŷ v −DvZv − djxv(j)||2F + η||dTj Dv||2F .

(3.15)

Let the first-order derivative of f(dj) with respect to dj equal to zero, i.e.
∂f(dj)

∂dj
= 0,

then we can update dj as:

dj =
1

2

V∑
v=1

(||xv(j)||22I +
η

2
DvDvT )−1(2Ŷ v −DvZv)xvT(j). (3.16)

Now we fix D and update Dv atom by atom. Each item dvj in Dv is updated as :

dvj =
1

2
(||zv(j)||22I +

η

2
DDT )−1Ȳ vzvT(j) . (3.17)

where Ȳ v = Y v −DXv −
∑

m 6=j d
v
mz

v
(m).

3.5.2.3 Updating A,B

Given sparse codes and all the dictionaries, we employ the multivariate ridge

regression model [87] to update A,B with the quadratic loss and l2 norm regular-

ization:

min
A

N∑
i=1

V∑
v=1

||qi − Axvi ||22 + λ1||A||22

min
B

N∑
i=1

V∑
v=1

||qvi −Bzvi ||22 + λ2||B||22
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which yields the following solutions:

A∗ = Q
V∑
v=1

XvT (
V∑
v=1

XvXvT + λ1I)−1,

Q = [q1, ..., qN ], X = [x1, ..., xN ],

B∗ =
V∑
v=1

QvZvT (
V∑
v=1

ZvZvT + λ2I)−1,

Qv = [qv1 , ..., q
v
N ], Zv = [zv1 , ..., z

v
N ].

(3.18)

Algorithm 2 summarizes the RLTDL approach. The algorithm converged after

a few iterations in our experiments.

3.6 Implementation Details

In this section, we provide the implementation details of our approaches. We

used both spatio temporal interest point-based features [17] (STIP) and shape-flow

features [107] in the experiments. In order to detect interest points for the STIP

feature, we applied a 2D Gaussian smoothing filter to video along the spatial dimen-

sion, followed by a pair of 1D Gabor filters temporally. Then we detect up to 200

interest points at the local maximum response from each action video. We extract

the ST volumes around the interest points and obtain a 100-dimensional gradient-

based descriptor via PCA. Following [68], these interest points-based descriptors are

further quantized into 1000 visual words by k-mean clustering and each action video

is represented by a 1000-dimensional histogram.

The shape-flow features are based on histograms of the silhouette and of the

optical flow inside the normalized bounding box. Specifically, each frame descriptor

has three channels: horizontal optical flow, vertical optical flow and silhouette. In
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Algorithm 2: Relaxed Transferable Dictionary Learning

1: Input: Y v = [Y v
1 , ..., Y

v
K ], Q,Qv, v = 1, ..., V, λ, η

2: Initialize D and Dv

3: for k = 1→ K do

4: Initialize class-specific dictionary Dk in D by solving

Dk = argminDk,αk
||[Y 1

k ...Y
V
k ]−Dkαk||2F + λ||αk||1

5: Initialize class-specific dictionary Dv
k in Dv by solving

Dv
k = argminDv

k ,β
v
k
||Y v

k −Dv
kβ

v
k ||2F + λ||βk||1

6: end for

7: repeat

8: Compute sparse codes xvi , z
v
i of a set of correspondence videos yvi

by solving the multi-task group LASSO problem in (3.12) using the

SLEP [65]

9: Update each atom dj in D and dvj in Dv using (3.16) and (3.17)

10: Update transformation matrices A, B using (3.18)

11: until convergence or certain rounds

12: Output: D = [D1, ..., DK ], Dv = [Dv
1 , ..., D

v
K ]
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order to capture the motion context, the current frame descriptors are combined with

a context descriptor extracted from neighboring frames. We learn a codebook of size

500 by k-means clustering on these shape-flow descriptors. Similarly, this codebook

is used to encode shape-flow descriptors and each action video is represented by

a 500-dimensional histogram. The interest point-based features capture rich local

motion information while shape-flow features capture the global shape.

For the IXMAS dataset, we set the spatial and temporal scale parameters

σ = 2 and τ = 1.5 for interest points detection. The concatenation of both STIP

and shape-flow feature descriptors forms a 1500-dimensional descriptor to represent

an action video. For the WVU dataset, we set σ = 2 and τ = 2.5 to detect interest

points and each video is represented by only a 1000-dimensional STIP feature de-

scriptor. For the MuHAVi dataset, we set σ = 2, τ = 1.5 for interest points detection

and each video is represented by only a 1000-dimensional STIP feature descriptor.

For a fair comparison [24, 68, 59], we use three evaluation modes for experi-

ments: (1) unsupervised correspondence mode; (2) supervised correspondence mode

; (3) partially labeled mode. For the first two correspondence modes, we use the

leave-one-action-class-out strategy for choosing the test action which means that

each time we only consider one action class for testing in the target view. And all

videos of the test action are excluded when learning the quantized visual words and

constructing dictionaries. The only difference between the first and the second mode

is whether the category labels of the correspondence videos are available or not. For

the third mode, we follow [59] to consider a semi-supervised setting where a small

portion of videos from the target view is labeled and no matched correspondence
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videos exist. From this we want to show that the proposed approach can be applied

to the domain adaptation problem.

Note that the test actions from the source and target views are not seen

during dictionary learning whereas the test action can be seen in the source view

for classifier training in the first two evaluation modes. On the contrary, the test

action from different views can be seen during both dictionary learning and classifier

training in the third mode. For all modes, we report the classification accuracy by

averaging the results over different combinations of selecting test actions.

For the first mode, we generate sparse features using the dictionaries learned

from RSTDL and RLTDL as follows:(1)RSTDL: Given the learned two view-specific

dictionaries {D1, D2} for the training and test views, we reconstruct the training

and test videos over D1 and D2 respectively using the OMP algorithm to obtain

the sparse features. (2)RLTDL: Given the learned common dictionary D and two

view-specific dictionaries {D1, D2}, we use both D and D1 to represent the training

videos. Similarly, we encode test video over both D and D2. Based on the sparse

features, a k-NN classifier is used to classify test videos. The value of k ranges from

1 to 15 for three test data sets.

In addition, we set the sparsity factor T = 20, T = 25 and T = 5 for the

IXMAS, WVU and MuHAVi datasets respectively. Throughout the experiments,

the parameters α = 0.3, η = 1 and λ varies from 0.1 to 5.

For the third mode, we use SRC method [121] to predict the label of y, i.e.

k∗ = argmink ||y − D̂kβk||22 where D̂k = [Dk Dt
k] and βk is the associated sparse

codes.
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Wave 

Get- 

up 

Camera0 Camera1 Camera4 Camera3 Camera2 

Walk 

Figure 3.3: Exemplar frames from the IXMAS multi-view dataset. Each row shows

one action viewed across different angles.

3.7 Experiments

We evaluated the proposed approaches for both cross-view and multi-view ac-

tion recognition on three public multiview action data sets: IXMAS action dataset [116],

WVU action dataset [88] and MuHAVi action dataset [101].

3.7.1 Evaluation on IXMAS action dataset

The IXMAS action dataset contains 11 daily life actions performed three times

by ten actors taken from four side views and one top view. These actions are check-

watch, cross-arms, scratch-head, sit-down, get-up, turn-around, walk, wave, punch,

kick and pick-up. Figure 3.3 shows some example frames.
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3.7.1.1 Benefits of the Separation of the Common and View-specific

Dictionaries

In this section, we demonstrate the benefits of the separation of the common

and view-specific dictionaries. For visualization purpose, two action classes ”check-

watch” and ”waving” taken by Camera0 and Camera2 from the IXMAS dataset

were selected to construct a simple cross-view dataset. We extract the shape de-

scriptor [62] for each video frame and learn a common dictionary and two-view

specific dictionaries using our approach. We then reconstruct a pair of frames taken

from Camera0 and Camer2 views of the action ”waving” using two methods. The

first one is to use the common dictionary only to reconstruct the frame pair. The

other one is use both the common dictionary and the view-specific dictionary for

reconstruction. Figure 3.4(b) shows the original shape feature and the reconstructed

shape features of two frames of action ”waving” from two seen views and one un-

seen view using the aforementioned two methods. First, comparing the dictionary

items in D and {Ds, Dt}, we see that some items in D mainly encode the body and

body outline which are just shared by frames from the same action from two view

while items in {Ds, Dt} mainly encode different arm poses that reflects the class

information in the two views. It demonstrates that the common dictionary has the

ability to exploit view-shared features from different views. Second, it can be ob-

served that better reconstruction is achieved by using both the common dictionary

D and view-specific dictionaries. This is because the common dictionary may not

reconstruct the more detailed view-specific features well such as arm poses. The
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(a) Visualization of all dictionary items.

Original 

Original recon1 

recon1 

23.8769     15.4577    13.9989 





-0.9751   0.3478    -0.5108   0.3478   -0.3326     

-1.2799   -0.6488      0.6649     0.3771   -0.2953 

-18.5509   16.2382   13.2468 

23.8769     10.8952  -10.8353 

Original recon1 

    

-0.8508   -0.0350     0.3508     0.3243  -0.3089 

recon2 

recon2 

recon2 

   

   



  

 

 

(b) Reconstruction of shape features of action ”waving”.

Figure 3.4: Illustration of the benefits of the common dictionary. (a) Visualization

of all dictionary atoms in D (green color), Ds (red color) and Dt (purple color).

(b) Columns 2 ∼ 5 show the reconstruction result using D only. Columns 6 ∼ 11

show the reconstruction result using {D,Ds}, {D,Dt} and {D,Ds, Dt} respectively.

Only at most top-3 dictionary items are shown.

separation of the common dictionary enables the view-specific dictionaries to focus

on exploiting and aligning view-specific features from different views. Third, from
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the last row in Figure 3.4(b), we find that a good reconstruction of an action frame

taken from the unseen view can be achieved by using the common dictionary only.

It demonstrates that the common dictionary learned from two seen views has the

capability to represent videos of the same action from an unseen view. Moreover,

the two methods have nearly the same reconstruction performance for frames of the

same action from the unseen view. This is because {Ds, Dt} are learned by exploit-

ing features that are specific for the two seen views. In addition, the separation

of the common dictionary and view-specific dictionaries enables us to learn more

compact view-specific dictionaries.

3.7.1.2 Cross-view Action Recognition

We first evaluate RSTDL and RLTDL approaches for cross-view action recog-

nition under the first two different modes. We denote our proposed RSTDL and

RLTDL under the unsupervised and supervised modes as un-RSTDL, un-RLTDL

and su-RSTDL, su-RLTDL respectively.

Tables 3.1 displays recognition accuracies of cross-view action recognition for

different combinations of training and test cameras under the unsupervised mode.

We averaged the recognition accuracies over all classes. It can be seen that both un-

RSTDL and un-RLTDL yield a much better performance for all 20 combinations

of pairwise views. Moreover, the proposed un-RLTDL achieves more than 90%

recognition accuracy for most combinations. Tables 3.2 shows recognition accuracies

of cross-view action recognition under the supervised mode. The supervised method
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% C0 C1 C2 C3 C4

C0 (77.6, 79.9, 81.8, 96.7, 99.1) (69.4, 76.8, 88.1, 97.9, 90.9) (70.3, 76.8, 87.5, 97.6, 88.7) (44.8, 74.8, 81.4, 84.9, 95.5)

C1 (77.3, 81.2, 87.5, 97.3, 97.8) (73.9, 75.8, 82.0, 96.4, 91.2) (67.3, 78.0, 92.3, 89.7, 78.4,) (43.9, 70.4, 74.2, 81.2, 88.4)

C2 (66.1, 79.6, 85.3, 92.1, 99.4) (70.6, 76.6, 82.6, 89.7, 97.6) (63.6, 79.8, 82.6, 94.9, 91.2) (53.6, 72.8, 76.5, 89.1, 100.0)

C3 (69.4, 73.0, 82.1, 97.0, 87.6) (70.0, 74.4, 81.5, 94.2, 98.2) (63.0, 66.9, 80.2, 96.7, 99.4) (44.2, 66.9, 70.0, 83.9, 95.4)

C4 (39.1, 82.0, 78.8, 83.0, 87.3) (38.8, 68.3, 73.8, 70.6, 87.8) (51.8, 74.0, 77.7, 89.7, 92.1) (34.2, 71.1, 78.7, 83.7, 90.0)

Ave. (63.0, 79.0, 83.4, 92.4, 93.0) (64.3, 74.7, 79.9, 87.8, 95.6) (64.5, 75.2, 82.0, 95.1, 93.4) (58.9, 76.4, 85.3, 91.2, 87.1) (46.6, 71.2, 75.5, 84.8, 95.1)

Table 3.1: Cross-view action recognition accuracies of different approaches on the

IXMAS dataset under unsupervised correspondence mode. Each row corresponds

to a source (training) view and each column a target (test) view. The four accuracy

numbers in the bracket are the average recognition accuracies of [46], [68], [59],

un-RSTDL and un-RLTDL respectively.

not only outperforms other algorithms, but also improves the accuracies based on

the unsupervised approach. This demonstrates that the dictionaries learned using

labeled information across views are more discriminative.

For the partially labeled mode, we compare the proposed RLTDL with [58]

and two types of SVMs used in [3]. [58] treated linear transformations of action

descriptors as virtual views to connect the descriptors extracted from source view

to those extracted from target view. The first type of SVM in [3] is AUGSVM,

which creates a feature-augmented version of each individual feature as the new

feature. The second one is MIXSVM which trains two SVM’s on the source and

target views and learns an optimal linear combination of them. Table 3.3 shows that

the proposed approach outperforms other comparing approaches for most of source-

target combinations. It is interesting to note that for the case where Camera4 is the
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% C0 C1 C2 C3 C4

C0 (79, 98.8, 98.5) (79, 99.1, 99.7) (68, 99.4, 99.7) (76, 92.7, 99.7)

C1 (72, 98.8, 100.0) (74, 99.7, 97.0) (70, 92.7, 89.7) (66, 90.6, 100.0)

C2 (71, 99.4, 99.1) (82, 96.4, 99.3) (76, 97.3, 100.0) (72, 95.5, 99.7)

C3 (75, 98.2, 90.0) (75, 97.6, 99.7) (73, 99.7, 98.2) (76, 90.0, 96.4)

C4 (80, 85.8, 99.7) (73, 81.5, 95.7) (73, 93.3, 100.0) (79, 83.9, 98.5)

Ave. (74, 95.5, 97.2) (77, 93.6, 98.3) (76, 98.0, 98.7) (73, 93.3, 97.0) (72, 92.4, 98.9)

Table 3.2: Cross-view action recognition accuracies of different approaches on the

IXMAS dataset under supervised correspondence mode. Each row corresponds to a

source (training) view and each column a target (test) view. The accuracy numbers

in the bracket are the average recognition accuracies of [25] and our proposed su-

RSTDL and su-RLTDL respectively.

source or target view, the recognition accuracies of other approaches are a little lower

than other combinations of pairwise views. This is because the Camera4 was set

above the actors and different actions look very similar from the top view. However,

our approach still achieves a very high recognition accuracy for these combinations,

which further demonstrates the effectiveness of our approach.

We also evaluate the effect of dictionary size of the common dictionary D

and view-specific dictionaries Dv on the proposed approaches. Figure 3.5 shows

the performance of the proposed approaches on three pairs of source and target

combinations with varying dictionary size. For Figure 3.5(a)(b), we fix the dic-

tionary size of D to be 50, and vary the dictionary size of Dv from the range of
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% C0 C1 C2 C3 C4

C0 (42.8, 36.8, 63.6, 64.9) (45.2, 46.8, 60.0, 64.1) (47.2, 42.7, 61.2, 67.1) (30.5, 36.7, 52.6, 65.5)

C1 (44.1, 39.4, 61.0, 63.6) (43.5, 51.8, 62.1, 60.2) (47.1, 45.8, 65.1, 66.7) (43.6, 40.2, 54.2, 66.8)

C2 (53.7, 49.1, 63.2, 65.4) (50.5, 49.4, 62.4, 63.2) (53.5, 45.0, 71.7, 67.1) (39.1, 46.9, 58.2, 65.9)

C3 (46.3, 39.3, 64.2, 65.4) (42.5, 42.5, 71.0, 61.9) (48.8, 51.2, 64.3, 65.4) (37.5, 38.9, 56.6, 61.6)

C4 (37.0, 40.3, 50.0, 65.8) (35.0, 42.5, 59.7, 62.7) (44.4, 40.4, 60.7, 64.5) (37.2, 40.7, 61.1, 61.9)

Ave. (45.3, 42.6, 59.6, 65.0) (42.7, 42.8, 64.2, 63.2) (45.4, 47.5, 61.9, 63.5) (46.2, 43.5, 64.8, 65.7) (37.6, 40.7, 55.4, 65.0)

Table 3.3: Cross-view action recognition accuracies of different approaches on the

IXMAS dataset under partially labeling mode. Each row corresponds to a source

(training) view and each column a target (test) view. The accuracy numbers in

the bracket are the average recognition accuracies of AUGSVM, MIXSVM from [3],

[59], and RLTDL respectively.

{50, 100, 150, 200, 250, 300}. We observe that the performance of our approaches

increases as the dictionary size of Dv increases. For Figure 3.5(c), we fix the dic-

tionary size of Dv to be 300, and change the dictionary size of D from the range of

{50, 100, 150, 250, 300}. It can be seen that our approaches achieve high recognition

accuracies even using a very small size dictionary. However, when the dictionary size
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Figure 3.5: Performance on the IXMAS action dataset with varying dictionary size.
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of D is too large, the redundancy in dictionaries will affect the sparse representation

of test videos and the performance may decrease.

3.7.1.3 Multi-view Action Recognition

In this section, we evaluate our approaches for multi-view action recognition.

We select one camera as a target view and use all other four cameras as source views

to explore the benefits of combining multiple source views. Here we use the same

classification scheme used for cross-view action recognition. Both D and the set of

correspondence dictionaries Dv are learned by aligning the sparse representations of

shared action videos across all views. Since videos from all views are aligned into

a common view-invariant sparse feature space, we do not need to differentiate the

training videos from each source view in this common view-invariant sparse feature

space.

Table 3.4 shows the average accuracy of the proposed approach for the first

two evaluation modes. Note that algorithms compared to are evaluated using the

unsupervised correspondence mode. Both unsupervised and supervised approaches

outperform other comparing approaches and achieve nearly perfect performance for

all target views. Furthermore, [68, 141] and our unsupervised approach only use

training videos from four source views to train a classifier while other approaches

used all the training videos from all five views to train the classifier. Table 3.5 shows

the average accuracy of different approaches using the partially labeled evaluation

mode. The proposed approach outperforms [59] on four out of five target views.
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% C0 C1 C2 C3 C4 Avg

un-RLTDL 97.0 99.7 97.2 98.0 97.3 97.8

su-RLTDL 99.7 99.7 98.8 99.4 99.1 99.3

un-RSTDL 98.5 99.1 99.1 100 90.3 97.4

su-RSTDL 99.4 98.8 99.4 99.7 93.6 98.2

[68] 86.6 81.1 80.1 83.6 82.8 82.8

[46] 74.8 74.5 74.8 70.6 61.2 71.2

[67] 76.7 73.3 72.0 73.0 N/A 73.8

[117] 86.7 89.9 86.4 87.6 66.4 83.4

Table 3.4: Multi-view action recognition results using the unsupervised and super-

vised correspondence modes. Each column corresponds to one target view.

Overall, we accomplish comparable performance with [59] under the partially labeled

mode.

3.7.2 Evaluation on the WVU action dataset

The WVU action dataset [88] is collected from a network of eight embedded

color cameras. This multi-camera network provides completely overlapping coverage

of a rectangular region from different view directions. This dataset has eleven action

classes which includes nodding head, clapping, waving one hand, waving two hand,

punching, jogging, jumping jack, kicking, picking, throwing, and bowling. Each

action class has 47 action videos. Figure 3.6 shows exemplar frames of two action

classes taken by eight cameras.
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% C0 C1 C2 C3 C4

RLTDL 66.6 68.4 65.4 67.2 67.8

[59] 62.0 65.5 64.5 69.5 57.9

AUGSVM 54.2 50.8 58.1 49.5 46.9

MIXSVM 46.4 44.2 52.3 47.7 44.7

Table 3.5: Multi-view action recognition results using the partially labeled mode.

Each column corresponds to one target view.

Camera0  Camera1  Camera2  Camera3  Camera4  Camera5  Camera6  Camera7  

Figure 3.6: Exemplar frames from the WVU action dataset. Each row shows one

action viewed across different angles.

We evaluate our proposed approaches for cross-view action recognition on this

dataset. We use the same strategy as that used in the IXMAS dataset to learn the

dictionaries. We compare our method with STF [113], which exploits the relation-

ship between visual words across views by estimating the word transfer probabilities.

The recognition accuracies for cross-view action recognition under the unsupervised

mode are summarized in Table 3.6. Compared with [113], the un-RSTDL approach

achieves a highly comparable performance while the un-RLTDL approach yields a

much better performance for a majority of combinations of pairwise views. This

is because [113] can not guarantee that videos taken at different views of the same
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% C0 C1 C2 C3 C4 C5 C6 C7

C0 (92.5, 99.8, 100) (89.3, 99.8, 100) (90.2, 99.6, 100) (90.9, 99.8, 100) (88.2, 99.2, 99.6) (90.7, 99.4, 99.8) (91.6, 99.8, 100)

C1 (87.3, 99.6, 100) (86.8, 99.8, 100) (89.3, 99.8, 100) (84.3, 99.6, 99.8) (92.5, 97.3, 98.6) (86.6, 99.4, 99.6) (89.5, 99.8, 100)

C2 (88.9, 88.9, 91.9) (90.7, 97.4, 81.8) (89.8, 90.7, 89.9) (85.0, 89.4, 90.5) (90.5, 89.5, 91.1) (89.8, 90.1, 90.1) (92.3, 90.3, 89.7)

C3 (86.1, 72.7, 100) (92.3, 72.9, 99.6) (85.7, 72.7, 99.6) (86.1, 72.5, 98.8) (90.5, 71.6, 88.4) (86.8, 72.7, 97.1) (91.6, 72.5, 99.8)

C4 (91.1, 90.9, 98.2) (87.7, 91.9, 90.1) (86.4, 93.6, 94.0) (92.7, 99.8, 98.6) (91.4, 92.1, 99.2) (86.6, 90.0, 90.0) (91.8,93.2, 94.8)

C5 (90.0, 78.9, 93.0) (92.0, 88.9, 89.0) (90.0, 80.3, 81.4) (90.0,77.9, 89.7) (90.5, 76.0, 90.1) (89.3, 81.8, 82.6) (90.2, 83.5, 76.4)

C6 (88.0, 79.5, 81.4) (89.8, 81.8, 74.2) (89.8,84.1, 83.8) (90.0, 81.6, 81.2) (83.6, 78.5,81.6) (89.8, 90.3, 81.6) (91.6, 81.8, 82.2)

C7 (90.0, 90.7,98.8) (91.6, 90.9, 91.3) (88.4, 91.1, 97.3) (92.0, 90.9, 90.9) (86.4, 91.7, 91.9) (90.2, 90.7, 89.4) (88.6, 98.8, 96.5)

Ave. (88.8, 86.0, 94.7) (90.9, 89.1, 89.6) (88.1, 88.8, 93.3) (90.6, 91.4, 93.0) (86.7, 86.8, 98.9) (90.4, 90.1, 92.6) (88.3, 90.4, 93.6) (91.2, 88.8, 91.8)

Table 3.6: Cross-view action recognition accuracies of different approaches on the

WVU dataset using unsupervised correspondence mode. Each row corresponds to a

source (training) view and each column a target (test) view. The accuracy numbers

in the bracket are the average recognition accuracies of [113], our proposed un-

RSTDL and un-RLTDL approaches respectively.

action will have similar features, even though it estimated the transfer probabilities

of visual words across views. However, the proposed approaches directly aligned the

features by learning dictionaries for each view. Moreover, the better performance

obtained by un-RLTDL over un-RSTDL demonstrates that the relaxation of the

regularization of sparse codes enables us to learn better dictionaries for reconstruc-

tion.

Table 3.7 shows recognition accuracies of cross-view action recognition under

the supervised mode. It can be observed that su-RLTDL outperforms su-RSTDL,

55



% C0 C1 C2 C3 C4 C5 C6 C7

C0 (100, 100) (100, 100) (100, 100) (100, 100) (99.6, 99.6) (99.2, 99.8) (100, 100)

C1 (100, 100) (100, 100) (100, 100) (99.8, 99.8) (97.2, 99.4) (99.0, 100) (100, 100)

C2 (84.3, 89.9) (98.4, 98.4) (93.0, 97.8) (92.1, 97.5) (91.9, 99.2) (89.4, 97.7) (90.5, 96.7)

C3 (81,2, 99.6) (76.8, 96.1) (81.0, 79.4) (80.9, 96.5) (81.4, 76.0) (73.8, 81.0) (79.6, 79.6)

C4 (90.9, 99.0) (92.3, 97.7) (93.0, 93.6) (99.0, 95.9) (92.3, 99.8) (90.9, 90.7) (93.2, 97.7)

C5 (82.2, 90.3) (90.9, 90.9) (88.6, 87.2) (80.6, 84.7) (85.9, 88.8) (89.4, 91.7) (88.0, 90.9)

C6 (81.8, 82.4) (81.8, 90.1) (89.9, 91.8) (86.7, 93.2) (82.2, 93.6) (90.5, 95.6) (82.7, 90.0)

C7 (90.9, 94.6) (90.9, 100) (95.9, 99.8) (91.5, 98.1) (93.6, 100) (94.8, 99.0) (99.2, 99.6)

Ave. (87.3, 93.7) (90.1, 96.2) (92.6, 93.1) (93.0, 96.0) (90.6, 96.6) (92.5, 95.5) (91.6, 94.4) (90.6, 93.5)

Table 3.7: Cross-view action recognition accuracies of different approaches on the

WVU dataset using supervised correspondence mode. Each row corresponds to a

source (training) view and each column a target (test) view. The accuracy numbers

in the bracket are the average recognition accuracies of our proposed su-RSTDL and

su-RLTDL approaches respectively.

but also improves the accuracies based on our unsupervised approaches. This again

demonstrates that the dictionaries learned using labeled information across views

are more discriminative. In addition, un-RLTDL surprisedly outperforms su-RSTDL

which demonstrates that the separation of the common dictionary from view-specific

dictionaries enable us to align view-specific features better.

We also evaluate the effect of dictionary size of the common dictionary D and

view-specific dictionaries Dv on our approaches. Figure 3.7 shows the performance

of our approaches on three pairs of source and target combinations with varying
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Figure 3.7: Performance on the WVU action dataset with varying dictionary size.

dictionary size. For Figure 3.7 (a)(b), we fix the dictionary size of D to be 50,

and vary the dictionary size of Dv from the range of {50, 100, 150, 200, 250, 300}.

We observe that the performance of our approaches increases as the dictionary size

of Dv increases. For Figure 3.7 (c), we fix the dictionary size of Dv to be 300,

and change the dictionary size of D from the range of {50, 100, 150, 250, 300}. It

can be seen that our approaches achieve high recognition accuracies even using a

very small size dictionary. However, when the dictionary size of D is too large, the

redundancy in dictionaries will affect the sparse representation of test videos and

the performance may decrease.

Figure 3.7 shows the performance of our approaches on three pairs of source

and target combinations with varying dictionary size. For Figure 3.7(a)(b), we fix

the dictionary size of D to be 50, and vary the dictionary size of Dv from the

range of {50, 100, 150, 200, 250, 300, 350, 400, 450}. Figure 3.7(c), we fix the dictio-

nary size of Dv to be 300, and change the dictionary size of D from the range

of {50, 100, 150, 250, 300, 350, 400}. We observe that the recognition accuracies of

un-RSTDL and su-RSTDL first increase as the dictionary size of view-specific dic-

57



Camera1  Camera3  Camera4  Camera6  

(a) Action class: CrawlOnKnees

Camera1  Camera3  Camera4  Camera6  

(b) Action class: SmashObject

Figure 3.8: Exemplar frames from the HuAVi action dataset.

tionaries increases, and drop drastically when the dictionary size is larger than 350.

However, the performances of both un-RLTDL and su-RLTDL consistently increase

as the dictionary size of view-specific dictionaries increases. One possible reason is

that in the RSTDL approach, videos of orphan actions in each view tend to select

different sets of dictionary atoms to represent when the dictionary size is too large.

3.7.3 Evaluation on the MuHAVi dataset

MuHAVi dataset [101] contains a large body of human action video data from

17 human action classes. These action classes are WalkTurnBack, RunStop, Punch,

Kick, ShotGunCollapse, PullHeavyObject, PickupThrowObject, WalkFall, LookIn-

Car, CrawlOnKnees, WaveArms, DrawGraffiti, JumpOverFence, DrunkWalk, ClimbLad-

der, SmashObject, JumpOverGap. Each action video is performed by 7 actions and

recorded using 9 CCTV Schwan cameras located at 4 sides and 4 corners of a rect-

angular platform. Due to the computational complexity, we followed [123] to choose

the action videos captured by four cameras (i.e. two side cameras and two corner

cameras) in our experiments. Figure 8 shows exemplar frames of two action classes

taken by four cameras.
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% C0 C1 C2 C3

C0 (77.3, 99.8, 99.2, 99.8) (73.9, 96.6, 91.6, 99.8) (82.4, 99.8, 97.5, 99.8)

C1 (68.9, 98.3, 92.4, 99.8) (68.9, 98.3, 94.1, 99.8) (72.3, 99.8, 85.7, 99.8)

C2 (83.2, 98.3. 87.4, 99.8) (68.9, 97.5, 97.5, 99.8) (84.9, 99.2, 89.9, 99.8)

C3 (71.4, 95.0, 94.1, 99.8) (77.3, 89.1, 93.3, 99.8) (58.0, 92.4, 88.2, 99.8)

Ave. (74.5, 98.6, 84.0, 99.8) (74.5, 98.9, 86.8, 99.8) (66.9, 97.8, 85.4, 99.8) (79.8, 99.8, 81.5, 99.8)

Table 3.8: Cross-view action recognition accuracies on the MuHAVi dataset. Each

row corresponds to a source (training) view and each column a target (test) view.

The accuracy numbers in the bracket are the average recognition accuracies of un-

RSTDL, un-RLTDL,su-RSTDL, and su-RLTDL respectively.

% View1 View3 View4 View6 Avg

SVM 93.3 92.4 93.3 95.8 93.7

LSSVM 91.6 94.1 95.8 95.8 94.3

LKSSVM 96.6 93.3 94.1 94.1 94.5

un-RSTDL 78.2 79.0 75.6 83.2 79.0

su-RSTDL 81.5 89.0 91.6 86.6 87.2

un-RLTDL 96.6 97.5 99.8 99.8 98.5

su-RLTDL 99.8 99.8 99.8 99.8 99.8

Table 3.9: Multi-view action recognition results on the MuHAVi dataset. Each

column corresponds to one target view.

Table 3.8 shows the recognition accuracies of our approaches for cross-view

action recognition. Both su-RSTDL and su-RLTDL yield a better performance than

un-RSTDL and un-RLTDL respectively. Note that su-RLTDL even outperforms un-
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RSTDL by a margin of 20%. This demonstrates the benefits of the separation of

the common dictionary from view-specific dictionaries.

The proposed approaches are also compared with three state-of-the-art al-

gorithms: (1) nonlinear SVM [11], which adopted a χ2 kernel and one-against-all

setting for multi-class classification task; (2) latent structural SVM [133], which

modeled the camera views as a latent variable. (3) latent kernelized structural

SVM [123] which extended the kernelized structural SVM framework to include

the camera views as latent variables. Table 3.9 shows the recognition accuracies of

different approaches for multi-view action recognition. It can be seen that the per-

formance of both un-RSTDL and su-RSTDL is worse than comparing algorithms,

whereas un-RLTDL and su-RLTDL consistently outperform all the competing ap-

proaches. This again illustrates that the separation of the common dictionary enable

us to learn more compact view-specific dictionaries. In addition, the confusion ma-

trices for un-RSTDL, su-RSTDL, un-RLTDL and su-RLTDL are shown in Figure 3.9

and 3.10.

3.8 Summary

In this chapter, we introduced two effective transferable dictionary learning-

based approaches for robust action recognition across views. In the first method,

we learn a view-specific dictionary for each view. By forcing the shared action

videos across different views to have the same sparse representations, the set of

dictionary is made to have the transferability property. This is because action
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Figure 3.9: Confusion matrices for our proposed RSTDL approach on the MuHAVi

dataset.
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Figure 3.10: Confusion matrices for our proposed RLTDL approach on the MuHAVi

dataset.
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videos of the same class in different views encoded using the corresponding view-

dependent dictionary tend to have the same sparse representations. Using the set of

transferable dictionaries, we can directly transfer action models across views. In the

second method, we additionally learn a common dictionary shared by different views

to model view-shared features. Both the common dictionary and the corresponding

view-specific dictionary are used to represent videos of each view. We transfer the

indices of non-zeros in sparse codes of videos from the source view to the sparse codes

of the corresponding videos from the target view. In this way, the mapping between

the source and target view is encoded in the common dictionary and view-specific

dictionaries. Meanwhile, the associated sparse representations are view-invariant

because the non-zeros positions in the sparse codes of correspondence videos share

the same set of indices. In addition, our approach can be applied to cross-view

and multi-view action recognition under the unsupervised, supervised and domain

adaptation settings.

Our approaches have two limitations that need to be addressed. First, we need

sets of videos of the same class taken from different views to learn the transferable

dictionaries. However, videos in different views may be not aligned. Future work

includes extending our approach to handle this case. It will exploit the relationship

between different views more flexibly. Second, the view of test videos are given at

first and we did not fuse the knowledge from different training views for multi-view

action recognition. A more flexible approach is to automatically estimate the view

of test videos and classify the test videos by fusing knowledge from different training

views.
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Chapter 4: Semantic Taxonomy Aware Dictionary Learning for Im-

age Tagging

The goal of image tagging is to assign image regions with labeled tags, has

attracted significant attention in computer vision and multimedia [71, 130, 35, 135,

125, 126]. Region tagging at a more fine-grained region-level has two benefits. First,

it establishes the correspondences between image regions and semantic labels and

thus can handle the diversity and arbitrariness of Web image content well. Sec-

ond, experiments in [22, 125] reveal that accurate region-level annotations can effec-

tively boost the performance of image-level annotations. In order to achieve robust

content-based image retrieval, we focus on improving the accuracy of region tagging.

Recently several proposed region tagging approaches attempt to explore the

contextual constraints among image regions using sparse coding techniques [71, 130,

35]. However, these approaches that simply used all training regions as the dictio-

nary for spare coding have three main disadvantages. First, redundancy in training

regions can increase the reconstruction error, which may degrade the effectiveness

of region tagging. Second, the computational complexity of sparse coding increases

with the size of dictionary and it is impossible to use all the training regions as

the dictionary for large-scale datasets. Thus learning a compact and discrimina-
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Figure 4.1: A two-layer tag taxonomy and the corresponding dictionary framework.

This tag taxonomy has two levels: super-class level and basic-class level. At the

super-class level, training samples are divided into three super-classes Animal, Plant

and Vehicle, whereas training samples within each super-class are further divided

into a few basic classes. We associate each tag node with a node-specific dictionary

and concatenate the node-specific dictionaries from each level to create a level-

specific dictionary. The level-specific dictionaries for this taxonomy areD(1) andD(2)

while the node-specific dictionaries are {D(1)
s }s=1...3 and {D(2)

k }k=1...7. We reconstruct

each image region using different level-specific dictionaries and sum up the sparse

codes obtained from different levels as the final feature representation to learn a

linear classifier for region tagging.

tive dictionary for region tagging is desirable. Third, for datasets with unbalanced

tag classes, the performance of these approaches may decrease drastically. This

is because unbalanced tag classes result in an unbalanced group structure in the

dictionary such that the computed sparse codes become less discriminative for clas-

sification task. In addition, tags are often arranged into a hierarchical taxonomy

based on their semantic meanings, such as the tag taxonomy shown in Figure 4.1.

However, the tag taxonomy has not been exploited to improve the accuracy of re-
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gion tagging, even though the similar category taxonomy has been shown to benefit

the accuracy as well as the scalability of learning algorithms [77, 78, 34] for object

recognition.

To overcome the above drawbacks, we present a novel multi-layer hierarchical

dictionary learning framework for region tagging when the tag taxonomy is known.

For illustration, a two-layer tag taxonomy and the corresponding dictionary learning

framework is depicted in Figure 4.1. To our best knowledge, we are the first to

use the supervised dictionary learning to explore the semantic relationship among

tags. Specifically, we generate a node-specific dictionary for each tag node in the

taxonomy and concatenate the node-specific dictionaries in each level to construct a

level-specific dictionary. Thus the hierarchical semantic relationship among tags is

preserved in the relationship among node-specific dictionaries, which enables us to

exploit the discriminative information among regions in a hierarchial way. Moreover,

dictionary items from the same node-specific dictionary are considered as a group so

it introduces a group structure for each level-specific dictionary. Based on each level-

specific dictionary and corresponding group structure, we reconstruct each image

region using the group sparse coding algorithm [136] to obtain level-specific sparse

codes. Compared with single-level sparse codes in existing sparse coding-based

region tagging approaches [71, 130, 35], our multi-layer sparse codes not only encodes

the contextual constraints among regions, but also encodes the relationship among

tags. Finally, we sum up the sparse codes obtained from different levels as the final

feature representation to learn a linear class classifier. For datasets with unbalanced

tag classes, we can create balanced group structure for higher levels and make use
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of sparse codes obtained from higher levels to help design the classifiers for lower

levels. Therefore, our approach is robust to datasets with unbalanced tag classes

in contrast to existing sparse coding-based region tagging approaches that tend to

perform poorly on datasets with unbalanced tag classes.

4.1 Related Work

Recently, several region tagging approaches have used sparse coding tech-

niques to encode contextual constraints among image regions for region tagging

[71, 130, 35]. [71] proposed a bi-layer sparse coding framework to reconstruct im-

age regions from over-segmented image patches that belong to a few images, and

then propagate image labels of selected patches to the entire label to obtain region

assignment. However, this method ignores the contextual correlations among re-

gions, e.g., co-occurrence and spatial correlations. [130] considered regions within

the same image as a group, and used the group sparse coding with spatial kernels

to jointly reconstruct image regions in the same image from other training regions.

However, the contextual correlations of training regions across images are ignored

due to the group structure of regions-in-image relationship. [35] extended group

sparse coding with graph-guided fusion penalty to encourage highly correlated re-

gions to be jointly selected for the reconstruction. However, the performance of the

group sparse coding depends on a balanced group structure which has the similar

number of training regions in each group so it might not be robust to datasets that

have very unbalanced training regions.
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Other techniques have also been proposed to boost the performance for region

tagging or region-based image annotation. [125, 126] used multiple-instance learning

techniques to learn the correspondence between image regions and keywords. The

idea is that each image is annotated by the tag that has at least one sample region

(seen as ‘instance’) within this image (seen as ‘bag ’). [135] regularized segmented

image regions into 2D lattice layout, and employed a simple grid-structure graphical

model to characterize the spatial context constraints. [22] used both the dominant

image region and the relevant tags to annotate the semantics of natural scenes. [63]

proposed a unified solution to tag refinement and tag-to-region assignment by using

a multi-edge graph, where each vertex of the graph is a unique image encoded by

a region bag with multiple image segmentations. [31] proposed a multi-layer group

sparse coding framework to encode the mutual dependence between the class labels

as well as the tag distribution information.

Supervised dictionary learning which combines dictionary learning with classi-

fier training into a unified learning framework has been extensively studied [129, 87,

76, 137]. [129] performed supervised dictionary learning by minimizing the training

error of classifying the image-level features, which are extracted by max pooling over

the sparse codes within a spatial pyramid. [76] proposed a novel sparse represen-

tation of signals belonging to different classes in terms of a shared dictionary and

discriminative models. This approach alternates between the step of sparse coding

and the step of dictionary update and discriminative model learning. [137] extended

the K-SVD algorithm by incorporating the classification error into an objective func-

tion that allows the simultaneous optimization of the dictionary and classifiers. In
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addition, [39, 12] proposed to use proximal methods for structured sparse learning

where dictionary items are embedded in different structures.

4.2 Tag Taxonomy Aware Dictionary Learning

In this section, we first introduce the group sparse coding algorithm and then

describe the formulation of our multi-layer supervised dictionary learning, its opti-

mization and how to tag image regions using sparse codes.

4.2.1 Group Sparse Coding

Given a dictionary D = [D1, D2, ..., DG] ∈ Rd×J where Dg ∈ Rd×Jg consists of

a group of Jg visually correlated dictionary items, an image region x ∈ Rd can be

reconstructed from the dictionary with the group LASSO penalty [136] as follows:

z = argmin
z

1

2
||x−

G∑
g=1

Dgzg||22 + λ
G∑
g=1

βg||zg||2

= argmin
z

1

2
||x−Dz||22 + λ

G∑
g=1

βg||zg||2

(4.1)

where z = [zT1 , z
T
2 , ..., z

T
G]T ∈ RJ×1 is the reconstruction coefficients where zg is

the encoding coefficient corresponding to the gth group. And λ ≥ 0 is a trade-off

parameter and βg =
√
Jg weights the penalty from the g-th group. Since the group

LASSO uses a group-sparsity-inducing regularization instead of the l1 norm as in

LASSO [105], we can treat multiple visually similar dictionary items within the

same group as a whole and exploit implicit relations among these dictionary items

to some extent.
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4.2.2 Multi-layer Supervised Dictionary Learning

We consider an image dataset D with a two-layer tag taxonomy whose levels

from the top to the bottom are called: super-class level and basic-class level as shown

in Figure 4.1. Note that extensions to learning multiple level-specific dictionaries

for a multi-layer tag taxonomy can be accomplished in a similar way. Suppose that

each image has been segmented into regions and a d-dimensional feature vector has

been extracted for each region. Let X ∈ Rd×N denote N training image regions from

K tag classes. According to the tag taxonomy, image regions from these K classes

in the basic-class level can be merged into S super-classes in the super-class level,

e.g., cat and dog belong to the super-class animal , whereas grass and tree belong

to the super-class plant (See Figure 4.1). Thus each image region has one class label

from the basic-class level and one super-class label from the super-class level. Let

H(2) ∈ {0, 1}K×N denote the class label indicator matrix for all the regions, where

H
(2)
(i,j) = 1 if the jth image region belongs to the ith tag and H

(2)
(i,j) = 0 otherwise.

Similarly, we use H(1) ∈ {0, 1}S×N to denote the super-class label indicator matrix

respectively. Note that we use the superscript to index the level in the tag taxonomy

and the subscript to index the node-specific dictionary in that level.

Given an underlying tag taxonomy, we associate a separate dictionary with

each tag node. These individual dictionaries are called node-specific dictionaries and

they serve as local viewpoints for exploring the discriminative information among

training regions from the same class or super-class. We concatenate the node-specific

dictionaries in each level to construct a new large dictionary which is called a level-
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specific dictionary. Suppose that the level-specific dictionaries in the super-class and

basic-class levels are learned and represented as D(1) = [D
(1)
1 , D

(1)
2 , ..., D

(1)
S ] ∈ Rd×J

and D(2) = [D
(2)
1 , D

(2)
2 , ..., D

(2)
K ] ∈ Rd×J , where D

(1)
s and D

(2)
k are associated with

the s-th super-class and k-th class respectively. Given level-specific dictionaries

D(1), D(2) and a region xn ∈ Rd×1from the s-th superclass and k-th class, we obtain

the group sparse representations z
(1)
n and z

(2)
n of this region as follows:

z(1)
n = argmin

z
(1)
n

1

2
||xn −D(1)z(1)

n ||22 + λ1

S∑
s=1

β(1)
s ||z(1)

ns
||2

z(2)
n = argmin

z
(2)
n

1

2
||xn −D(2)z(2)

n ||22 + λ2

K∑
k=1

β
(2)
k ||z

(2)
nk
||2.

(4.2)

Here we introduce q
(1)
n and q

(2)
n to denote the ‘ideal’ group sparse codes of xn cor-

responding to D(1) and D(2) respectively. In particular, the non-zero values of q
(1)
n

or q
(2)
n occur at those indices where the dictionary items belong to the node-specific

dictionary D
(1)
s or D

(2)
k . We use Z(1) = [z

(1)
1 , ..., z

(1)
N ] ∈ RJ×N to denote the group

sparse codes of all regions at the super-class level. The matrices Z(2), Q(1), Q(2) are

defined in a similar way.

Based on the sparse representations from the super-class and basic-class levels,

we aim to learn two linear classifiers denoted as f (1)(z,Ws) = Wsz and f (2)(z,W ) =

Wz for the two levels respectively, where Ws ∈ RS×J and W ∈ RK×J . The objective

function for learning all the dictionaries and classifiers are formulated as:

min
D(i)2

i=1,Ws,W

||H(1) −WsZ
(1)||2 + ||H(2) −W (Z(1) + Z(2))||2 (4.3)

+ ν(||Q(1) − Z(1)||2 + ||Q(2) − Z(2)||2) + µ(||Ws||22 + ||W ||22) (4.4)

where Z(1) = [z
(1)
1 , ..., z

(1)
N ], Z(2) = [z

(2)
1 , ..., z

(2)
N ], Q(1) = [q

(1)
1 , ...,q

(1)
N ], Q(2) = [q

(2)
1 , ...,q

(2)
N .
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Figure 4.2: An example of the ideal sparse codes matrices Q(1) and Q(2) for classifica-

tion task. Given nine image regions (on the leftmost) come from four basic-classes

and two super-classes, we learn two level-specific dictionaries for the super-class

and basic-class levels respectively. The super-class level dictionary is defined as:

D(1) = [D
(1)
1 , D

(1)
2 ] while the basic-level dictionary is D(2) = [D

(2)
1 , D

(2)
2 , D

(2)
3 , D

(2)
4 ].

For each region from one labeled tag, we aim to use only the node-specific dictio-

nary that is associated with the same tag to reconstruct the region. This is because

image regions from the same basic-class or super-class are more likely to share visual

features and thus can be used to reconstruct each other.

Note that this is a constrained optimization problem where the constraint is

that matrices Z(1) and Z(2) are obtained by minimizing the reconstruction error with

group LASSO penalty from the basic-class and super-class levels as shown in (4.2).

This objective function consists of two parts:
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1. The first part is the classification error from each level as shown in the first line

of (4.4). The two classifiers Ws and W are learned by the linear regression.

Note that Ws is not used for final region tagging. Ws is learned to guarantee

that the sparse codes obtained from the super-class level are discriminative

and thus can be used to help learn W for the basic-class level.

2. The second part is the regularization of sparse codes from two levels as shown

in the second line of (4.4). The ideal sparse codes matrices Q(1) and Q(2)

are block-diagonal as shown in Figure 4.2. We call sparse codes matrices Q(1)

and Q(2) ideal because they are ideal for classification task. We minimize the

difference between the true sparse codes and the corresponding ideal sparse

codes to encourage the true sparse codes to be close to the ideal sparse codes.

It means that for training regions Xk from the k-th class and Xs from the s-th

super-class, we encourage the corresponding node-dictionaries D
(1)
s and D

(2)
k

to be selected for group sparse coding. In addition, the non-zeros in Q(2) are

a subset of non-zeros in Q(1). Note that this fixed and structured relationship

between Q(1) and Q(2) regularizes the relationship between Z(1) and Z(2) from

two levels, which makes it possible to use sparse codes from different levels to

improve classification accuracy.

Note that we use the sum of sparse codes from two levels as the features to design

the class classifier W for two reasons. First, we make use of the discriminative

information encoded in the sparse codes obtained from the super-class level to learn

W . Second, it encourage classes within the same super-class to implicitly share
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sparse codes obtained from super-class level. This can handle the situation where

the training classes are very unbalanced. For example, there are many training

regions for the tag cat but little training regions for dog. Given the feature of an

image region from dog, it can be reconstructed using the level-specific dictionary

from the basic-class level, which may activate multiple node-specific dictionaries in

the basic-class level. This is due to the little training regions for the tag dog and

it will be difficult to classify the class label of this image region. However, when

using the level-specific dictionary from the super-class level to reconstruct this image

region, it may only activate the node-specific dictionary associated with the super-

class animal. This is because other tags within the same super-class animal may

share some features with dog and can help to represent this image region better

other than dog itself. Even if we cannot classify this image region as dog, we can at

least classify this image regions as other tags that belong to the super-class animal

instead of totally uncorrelated tags from other super-classes. Thus using the sum of

sparse codes from two levels as features for designing the class classifiers can support

this implicit feature sharing among classes within the same super-class.

4.2.3 Optimization Algorithm

Motivated by [74], we propose a stochastic gradient descent algorithm for

optimizing the objective function. We first rewrite the objective function in (4.4)

as follows:

min
D(i)2

i=1,Ws,W

N∑
i=1

`n(D(1), D(2),Ws,W ) + µ(||Ws||22 + ||W ||22)

74



where

`n = ν(||q(1)
n − z(1)

n ||2 + ||q(2)
n − z(2)

n ||2) + ||h(1)
n −Wsz

(1)
n ||2 + ||h(2)

n −W (z(1)
n + z(2)

n )||2.

Note that the sparse codes z
(1)
n and z

(2)
n are functions of D(1) and D(2) respectively.

We use the notation `n(D(1), D(2),Ws,W ) to emphasize that the loss function asso-

ciated with the n-th region is also a function of D(1) and D(2) . We use the following

procedure to optimize the objective function: first, we randomly select a training

instance (xn,h
(1)
n ,h(2)

n ) for the t-th iteration; next, we compute the sparse codes z
(1)
n

and z
(2)
n using D(1) and D(2) by (4.2); finally, we update D(1), D(2),Ws and W by

the gradients of the loss function `n with respect to them.

We next describe the methods for computing the gradients of the loss function

`n with respect to the level-specific classifiers and dictionaries. When the sparse

codes z
(1)
n and z

(2)
n are known, we can compute the gradient of `n with respect to

Ws and W as follows:

∂`n

∂Ws

= −2(h(1)
n −Wsz

(1)
n )z(1)T

n

∂`n

∂W
= −2(h(2)

n −W (z(1)
n + z(2)

n ))(z(1)
n + z(2)

n )T .

(4.5)

We use the chain rule to compute the gradient of `n with respect to D(1) and D(2)

as follows:

∂`n

∂D(1)
=

∂`n

∂z
(1)
n

∂z
(1)
n

∂D(1)
,
∂`n

∂D(2)
=

∂`n

∂z
(2)
n

∂z
(2)
n

∂D(2)
(4.6)

where

∂`n

∂z
(1)
n

= −2W T
s (h(1)

n −Wsz
(1)
n )− 2W T (h(2)

n −W (z(1)
n + z(2)

n ))− 2ν(q(1)
n − z(1)

n )

∂`n

∂z
(2)
n

= −2W T (h(2)
n −W (z(1)

n + z(2)
n ))− 2ν(q(2)

n − z(2)
n ).
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To compute the gradient of z
(1)
n and z

(2)
n with respect to D(1) and D(2), we use

implicit differentiation on the fixed point equation similar to [74, 129, 128]. We first

establish the fixed point equation of (4.2) by calculating the derivatives of z
(1)
n and

z
(2)
n on both sides and have:

D
(1)T
Λ (xn −D(1)

Λ z
(1)
nΛ) = λ1Γ(1)[

z
(1)T
n1Λ

||z(1)
n1Λ||2

, ...,
z

(1)T
nSΛ

||z(1)
nSΛ||2

]T

D
(2)T
Λ (xn −D(2)

Λ z
(2)
nΛ) = λ2Γ(2)[

z
(2)T
n1Λ

||z(2
n1Λ||2

, ...,
z

(2)T
nKΛ

||z(2)
nKΛ||2

]T

(4.7)

where Λ denote the index set of non-zero sparse coefficients in z
(1)
n and z

(2)
n . Both

Γ(1) and Γ(2) are block-diagonal. The s-th block in Γ(1) is β
(1)
s Is while the k-th block

in Γ(2) is β
(2)
k Ik, where Is, Ik are the corresponding identity matrices. We calculate

the derivatives of D(1) and D(2) on both sides of (4.7), and have

∂z
(1)
nΛ

∂D
(1)
Λ

= (D
(1)T
Λ D

(1)
Λ + λ1Γ(1)A(1))−1[

∂D
(1)T
Λ xn

∂D
(1)
Λ

− ∂D
(1)T
Λ D

(1)
Λ

∂D
(1)
Λ

z
(1)
nΛ]

∂z
(2)
nΛ

∂D
(2)
Λ

= (D
(2)T
Λ D

(2)
Λ + λ2Γ(2)A(2))−1[

∂D
(2)T
Λ xn

∂D
(2)
Λ

− ∂D
(2)T
Λ D

(2)
Λ

∂D
(2)
Λ

z
(2)
nΛ]

where the matrices A(1) and A(2) are block-diagonal and the s-th block in A(1) is

||z(1)
nsΛ||Is−z

(1)
nsΛz

(1)T
nsΛ

||z(1)
nsΛ||

2
2

while the k-th block in A(2) is
||z(2)

nkΛ||Ik−z
(2)
nkΛz

(2)T
nkΛ

||z(2)
nkΛ||

2
2

. Therefore, (4.6)

can be rewritten as

∂`n

∂D(1)
= −D(1)s(1)

n z(1)T
n + (xn −D(1)z(1)

n )s(1)T
n

∂`n

∂D(2)
= −D(2)s(2)

n z(2)T
n + (xn −D(2)z(2)

n )s(2)T
n

(4.8)

where the auxiliary variables s
(1)
n and s

(2)
n are defined as follows:

s
(1)

ΛC = 0, s
(1)
Λ = (D

(1)T
Λ D

(1)
Λ + λ1Γ(1)A(1))−1 ∂`

n

∂z
(1)
nΛ

s
(2)

ΛC = 0, s
(2)
Λ = (D

(2)T
Λ D

(2)
Λ + λ2Γ(2)A(2))−1 ∂`

n

∂z
(2)
nΛ

.

The steps 1− 15 in Algorithm 1 summarize our joint learning algorithm.
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Algorithm 3: Multi-layer Supervised Dictionary Learning for Region Tagging

(MSDL)

Part 1: Dictionary Learning

Input: X (training regions), H(1) (super-class label indicator matrix),

H(2) (class label indicator matrix), D

(initial dictionary), T (number of iterations), N (number of training samples),

ρ (initial learning rate), ν, µ, n0.

Output: classifiers Ws and W ; dictionaries D(1) and D(2)

for t = 1...T do

Permute training samples (X,H(1), H(2));

for n = 1...N do

Evaluate the group sparse codes z
(1)
n and z

(2)
n of the region xn;

Choose the learning rate ρt = min(ρ, ρ ∗ n0/n)

Update the classifiers and dictionaries by a projected gradient step

Ws ←
∏

Ws
[Ws − ρt( ∂`

n

∂Ws
+ µWs)];

W ←
∏

W [W − ρt( ∂`
n

∂W
+ µW )];

D(1) ←
∏

D(1) [D(1) − ρt ∂`n

∂D(1) ]

D(2) ←
∏

D(2) [D(2) − ρt ∂`n

∂D(2) ]

end for

end for

Part 2: Region Tagging

Input: x̂ (test region)

Output: ŷ (predicted tag class)

Evaluate the group sparse codes ẑ(1) and ẑ(2) of the test region x̂;

The predicted tag for this test region is ŷ = argmaxjW (ẑ(1) + ẑ(2)).
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4.3 Experiments

We evaluated our approach for region tagging using several benchmarks, in-

cluding MSRC-v1, MSRC-v2 [98], and SAIAPR TC-12 datasets [21]. Images in

these datasets have been segmented into regions and their ground truth of region

masks are also provided. MSRC-v1 contains 240 images that are segmented into 562

regions associated with 13 tags, whereas MSRC-v2 has 591 images and 1482 regions

associated with 23 tags. And SAIAPR TC-12 contains 99,535 regions segmented

from 20,000 images. The associated 276 tags for this dataset are organized into a

hierarchy.

We follow the protocol in [35] to extract RGB color features and sample train-

ing and test regions. We use 8 bins for each color channel and count the ratio of

pixels whose RGB values fall into each bin to construct a 3D histogram. Thus each

image region is represented as a 512-dimensional RGB color histogram. For the

MSRC-v1 dataset, we randomly sample 200 images and the corresponding regions

as the training set, whereas for the MSRC-v2 dataset, 471 images are randomly

sampled to form the training set. The remaining regions are used for testing. For

SAIAPR TC-12 dataset, we select the same 27 localized tags out of 276 tags as in

[35] for evaluation. Then we randomly select 2500 regions whose tags are within the

selected subset of 27 tags as the training set and another 500 regions as the test set.
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Figure 4.3: The effect of parameters λ1 and λ2 on the region tagging performance

of our method on three datasets.

4.3.1 Comparing Methods and Parameter Setting

As in [130, 35], we choose LASSO [105], Group LASSO [136] and Sparse Group

LASSO [27] as baselines and use the implementation of these methods in SLEP

package [65]. We compare our mutli-layer supervised dictionary learning method

(MSDL) with two state-of-the-art approaches: SGSC [130], G2SRRT [35]. In order

to demonstrate that the super-class level can help improve the accuracy of region

tagging, we use single-layer supervised dictionary learning (SSDL) corresponding

to the basic-class level as another baseline. The performance of tagging accuracy

(number of correctly classified regions over the total test regions) is reported as the

average over 5 different trials corresponding to different partitions of training and

test sets.

79



4.3.2 Datasets and Feature Extraction

There are two important parameters in our model: λ1 and λ2 that are used

to balance the reconstruction error and the sparse penalty for two levels. The

ranges of both λ1 and λ2 for all datasets are {0.005,0.01,0.05,0.1,0.5,1}. For other

parameters in all experiments, we set the parameters ν = 0.1 and µ = 0.001 for

the regularization of sparse codes and classifiers respectively. In addition, the initial

learning rate ρ is set to be 0.001 and the level-specific dictionaries are initialized

using the software SPAMS [75]. The performance of region tagging by our method

with different λ1 and λ2 on three datasets are illustrated in Figure 4.3. We see that

the highest performance is achieved at different values of the two parameters for the

three datasets.

4.3.3 Experimental Results

The accuracies of region tagging using different methods on three datasets are

summarized in Table 4.1. We can see that for all the datasets, both SSDL and

our method outperform all the other methods. In particular, when compared with

other sparse coding-based algorithms, SSDL and our method significantly improve

the performance for region tagging on MSRC-v1 dataset—by a margin close to 10%

and 20% respectively. This is because the labeled tag distribution in MSRC-v1 is

very unbalanced and the tag with most training regions is more likely to be selected

for reconstruction of test regions when using the group sparse coding algorithm. On

the contrary, both SSDL and our method can reduce the reconstruction error to
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Methods MSRC-v1 MSRC-v2 SAIAPR

Lasso[105] 0.612 0.448 0.652

Group Lasso[136] 0.636 0.458 0.598

Sparse Group Lasso[27] 0.625 0.433 0.561

SGSC[129] 0.726 0.460 -

G2SRRT(kNN)[35] 0.727 0.473 0.646

G2SRRT(kNN+Tag)[35] 0.739 0.533 0.667

SSDL 0.830 0.560 0.704

MSDL 0.926 0.634 0.772

Table 4.1: The average accuracies of region tagging by different methods on MSRC-

v1, MSRC-v2 and SAIAPR TC-12 datatsets.

some extent by learning a more reconstructive and discriminative dictionary. Fur-

thermore, for the MSRC-v2 and SAIAPR TC-12 datasets, our method improves the

tagging accuracy by 10% that is twice than the improvement obtained by SSDL.

And this good performance by our method demonstrates that, we effectively ex-

plored the semantic relationship among tags and make the super-class level help

improve the performance for region tagging. In addition, different from the MSRC

datasets, images in the SAIAPR TC-12 dataset are more arbitrary and image regions

from the same tag vary drastically; the better performance by our method further

demonstrates that our approach can handle the diversity and arbitrariness of image

content by exploiting hierarchial relationships among tags. Finally, note that the

algorithm SGSC [130] needs to build a spatial kernel for regions within each image,
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Figure 4.5: Confusion matrices for SSDL (left) and our method MSDL (right) on

the MSRC-v1 dataset.

which requires regions within each image to be jointly selected and included in the

training and test sets. Since we randomly sampled image regions of the SAIAPR

TC-12 dataset and the spatial kernel might not be built, the performance for region

tagging by SGSC is not reported in Table 4.1 as in [35].

Figures 4.4 and 4.6 illustrate two tag taxonomies associated with MSRC-v1

and MSRC-v2 respectively while Figures 4.5 and 4.7 display the corresponding con-

fusion matrices obtained by SSDL and our method under the two datasets. Since
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Figure 4.6: The tag taxonomy for MSRC-v2

we obtain similar results in MSRCv1 and MSRCv2 datasets, for simplicity we take

MSRC-v1 dataset for analysis. Comparing the confusion matrix obtained by SSDL

with our method in Figure 4.5, we can see that tags building, tree, cow, aeroplane,

bicycle have large improvements in tagging accuracy using our proposed method.

Moreover, instead of classifying regions from the tag horse as face by SSDL, our

method classifies them as cow which is also in the same super-class as horse. This

demonstrates how our method takes advantages of implicit sharing of sparse codes

obtained from the super-class level to help improve the accuracy of tag nodes from

the basic-class level. It is also interesting to note that the tag car has a slight de-

crease in tagging accuracy because some regions from car are misclassified as bicycle

which is also in the same-super class. Thus, different tags benefit in different degrees

from the implicit sharing of sparse codes and a similar phenomenon has also been

observed in [96] which uses a parameter sharing strategy.

Figure 4.9 shows some examples of region tagging results on three datasets.

We see that our method correctly classifies those regions that are misclassified by

[35] and SSDL. To further investigate the performance of region tagging by SSDL

and our method, we select nine tags in each dataset and report the corresponding
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Figure 4.7: Confusion matrices for SSDL (left) and our method MSDL (right) on

the MSRC-v2 dataset.
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Figure 4.8: The performance comparison using SSDL and MSDL for nine selected

tags on each dataset.
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Figure 4.9: Examples of region tagging results on three benchmark image datasets.

The subfigures from the top to the bottom corresponds to the MSRC-v1, MSRC-v2

and SAIAPR TC-12 datasets respectively. In each subfigure, the columns from the

left to the right correspond to the samples image, region tagging results by [35],

our baseline (SSDL) and our method (MSDL). Misclassified tags are in yellow while

correctly classified tags are in white. The figure is best viewed in color.

tagging accuracy of each tag in Figure 4.8. From the detailed tagging performance,

we can see that our method obtains better tagging performance for most of the

tags. However, it is also interesting to note that SSDL obtains a slightly better

performance for some tags such as car in MSRC-v1 dataset and water in SAIAPR

TC-12 dataset. One possible reason is that the visual appearances of image regions

from these tags are very different from other tags within the same super-class which
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introduces a negative transfer. Similar facts are also observed in [96].

4.4 Summary

In this chapter, we have proposed a multi-layer hierarchical supervised dictio-

nary learning framework for region tagging by exploring the given tag taxonomy.

Specifically, we associate each tag node in the taxonomy with one node-specific dic-

tionary and concatenate the node-specific dictionaries in each level to construct a

level-specific dictionary. Using the level-specific dictionary and corresponding level-

specific group structure, we obtain level-specific sparse codes that are also close to

the ideal sparse codes. The sparse codes from different levels are summed up as the

final feature representation to learn the level-specific classifier. This enables us to

simultaneously take advantages of the robust encoding ability of group sparse cod-

ing as well as the semantic relationship in the tag taxonomy. We have extensively

tested our approach on three benchmark datasets and results clearly confirm the

effectiveness of our approach for region tagging. Although we select region tagging

to evaluate our proposed method, we believe that it is a general method and can be

developed and applied to object and activity recognition.
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Chapter 5: Attribute Learning and Selection for Visual Recognition

5.1 Related Work

In most traditional approaches for visual recognition, classifiers are trained

from patterns of low-level features and corresponding class labels. However, in real-

world recognition problems, low-level features can be hardly characterized by a single

class label due to large variations within each class. For example, in video-based

action recognition, videos of one action class may vary greatly due to large varia-

tions in viewpoints, complicated backgrounds, and people performing the actions

differently. Conventional low-level features are not able to adequately character-

ize the rich spatio-temporal structures in action videos. In order to address this

problem, multiple high-level semantic concepts called attributes were introduced

in [23, 53, 66, 60] to describe the object or action classes. Figure 5.1 shows exam-

ples of attributes which describe the object and action classes. For instance, at-

tributes such as “big” and “bush” characterize animal shapes and contextual scenes

as shown in Figure 5.1a, while “facing front” and “pushing” describe human poses

and spatio-temporal evolution of the action as shown in Figure 5.1b. These at-

tributes are semantically meaningful and interpretable by humans. Since they are

relatively robust to changes in viewpoints and scenes, they could bridge the gap
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between low-level features and class labels.

Attribute-based representations have proven to be very effective in many com-

puter vision applications. [53, 23] proposed to detect unseen object classes by de-

scribing objects using their attributes. [93] learned 20 visual attributes to discover

visual relationships among the object categories. [111, 115] jointly modeled the vi-

sual attributes and object classes for object naming and localization. [84] modeled

relative attributes to generate textural descriptions for new images. [99] presented

an approach for ranking and retrieval based on semantic attributes. [52] trained bi-

nary classifiers to recognize the presence or absence of describable aspects of visual

appearance such as gender and age for face verification. [18] employed a recom-

mender system to select semantic attributes for fine-grained recognition. [10, 85]

exploited attributes for classification with human-in-the-loop. Recently, attributes

were also employed to improve the performance for action recognition. [131] used

attributes and parts for recognizing human actions in still images. [66, 60, 29]

introduced different models to learn and exploit attributes for video-based activity

recognition.

Even though attribute-based representations appear effective for visual recog-

nition, they require humans to generate a list of attributes that may adequately

describe a set of classes. From this list, humans then need to assign the attributes

to each class. Previous approaches [66, 60] simply used all the given attributes and

ignored the difference in discriminative capabilities among attributes. This caused

two major problems. First, a set of human-labeled attributes may not be able to

represent and distinguish a set of classes. This is because humans may subjectively
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Figure 5.1: Exemplar images of two classes and their associated attribute sets from

the Animals with Attributes dataset and UCF101 dataset.

annotate images or videos with arbitrary attributes. For example, consider the two

classes “ApplyEyeMakeup” and “ApplyLipStick” in UCF101 action dataset [102]

shown in Figure 5.1b. They have the same set of human-labeled attributes and can-

not be distinguished from one another. Second, some manually labeled attributes

may be noisy or redundant which leads to degradation in visual recognition per-

formance. In addition, their inclusion also increases the feature extraction time.

Thus, it would be beneficial to use a smaller subset of attributes while achieving im-

proved or comparable performance by selecting a set of discriminative and compact

attributes.

In order to overcome the first drawback of human-labeled attributes, many

methods have been proposed to automatically learn attributes from images or videos.

These learned attributes may provide additional discriminative information and are

complementary to human-labeled attributes. In particular, [6] proposed to dis-

cover and characterize attributes by mining text and image data sampled from the
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Internet. [92] used objectness as attributes and also mined part attributes from

language resources. [18, 83] made use of human interaction to build both semantic

and discriminative attributes. [134] proposed two criteria (the category-separability

and learnability) to design discriminative category-level attributes.

Another line of work is to learn different types of mid-level representations to

provide additional discrimination capability. These mid-level representations usu-

ally identify the occurrence of semantic concepts of interest, such as scene types,

actions and objects. [26] constructed mid-level motion features from low-level op-

tical flow features using AdaBoost. [114] learned a global root template and a

constellation of several parts to model human actions. [106] used the output of a

large number of weakly trained object category classifiers to derive image descrip-

tors. [91] used a max margin framework to learn for discriminative binary codes for

representing images. [90] used trajectory clusters as candidates for the parts of an

action and assembled these clusters into an action class by graphical modeling. [38]

automatically mined discriminative spatio-temporal patches from videos as a new

mid-level representation.

In order to overcome the second drawback of human-labeled attributes, many

approaches have been proposed to model the relationship between attributes and

class labels. [23] exploited semantic and auxiliary discriminative attributes for

multi-classification where the discriminative attributes are based on the random

splits between one to five classes. [115] jointly modeled class labels and their visual

attributes. Specifically, attributes of an object are treated as latent variables and

the correlations among attributes are captured in an undirected graphical model

90



built from training data. [66] modeled attributes as latent variables and searched

for the best configuration of attributes for each action using latent SVMs. [60] de-

composed a video sequence into short-term segments and characterized segments by

the dynamics of their attributes.

We first propose to learn data-driven attributes to address the first drawback

of human-labeled attributes. We show that data data-driven attributes are comple-

mentary to human-labeled attributes. Instead of using clustering-based algorithms

to discover data-driven attributes as in [66], we propose a dictionary-based sparse

representation method to discover a large data-driven attribute set. Our learned at-

tributes are more suited to represent all the input data points because our method

avoids the problem of hard assignment of data points to clusters.

To address the second problem caused by noisy and redundant attributes, we

propose to select a compact and discriminative set of attributes from a large set of

attributes. Specifically, we first introduce an attribute contribution matrix, where

each row represents the discrimination capability of an attribute for differentiating

all different pairwise classes. Based on the attribute contribution matrix, we propose

three attribute selection criteria for selecting an attribute subset. The first criteria is

that the selected attribute subset should provide as much discrimination capability

as possible for each pairwise classes. This criteria ensures that the selected attributes

are discriminative. The second criteria is that the selected attribute subset should

have similar discrimination capability for each pairwise classes. This criteria will

balance the discrimination capability obtained by different pairwise classes. In order

to achieve the first two criteria, we construct an undirected graph and show that
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the selection procedure satisfying the two criteria can be formulated as the entropy

rate of a random walk on this graph. The last selection criterion is that the sum of

maximum discrimination capability that each pairwise classes can obtain from the

selected attributes should be maximized. This criteria will avoid the selection of

redundant attributes which can differentiate the same collection of pairwise classes.

In other words, one combination of pairwise classes may be repeatedly covered (dif-

ferentiated) by multiple attributes. It is better to select other attributes which can

differentiate uncovered combinations of pairwise classes. We model the last selec-

tion criteria as a weighted maximum coverage problem and encourage the selected

attribute subset to have a maximum coverage of all pairwise classes. Finally, we

integrate the entropy rate term of a random walk and weighted maximum coverage

term into the final object function for attribute selection. We demonstrate that

the objective function is submodular and present a greedy algorithm which gives a

near-optimal solution with a (1-1/e)-approximation bound.

This chapter is organized as follows: Section 2 briefly reviews the concept

of submodularity. Section 3 presents the proposed submodular attribute selection

approach. Sections 4 introduces the human-labeled attributes and data-driven at-

tributes. Section 5 shows some implementation details and Section 6 provides ex-

perimental results and analysis on four public datasets. Section 7 concludes this

chapter.
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5.2 Submodularity

Submodular functions are a class of set functions that have the the property

of diminishing returns [79]. Given a set E, a set function F : 2E → R is submodular

if F (A∪ v)−F (A) ≥ f(B ∪ v)−F (B) holds for all A ⊆ B ⊆ E and v ∈ E \B. The

diminishing return property means that the marginal gain of the element v decreases

if used in a later stage. Recently, submodular functions have been widely exploited

in various applications, such as sensor placements [50], superpixel segmentation [70],

document summarization [61], object detection and recognition [42, 144] and feature

selection [15, 72]. [72] presented a submodular feature selection method for acous-

tic score spaces based on existing facility location and saturated coverage functions.

Krause et al. [49] developed a submodular method for selecting dictionary columns

from multiple candidates for sparse representation. Iyer et al. [37] designed a new

framework for both unconstrained and constrained submodular function optimiza-

tion. Streeter et al. [103] proposed an online algorithm for maximizing submodular

functions. Different from these approaches, we define a novel submodular objec-

tive function for attribute selection. Although we only evaluate our approach for

action recognition, it can be applied to other recognition tasks that use attribute

descriptions.
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Subset c1/c2 c1/c3 c1/c4 c2/c3 c2/c4 c3/c4

S1 1 1 1 1 1 1

S2 2 2 2 2 2 2

S3 2 1 3 3 1 2

Table 5.1: Vector r corresponding to three different selected subsets. ci/cj means

class i versus class j.

5.3 Submodular Attribute Selection

In this section, we first introduce the definition of attribute contribution matrix

and then propose three attribute selection criteria for selecting a discriminative

and compact subset of attributes . In order to satisfy these criteria, we define a

submodular function which is a linear combination of the entropy rate of a random

walk and a weighted maximum coverage function.

5.3.1 Attribute Selection Criteria

Assume that we have C classes and a large attribute set P = {a1, a2, .., aM}

which contains M attributes. The set that includes all combinations of pairwise

classes is represented by U = {u1(1, 1), u2(1, 2), ..., ul(i, j), ..., uL(C − 1, C)} where

ul(i, j), i < j denotes the pairwise combination made up of classes i and j, l is the

index of this combination in U , and L = C × (C − 1)/2 is the total number of

all possible pairwise classes. Here we propose to use the Fisher score to construct

an attribute contribution matrix A ∈ RM×L, where an entry Ad,l represents
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the discrimination capability of attribute ad for differentiating the class pair (i, j)

indexed by ul(i, j). Specifically, given the attribute ad and class pair (i, j), let µdk

and σdk be the mean and standard deviation of the k-th class and µd be the mean of

samples from both classes i and j corresponding to the d-th attribute. The Fisher

score of attribute ad for differentiating the class pair (i, j) is computed as follows:

Ad,l(i,j) =

∑
k=i,j nk(µ

d
k − µd)2∑

k=i,j nkσ
2
k

(5.1)

where l is the index of pairwise classes (i, j) in U , and nk is the number of points

from class k. Note that different methods can be used to measure the discrimination

capability of ad, such as mutual information and T-test.

Given the attribute contribution matrix A, our goal is to select a subset of

attributes denote as S from the original attributes set P . As mentioned earlier in

the introduction, we propose the following three selection criteria to select attributes

in the subset S:

• The selected attribute subset should provide as much discrimination capability

as possible for each pairwise classes.

• The selected attribute subset should have similar discrimination capability for

each pairwise classes.

• The sum of maximum discrimination capability that each pairwise classes can

obtain from the selected attributes should be maximized.

Assume that we have already obtained the attributes S satisfying the above

three selection criteria, we can obtain a row vector r from the attribute contribution
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matrix A by summing up its elements from each column that are in rows corre-

sponding to selected attributes S. An example of vector r is shown in Table 5.1.

In order to satisfy the above three selection criteria, we would like to have r and A

satisfy the following three constraints respetively :

• Each entry of r should be as large as possible.

• The variance of all entries of r should be small.

• The sum of the maximum value of each column in the attribute contribution

matrix A should be maximized.

The first constraint explicitly forces each pairwise class to have as much discrimina-

tion capability as possible from the selected attribute subset. The second constraint

minimizes the variance of all entries of r. This will encourage each pairwise class to

have equal or similar discrimination capability. The last constraint will maximize

the sum of maximum discrimination capability that each pairwise classes can obtain

from the selected attributes should be maximized. The first two constraints can be

satisfied by maximizing the entropy rate of a random walk on the proposed graphs.

For the third constraint, we will model it as a weighted maximum coverage problem

and encourage S to have a maximum coverage of all pairwise classes.

5.3.2 Entropy Rate-based Attribute Selection

In order to optimize the first two criteria, we need to construct an undirected

graph and maximize the entropy rate of a random walk on this graph. We aim to
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Figure 5.2: The undirected graphs constructed based on Table 5.1. We show the

role of the entropy rate in selecting attributes which have large and similar dis-

crimination capability for each pair of classes. The circles with numbers denote

the corresponding class vertices and the numbers next to the edge denote the edge

weights, which is a measure of the discrimination capability of selected attribute

subset. The self-loops are not displayed. The entropy rate of the graph with large

edge weights in (c) has a higher objective value than that of a graph with smaller

edge weights in (b). The entropy rate of graph with equal edge weights in (c) has a

higher objective value than that of the graph with different edge weights in (d).

97



obtain a subset S so that the attribute-based representation has good discrimination

power.

Graph Construction: We use G = (V,E) to denote an undirected graph

where V is the vertex set, and E is the edge set. The vertex vi represents class

i and the edge ei,j connecting class i and j represents that class i and j can be

differentiated by the selected attribute subset S to some extent. The edge weight

for ei,j is defined as wi,j =
∑

d∈S Ad,l, which represents the discrimination capability

of S for differentiating class i from class j. The edge weights are symmetric, i.e.

wi,j = wj,i. In addition, we add a self-loop ei,i for each vertex vi of G. And the

weight for self-loop ei,i is defined as wi,i =
∑

d∈P\S Ad,l. The total incident weight

for each vertex is kept constant so that it produces a stationary distribution for the

later proposed random walk on this graph. Note that the addition of these self-loops

do not affect the selection of attributes and the graph will change with the selected

subset S.

Entropy Rate: We maximize the entropy rate of the random walk on the

constructed graph to satisfy the first two selection criteria. The entropy rate quan-

tifies the uncertainty of a stochastic process. Let X = {Xt|t ∈ T,Xt ∈ V } be a

random walk on the graph G = (V,E) with nonnegative discrimination measure

w. We use the random walk model from [14] with a transition probability pij(S)

defined as below:

pi,j(S) =

{ wi,j

wi
=

∑
d∈S Ad,l

wi
if i 6= j

1−
∑

k:k 6=i wi,k

wi
=

∑
d∈P\S Ad,l

wi
if i = j

(5.2)

where S is the selected attribute subset and wi =
∑

m:ei,m∈E wi,m is the sum of
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incident weights of the vertex vi including the self-loop. The stationary distribution

for this random walk is given by

µ = (µ1, µ2, ..., µC)T = (
w1

w0

,
w2

w0

, ...,
wC
w0

) (5.3)

where w0 =
∑C

i=1 wi is the sum of the total weights incident on all vertices. It can

be verified through µ = P Tµ where P = [p]i,j is the transition matrix.

For a stationary 1st-order Markov chain, the entropy rate which measures the

uncertainty of the stochastic process X is given by:

H(X) = limt→∞H(Xt|Xt−1, Xt−2, ..., X1)

= limt→∞H(Xt|Xt−1)

= H(X2|X1)

(5.4)

The first equality is the definition of the entropy rate of the stationary 1st-order

Markov chain, the last two equalities are due to the properties of 1st-order Markov

process and stationarity respectively. More details can be found in [14]. Conse-

quently, the entropy rate of the random walk X on our proposed graph G = (V,E)

can be written as a set function:

H(S) =
∑
i

uiH(X2|X1 = vi)

= −
∑
i

ui
∑
j

pi,j(S)log(pi,j(S))

= −
∑
i

wi
w0

∑
j

wi,j
wi

log
wi,j
wi

= −
∑
i

∑
j

wi,j
w0

log
wi,j
w0

+
∑
i

wi
w0

log
wi
w0

(5.5)

Intuitively, the maximization of the entropy rate has two consequences. First, it

encourages the maximization of pi,j(S) where i = 1, ..., C and i 6= j. This can make
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edge weights wi,j, i 6= j as large as possible, so class i can be easily differentiated

from other classes j (i.e., satisfying the first criteria). Second, it makes all class

vertices have transition probabilities similar to other connected class vertices, so the

discrimination capabilities of class i from other classes are very similar (i.e., satis-

fying the second criteria). Maximizing the entropy rate of the random walk on the

proposed graph can select a subset of attributes that are compact and discriminative

for differentiating all pairwise classes, as shown in Figure 5.2.

Proposition 5.3.1. The entropy rate of the random walk H : 2M → R is a sub-

modular function under the proposed graph construction.

The observation that adding an attribute in a later stage has a lower increase

in the uncertainty establishes the submodularity of the entropy rate. This is because

at a later stage, the increased edge weights from the added attribute will be shared

with attributes which contribute to the differentiation of the same pair of classes.

A detailed proof based on [70] is given in the supplementary section.

5.3.3 Weighted Maximum Coverage-based Attribute Selection

We consider a weighted maximum coverage function to achieve the last criteria

that the selected subset S should maximize the coverage of all combinations of

pairwise classes. For each attribute ad, we define a coverage set Ud ⊆ U which

covers all the combinations of pairwise classes that attribute ad can differentiate.

Meanwhile, for each element (combination) ul ∈ U that is covered by Ud, we define

a coverage weight w(Ud, ul) = Ad,l. Given the universe set U and these coverage
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Attrs. c1/c2 c1/c3 c1/c4 c2/c3 c2/c4 c3/c4

a1 2 2 0 1 1 0

a2 1 1 0 0 0 0

a3 0 0 1 0 0 2

a4 0 0 0 2 2 0

Table 5.2: Attribute contribution matrix A. ci/cj means class i versus class j.

sets Ud, d = 1, ...,M , the weighted maximum coverage problem is to select at most

K coverage sets, such that the sum of maximum coverage weight each element can

obtain from S is maximized. The weighted maximum coverage function is defined

as follows:

Q(S) =
∑
ul∈U

max
d∈S

w(Ud, ul)

=
∑
ul∈U

max
d∈S

Ad,l, s.t.NS ≤ K

(5.6)

where NS is the number of attributes in S. Note that the weighted maximum

coverage problem is reduced to the well studied set-cover problem when all the

coverage weights are equal to be ones.

Proposition 5.3.2. The weighted maximum coverage function Q : 2M → R is a

monotonically increasing submodular function under the proposed set representation.

For the weighted maximum coverage term, monotonicity is obvious because

the addition of any attribute will increase the number of covered elements in U .

Submodularity results from the observation that the coverage weights of increased
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Figure 5.3: The coverage graph constructed based on the Table 5.2. We show the

role of weighted maximum coverage term in selecting attributes which have large

coverage weights. Two numbers separated by a backslash in the top circles denote a

pair of classes, while the bottom circles denote different attributes. The number next

to one edge is the coverage weight associated with the class pair when covered by

the corresponding attribute. The edge which provides maximum coverage weight for

each class pair is in red color. We consider three attribute subsets S1 = {a1, a2},S2 =

{a1, a3},S3 = {a1, a4}. S2 has a higher objective value than S1 and S3 because the

sum of maximum coverage weights for all class pairs obtained using attributes from

subset S2 is largest.

covered elements will be less from adding an attribute in a later stage because some

elements may be already covered by previously selected attributes. The proof is

given in the supplementary section.

5.3.4 Objective Function and Optimization

Combing the entropy rate term and the weighted maximum coverage term,

the overall objective function for attribute selection is formulated as follows:

maxF(S) = max
S
H(S) + λQ(S) s.t.NS ≤ K (5.7)

102



where λ controls the relative contribution between the entropy rate and the weighted

maximum coverage term. The objective function is submodular because linear com-

bination of two submodular functions with nonnegative coefficients preserves sub-

modularity [79].

Direct maximization of a submodular function is an NP-hard problem. How-

ever, a greedy algorithm from [79] gives a near-optimal solution with a (1 − 1/e)-

approximation bound. The greedy algorithm starts from an empty attribute set

S = ∅ ; and iteratively adds one attribute that provides the largest gain for F at

each iteration. The iteration stops when the maximum number of selected attributes

is obtained or F(S) decreases. Algorithm 1 presents the pseudo code of our algo-

rithm. A naive implementation of this algorithm has the complexity of O(|M |2),

because it needs to loop O(|M |) times to add a new attribute and scan through

the whole attribute list in each loop. By exploiting the submodularity of the ob-

jective function, we use the lazy greedy approach presented in [57] to speed up the

optimization process.

Algorithm 4: Submodular Attribute Selection

1: Input: G = (V,E), A and λ

2: Output: S

3: Initialization: S ← ∅

4: for NS < K and F (S ∪ a)− F (S) ≥ 0 do

5: am = argmaxS∪amF(S ∪ {am})−F(S)

6: S ← am

7: end for
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5.4 Human-labeled Attribute and Data-driven Attribute Extraction

In this section, we introduce algorithms for the detection of human-labeled

attributes and extraction of data-driven attributes.

Visual classes can be characterized by a collection of human-labeled attributes.

For example, the action “long-jump” in Olympic Sports Dataset [80] is associated

with either the motion attributes (jump forward, motion in the air), or with the

scene attributes (e.g., outdoor, track). Given an instance x, an attribute classifier

fa : x → {0, 1} predicts the confidence score of the presence of attribute a in the

image or video. This classifier fa is learned using the training samples of all action

classes which have this attribute as positive and the rest as negative. Given a set of

attribute classifiers S = {fai(x)}mi=1, an instance x ∈ Rd is mapped to the semantic

space O:

h : Rd → O = [0, 1]m (5.8)

where h(x) = (h1(x), ..., hm(x))T is a m-dimensional attribute score vector.

Previous works [69, 66] on data-driven attribute discovery used k-means or

information theoretic clustering algorithms to obtain the clusters as the learned

attributes. We propose to discover a large initial set of data-driven attributes using

a dictionary learning method. Specifically, assume that we have a set of N data

instances in a n-dimensional feature space X = [x1, ..., xN ], xi ∈ Rn, then a data-

driven dictionary is learned by solving the following problem:

arg min
D,Z
||X −DZ||22 s.t. ∀i, ||zi||0 ≤ T (5.9)
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where D = [d1...dK ], di ∈ Rn is the learned attribute dictionary of size K, Z =

[zi...zN ], zi ∈ RK are the sparse codes of X, and T specifies the sparsity that each

video has fewer than T items in its decomposition. The objective function in (5.9)

can be solved using the KSVD algorithm [1]. Since each dictionary atom is treated

as a data-driven attribute, an entry zij in the sparse codes matrix Z is the assigned

value for the i-th attribute (dictionary atom) to the j-th instance.

Compared to k-means clustering, this dictionary-based learning scheme avoids

the hard assignment of cluster centers to data points. Moreover, it doesn’t require

the estimation of the probability density function of clusters in information theoretic

clustering. Note that our attribute selection framework is very general and different

initial attribute extraction methods can be used here.

5.5 Implementation Details

In this section, we provide the implementation details of our approach. The

parameter λ is set to be 0.1 throughout the experiments. The effect of λ on the

performance of our approach will be presented in the following experiment section.

For the AwA dataset, we followed [53] and used six different feature types:

RGB color histograms, SIFT, rgSIFT, PHOG, SURF and local self-similarity his-

tograms. We extracted the color histograms and PHOG feature vectors from 21

cells of a 3-level spatial pyramids (1× 1, 2× 2, 4× 4). For the color histograms, we

concatenated 128-dimensional color descriptor extracted from each cell to construct

a 2688-dimensional feature vector. For PHOG, we extracted 12-dimensional de-
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scriptors from each cell and used the same method to construct the final histogram.

For other feature types, we extracted 2000-dimensional histograms by using bag-of-

words model. We concatenate the histograms from all the feature types to construct

10940-dimensional descriptor histograms.

For the aPascal datase, we followed [23] and used a bag-of-words model to ex-

tract features for four feature types: color, texture, visual words and edges. Specifi-

cally, color descriptors and texture descriptors are computed for each pixel, densely

sampled and quantized to nearest 128 and 256 kmeans centers respectively. Visual

words of HOG descriptors are extracted from a spatial pyramid using 8× 8 blocks,

a 4 pixel step size and 2 scales per octave. The final HOG descriptors are quantized

to 1000 kmeans centers. The orientation of edges detected by a Canny edge detector

are quantized into 8 signed bins. To encode the information of shapes and locations,

we also divided the image into a grid of three vertical and two horizontal blocks, and

generate histograms of each feature type for each cells. The final feature histogram

is formed by concatenating the descriptors of the four feature types.

For the Olympic Sports datset, we followed the protocol in [66] to extract STIP

features [17]. In order to detect interest points for the STIP feature, we applied a 2D

Gaussian smoothing filter to video along the spatial dimension, followed by a pair of

1D Gabor filters temporally. Then we detect up to 200 interest points at the local

maximum response from each action video. We extract the ST volumes around the

interest points and obtain a a 100-dimensional gradient-based descriptors via PCA.

Following [66], these interest points-based descriptors are further quantized into

2000 visual words by k-mean clustering and each action video is represented by a

106



2000-dimensional histogram.

For the UCF101 dataset, we compute the improved version of dense trajecto-

ries in [112] and extract three types of descriptors for each trajectory: histogram of

oriented gradients (HOG), histogram of optical flow (HOF) and motion boundary

histogram (MBH). HOG captures the static appearance information while HOF and

MBH encode motion information by using optical flow. The three types of descrip-

tors are normalized and concatenated to form the the trajectory descriptor. We use

Fisher vector encoding [86] to obtain 101,376-dimensional histogram to represent

each action video.

We consider three sets of attributes: human-labeled attribute set (HLA set),

data-driven attribute set (DDA set) and the set mixing both types of attributes

(Mixed set). For each human-labeled attribute, the original high dimensional fea-

tures are used to learn the classifiers for predicting the presence of human-labeled

attributes. In order to learn data-driven attributes, we first reduce the dimension

of the original features by using the principle component analysis (PCA), and then

learn a dictionary from the features of reduced dimension using the KSVD algo-

rithm [1]. Each dictionary atom is treated as an attribute, and the sparse code

with respect to this dictionary atom is treated as the attribute value, indicating the

presence (or selection) of the associated dictionary atom for reconstruction. For the

Mixed set, we concatenate the prediction scores of human-labeled attributes and

the sparse codes associated with data-driven attributes to construct the new feature

representations on this set.

To demonstrate the effectiveness of our selection framework, we compare the
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result using the selected subset with the result based on the initial set. After at-

tribute selection, prediction scores of selected human-labeled attributes from the

HLA set are concatenated and normalized to form the new features for evaluation.

Whereas for the DDA set, the sub-dictionary made up of the selected dictionary

atoms (data-driven attributes) will be used to obtain new sparse representations for

evaluation. For the Mixed set, we use the similar strategies to obtain new features

based on the selected human-labeled and data-driven attribute subsets respectively.

For all the attribute-based representations, a nonlinear SVM with a Gaussian or

sigmoid kernel is trained for classifying unlabeled test data. The parameters C and

γ are chosen from {0.1, 0.5, 1, 5, 10}.

We also compare our method with two other submodular approaches based on

the facility location function (FL) and saturated coverage function (SC) discussed

in [72]. These objective functions are defined as follows:

Ffa(S) =
∑
i∈V

max
j∈S

wi,j

Fsa(S) =
∑
i∈V

min{Ci(S), αCi(V)}

where wi,j is a similarity between attribute i and j, Ci(S) =
∑

j∈S wi,j measures the

degree that attribute i is “covered” by S and α is a hyperparameter that determines

a global saturation threshold. For the two approaches compared against, we con-

sider an undirected k-nearest neighbor graph and use a Gaussian kernel to compute

pairwise similarities wi,j = exp(−βd2
i,j) where di,j is the distance between attribute

i and j, β = (2〈d2
i,j〉)−1 and 〈·〉 denotes expectation over all pairwise distances. The

value of k ranges from 5 to 10 for all the four datasets.
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5.6 Experiments

In this section, we validate our method for both object and action recognition.

We used the Animals with Attributes (AwA) dataset and aPscal Dataset introduced

in [53] for object recognition, Olympic Sports dataset [80] and UCF101 [66] dataset

for action recognition. For each dataset, we compare the result of the proposed

approach with two other submodular selection methods on the HLA, DDA and

Mixed sets respectively. Meanwhile, we compare the performance of attribute-

based representation with several state-of-the-art approaches on the four datasets.

5.6.1 Object Recognition

5.6.1.1 Animal with Attributes Dataset

The Animal with Attributes (AwA) dataset [53] contains 30,475 images of 50

animal categories. The images are collected by querying four large internet search

engines, Google, Microsoft, Yahoo and Flicker using the animal names as keywords.

Associated with images, there exist 85 human labeled attributes. Figure 5.1a shows

examples of some classes with the values of exemplary attributes assigned to this

class.

To demonstrate that attributes-based representation does improve object recog-

nition performance, we followed [134] to evaluate our approach for multi-class clas-

sification on 40 known categories of AwA dataset. We select different number of

training images K = 15, 20, 25, 30, 50 per category as training data, 25 images per
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methods 15 20 25 30 50

FL 21.6 24.4 28.2 28.7 37.0

SC 20.6 23.9 26.7 28.5 37.4

our method 22.6 25.5 29.1 30.1 38.7

Table 5.3: Recognition accuracy on the AwA dataset using human-labeled at-

tributes.

category as test data, and 10 images per category for validation.

For each different combination of training and test data, we construct three

attribute-based representations as follows: (1) HLA set: For each human-labeled

attribute, we train a non-linear Support Vector Machine (SVM) classifier combined

with the same kernel, which is the sum of individual χ2 kernels for each feature type.

For two D-dimensional feature vectors x, y ∈ RD, the χ2 kernel is defined to be

k(x, y) = exp(−γχ2(x, y)) where χ2(x, y) =
∑D

i=1
(xi−yi)2

xi+yi
, the bandwidth parameter

γ is set to be the five times inverse of median of the χ2-distances over the training

samples. We concatenate confidence scores from all these attribute classifiers into

a 85-dimensional vector to represent this image. (2) DDA set : For data-driven

attributes, we first apply PCA to reduce the dimension of histogram descriptors to

be D = 550, 750, 950, 1150, 1950 respectively when the number of training images is

K = 15, 20, 25, 30, 50 respectively. Then by using the KSVD algorithm [1], we learn

a dictionary of different size which is forty times of the number training images per

category. (3) Mixed set: The attribute set is made up of the combination of both

HLA set and DDA set.
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methods 15 20 25 30 50

FL [72] 17.4 21.2 20.4 21.6 25.1

SC [72] 18.0 21.3 21.9 22.5 25.9

our method 19.3 22.7 23.6 24.1 27.1

Table 5.4: Recognition accuracy on the AwA dataset using data-driven attributes.

methods 15 20 25 30 50

FL [72] 24.3 27.7 29.3 31.4 38.7

SC [72] 22.1 25.3 27.8 29.7 38.2

our method 25.1 28.0 30.8 32.1 39.6

Table 5.5: Recognition accuracy on the AwA dataset using the mixed attribute set.

Tables 5.3, 5.4 and 5.5 show classification accuracies of attribute subsets se-

lected by different submodular selection methods on the HLA, DDA and Mixed

sets respectively. It can be seen that SC [72] outperforms FL [72] on the human-

labeled attribute sets, but perform worse on the data-driven attribute sets. However,

our method consistently yields a better performance than the other two submodular

selection methods on all the three different attribute sets. This is because the at-

tributes selected by our method have large and similar discrimination capability for

differentiating pairwise classes, while the attributes selected by other two methods

have large similarity to other attributes. It is also observed that the performance

of all the three submodular selection methods increases as the number of training

images per category increases. In addition, different approaches on the HLA set
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Figure 5.4: Recognition results by different submodular methods on the AwA

dataset. The number of training images per category is 15.
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Figure 5.5: Recognition results by different submodular methods on the AwA datset.

The number of training images percategory is 25.

perform better than on the DDA set. One possible reason is that we used PCA

to reduce the dimension of the high dimensional features and lost some useful or

discriminative information. Finally, we note that different approaches achieve the

best performance on the Mixed set which combines both human-labeled attributes

and data-driven attributes. This demonstrates that data-driven attributes are com-

plementary to human-labeled attributes and can help improve the performance of

visual recognition.
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Figure 5.6: Recognition results by different submodular methods on the AwA datset.

The number of training images percategory is 50.

Figures 5.4, 5.5 and 5.6 present classification accuracies of attribute subsets of

different sizes when the number of training images per category is 15, 25 and 25 re-

spectively. When the number of training images per category is 15, only 15 attributes

out of 85 human-labeled attributes selected by the proposed method achieves com-

parable performance of the total HLA set. However, the attribute subsets selected

by other two submodular methods did not improve the performance of the total

HLA set. When the number of training images per category is 25 or 50, only half

of the 85 human-labeled attributes selected by the proposed method yield compa-

rable or better performance of the total HLA set. We also found that the first

selected 85 attributes out of the Mixed set by the proposed method are always

human-labeled attributes. This is because the human-labeled attributes are more

discriminative than data-driven attributes.

We also compare our approach with several state-of-the-art approaches on

this dataset: (1) low-level features, on which a SVM classifier is trained. (2)

Classemes [106], which used the output of a large number of weakly trained ob-
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methods 15 20 25 30 50

low-level features 22.6 22.7 24.4 25.0 27.0

CLA [134] 21.0 22.0 24.5 26.0 29.5

LDA [8] 22.6 23.4 27.0 30.4 31.8

classemes [106] 23.8 26.0 27.6 30.4 32.2

[28] 29.0 29.2 29.6 31.0 33.3

our method 25.1 28.0 30.8 32.1 39.6

Table 5.6: Recognition accuracy of different comparing methods on the AwA

dataset.

ject category classifiers as attributes. (3) Category-level attribute designing ap-

proach (CLA) [134], which designed discriminative category-level attributes. (4)

LDA-based attribute learning approach [8], which automatically learned attributes

for each object class by using latent dirichlet allocation. (5) [28], which mined vi-

sual prototypes of attributes by clustering with Gaussian mixtures from multi-scale

salient areas in noisy Web images.

Table 5.6 shows the results of different approaches. We observe that attribute-

based representations obtained by different approaches can achieve higher accuracy

against the low-level-feature-based approach. It can also be seen that our approach

consistently outperforms CLA[134], LDA[8] and Classemes[106], which demonstrates

the effectiveness of the proposed attribute selection approach that can select discrim-

inative and compact attribute subset from the original noisy and redundant set. In

addition, the proposed approach achieves comparable recognition accuracy to [28]
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Figure 5.7: The effect of λ on the performance of the proposed approach on the

AwA dataset when the number of training images percategory is 15, 25 and 50

respectively.

when the number of training images per category is less than 25, but surpasses it

when the number of training images per category is larger than 25.

Figure 5.7 shows the performance curves for a range of λ. We observe that

when λ is larger than 0.1, our approach obtains similar performance for different

values of λ.

5.6.1.2 aPascal Dataset

The aPascal dataset introduced in [23] consists of a subset of 12,695 images

from 20 classes selected from the PASCAL VOC 2008 dataset. Attributes are an-

notated on the image level and each image is annotated with 64 binary attributes.

These attributes characterize shape, material and presence of important parts of the

visual object.

In order to evaluate our approach for multi-class classification, we follow [23] to

use the Pascal training set as the training set and the Pascal validation set as the test
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Figure 5.8: Recognition results by different submodular methods on the aPascal

dataset.

set. Three attribute-based representations are constructed as follows: (1) HLA set:

For each human-labeled attribute, we trained a linear SVM and the parameter C was

chosen from {0.001, 0.01, 0.1, 1, 10, 100, 200}. We concatenate confidence scores

from all these attribute classifiers into a 64-dimensional vector to represent this

image. (2) DDA set: For data-driven attributes, we first apply PCA to reduce the

dimension of histogram descriptors to be 3000, and learn a dictionary of size 800 from

all video features using KSVD [1]. Each video is represented by a 800-dimensional

sparse coefficient vector. (3) Mixed set: This attribute set is obtained by combining

HLA set and DDA set. Figure 5.8 shows classification accuracies of attribute

subsets selected by different submodular slection methods. It can be observed that

our approach consistently outperform other two methods, which demonstrates that

the attributes selected by our approach are more discriminative.

Tables 5.7 shows classification accuracies of attribute subsets selected by the

different submodular selection methods on the HLA, DDA and Mixed sets respec-

tively. It can be seen that the attribute subsets selected by the different submodular
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Attributes set ALL Subset(FL) Subset(SC) ours

HLA 56.1 57.5 57.8 58.5

DDA 53.5 54.6 54.3 55.4

Mixed 57.0 58.7 58.6 59.9

Table 5.7: Recognition results of different attribute-based representations. “All”

denotes the original attribute sets and “Subset” denote the selected subsets.

Method logistic regression [23] SVM [23] latent space [2] ours

HLA 53.4 58.3 59.6 59.9

Table 5.8: Recognition results of different approaches.

methods outperform the initial attribute set. The proposed method consistently

yields a better performance than the other two submodular selection methods on

all the three different attribute sets.

We also compare our approach with several state-of-the-art approaches on

this dataset: (1) a classifier trained using logistic regression [23]. (2) a linear SVM

classifier [23]. Note that logistic regression and SVM [23] not only used the se-

mantic attributes, but also used another type of discriminative attributes proposed

in [23]. (3) latent space [2], which used partial least squares to find a suitable latent

attribute space to learn the semantic attributes. Table 5.8 shows the comparison re-

sult of different approaches. We observe that the proposed approach perform better

than other comparing approaches, which validates the effectiveness of the proposed

submodular attribute selection method.
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Figure 5.9: Sparse codes of class 6 and 16 before and after selection respectively.

(a)The sparse codes in red correspond to the sub-dictionary D6. (b) The sparse

codes in read correspond to the sub-dictionary D16.
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For data-driven attributes, we visualize the attribute values (or sparse codes)

of test samples from two different classes in Figure 5.9. Specifically, the learned

attribute dictionary D is made up of a set of class-specific dictionaries, i.e. D =

[D1, D2, ..., DK ], where Dk is the sub-dictionary corresponding to class k. The sparse

codes corresponding to the k-th sub-dictionary is most discriminative for differenti-

ating class k from other classes. Before selection, we sum up the absolute value of

sparse codes of test samples from each class. After the selection, we keep the sparse

codes corresponding to selected dictionary atoms and set the remaining sparse codes

to be zeros. It can be seen that the subset of discriminative sparse codes (in red)

are mostly kept after selection, while some noisy and redundant sparse codes are

removed. In addition, we normalize the sparse codes of each class to have a sum of

one. Since the normalized sparse codes can been seen as a distribution function, we

calculate the entropy of normalized sparse codes before and after selection respec-

tively. And we found that the entropy decreases after selection, which demonstrates

that the sparse codes are more discriminative after selection.

5.6.2 Action Recognition

5.6.2.1 Olympic Sports Dataset

The Olympic Sports dataset [80] contains 783 YouTube video clips of athletes

practicing different sports. It has 16 sports activities which includes high jump,

long jump, triple jump, pole vault, discus throw, hammer throw, javelin throw, shot

put, basketball lay-up, bowling, tennis serve, platform diving, springboard diving,
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High jump Long jump 

Hammer throw Discus throw 

(a) Olympic Sports dataset (b) UCF101 dataset

Figure 5.10: Exemplar frames of four action classes from the Olympic Sports dataset

and UCF101 dataset respectively.

snatch, clean and jerk, gymnastic vault. Figure 5.10a shows exemplar frames of four

action classes. We use 40 human-labeled attributes provided by [66].

Three attribute-based representations are constructed as follows: (1) HLA

set: For each human-labeled attribute, we train a binary SVM with a histogram

intersection kernel. We concatenate confidence scores from all these attribute clas-

sifiers into a 40-dimensional vector to represent this video. (2) DDA set: For

data-driven attributes, we learn a dictionary of size 457 from all video features us-

ing KSVD [1] and each video is represented by a 457-dimensional sparse coefficient

vector. (3) Mixed set: This attribute set is obtained by combining HLA set and

DDA set.

We compare the performance of features based on selected attributes with

those based on the initial attribute set. For all the different attribute-based fea-

tures, we use an SVM with Gaussian kernel for classification. Table 5.9 shows clas-
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dataset
HLA DDA Mixed

All Subset All Subset All Subset

Olympic 61.8 64.1 49.0 53.8 63.1 66.7

UCF101 81.7 83.4 79.0 81.6 82.3 85.2

Table 5.9: Recognition results of different attribute-based representations. “All”

denotes the original attribute sets and “Subset” denote the selected subsets.

sification accuracies of different attribute-based representations. Compared with the

initial attribute set, the selected attributes have greatly improved the classification

accuracy, which demonstrates the effectiveness of the proposed method for selecting

a subset of discriminative attributes. Moreover, features based on the Mixed set

outperform features based on either HLA set or DDA set. This shows that data-

driven attributes are complementary to human-labeled attributes and together they

offer a better description of actions.

Table 5.10 shows the per-category average precision (AP) and mean AP of

different approaches. It can be seen that the proposed method achieves the best

performance. This illustrates the benefits of selecting discriminative attributes and

removing noisy and redundant attributes. Note that our method outperforms the

method that is most similar to ours [66] which uses complex latent SVMs to combine

low-level features, human-labeled attributes and data-driven attributes. Moreover,

compared with other dynamic classifiers [80, 60] which account for the dynamics

of bag-of-features or action attributes, our method still obtains comparable results.

This is because the provided human-labeled attributes are very noisy and they
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Activity [54] [80] [104] [66] [60] HLA DDA Mixed

high-jump 52.4 68.9 18.4 93.2 82.2 80.4 66.4 83.1

long-jump 66.8 74.8 81.8 82.6 92.5 88.8 85.3 93.9

triple-jump 36.1 52.3 16.1 48.3 52.1 61.4 60.7 73.6

pole-vault 47.8 82.0 84.9 74.4 79.4 55.1 45.5 56.8

gym. vault 88.6 86.1 85.7 86.7 83.4 98.2 84.2 98.4

short-put 56.2 62.1 43.3 76.2 70.3 63.7 39.5 72.2

snatch 41.8 69.2 88.6 71.6 72.7 74.5 34.2 79.8

clean-jerk 83.2 84.1 78.2 79.4 85.1 73.8 57.9 82.6

javelin throw 61.1 74.6 79.5 62.1 87.5 36.0 26.4 36.5

hammer throw 65.1 77.5 70.5 65.5 74.0 76.9 77.2 80.4

discuss throw 37.4 58.5 48.9 68.9 57.0 53.9 45.6 56.0

diving-plat. 91.5 87.2 93.7 77.5 86.0 94.8 55.3 99.2

diving-sp. bd. 80.7 77.2 79.3 65.2 78.3 79.7 59.7 90.4

bask. layup 75.8 77.9 85.5 66.7 78.1 88.7 89.7 90.7

bowling 66.7 72.7 64.3 72.0 52.5 43.0 55.3 55.4

tennis-serve 39.6 49.1 49.6 55.2 38.7 78.8 35.3 83.7

mean-AP 62.0 72.1 66.8 71.6 73.2 72.1 57.2 77.0

Table 5.10: Average precisions for activity recognition on the Olympic Sporst

dataset.
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Figure 5.11: Recognition results by different submodular methods on the Olympic

Sports dataset.

can greatly affect the training of latent SVM and representation of the attribute

dynamics.

Figures 5.11a 5.11b 5.11c show classification accuracies of attribute subsets

selected by different submodular selection methods. It can be seen that our method

outperforms the other two submodular selection methods for the three different

attribute sets. This is because our method prefers attributes with large and sim-

ilar discrimination capability for differentiating pairwise classes, while the other

two methods prefer attributes with large similarity to other attributes (i.e. repre-
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sentative), without explicitly considering the discrimination capabilities of selected

attributes. Figure 5.11d shows the performance curves for a range of λ. We observe

that the combination of entropy rate term and maximum coverage term obtains a

higher classification accuracy than when only one of them is used. In addition, our

approach is insensitive to the selection of λ on the Olympic Sports dataset.

5.6.2.2 UCF101 Dataset

UCF101 dataset contains over 10,000 video clips from 101 different human

action categories. Figure 5.10b shows exemplar frames of four action classes.

Three different attribute sets and corresponding attribute-based representa-

tions are constructed as follows: (1) HLA set: Due to the high dimensionality of

features and large number of samples, the linear SVM is trained for the detection

of each human-labeled attribute. We concatenate confidence scores from all these

attribute classifiers into a 115-dimensional vector to represent a video. (2) DDA

set: For data-driven attributes, we first apply PCA to reduce the dimension of his-

togram descriptors to be 3300 and then learn a dictionary of size 3030. The features

based on data-driven attributes are 3030-dimensional sparse coefficient vectors. (3)

Mixed set: HLA set plus DDA set.

Following the training and testing dataset partitions proposed in [102], we

train a linear SVM and report classification accuracies of different attribute-based

representations in Table 5.9. The selected attribute subset outperforms the initial

attribute set again which demonstrates the effectiveness of our proposed attribute
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Figure 5.12: Recognition results by different submodular methods on UCF101

dataset.

selection method. Figure 5.12 shows the results of attribute subsets selected by

different submodular selection methods. Note that this dataset is highly challenging

because the training and test videos of the same action have different backgrounds

and actors. It can be seen that our method still substantially outperforms the other

two submodular methods. This is because some redundant attributes dominated the

selection process and the attributes selected by approaches in the comparison group

had very unbalanced discrimination capability for different classes. However, the

attributes selected by the proposed method have strong and similar discrimination

capability for each class.

Table 5.11 presents the classification accuracies of several state-of-the-art ap-

proaches on this dataset. Our method achieves comparable results to the best result

85.9% from [112] which uses complex spatio-temporal pyramids to embed structure

information in features. Note that our method also outperforms other methods

which make use of complicated and advanced feature extraction and encoding tech-

niques.
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splits [112] [122] [143] [44] [94] HLA DDA Mixed

1 83.03 83.11 79.41 65.22 63.41 82.45 80.35 84.19

2 84.22 84.60 81.25 65.39 65.37 83.27 82.16 85.51

3 84.80 84.23 82.03 67.24 64.12 84.60 82.42 86.30

Avg 84.02 83.98 80.90 65.95 64.30 83.44 81.64 85.24

Table 5.11: Recognition results of different approaches on UCF101 dataset.

5.7 Summary

We exploited human-labeled attributes and data-driven attributes for improv-

ing the performance of both object and action recognition algorithms. We first

presented three attribute selection criteria for the selection of discriminative and

compact attributes. Then we formulated the selection procedure as one of opti-

mizing a submodular function based on the entropy rate of a random walk and

weighted maximum coverage function. Our selected attributes not only have strong

and similar discrimination capability for all pairwise classes, but also maximize the

sum of largest discrimination capability that each pairwise classes can obtain from

the selected attributes. Experimental results on four challenging dataset show that

the proposed method significantly outperforms many state-of-the art approaches.

Our approach has two limitations that need to be addressed. First, the data-

driven attributes are learned independently from the human-labeled attributes, it

is possible that some of the learned data-driven attributes are redundant and can

not help improve the performance of visual recognition. One possible future work
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includes extending our approach to model the relationship between human-labeled

attributes and data-driven attributes, such that the learned data-driven attributes

should further reduce the confusion among classes given the human-labeled at-

tributes. Second, our our approach only exploits the linear relationship between

attributes in the entropy rate term, and the first-order relationship in the weighted

maximum coverage term. Another possible future work is to model and exploit

high-order relationship among attributes for improving the performance of visual

recognition.
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Chapter 6: Directions for Future Work

In this chapter, we outline several potential directions in which the problems

addressed in this dissertation can be explored further.

6.1 Grassmman Manifold-based Domain Adaptation

In the manifold-based approach [33], only the source and target data are avail-

able and we generated intermediate representations by sampling along the geodesic

that connects the source and target domains. It is not clear why these interme-

diate representations could help decrease the mismatch between the two domains

and improve the cross-domain classification task. We would like to validate the

quality of these intermediate representations. Given a subset of the real and inter-

mediate samples, corresponding to domain shifts that lie between source and target

domains, we will develop subspace-based representations from them to evaluate the

fidelity of the intermediate data synthetically generated by sampling the geodesic.

The real and intermediate samples can also be used to regularize the construction

of geodesic-based intermediate representations. Figure 6.1 shows the difference be-

tween subspaces obtained from intermediate samples and subspaces sampled from

the geodesic on the Grassmann manifold.
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Figure 6.1: Synthetic intermediate representations versus real intermediate

representations. We apply PCA in the source and target domains and obtain two sub-

spaces Ss, St. intermediate subspace S1 and S2 are obtained by sampling along the geodesic

connecting the source and target domains. Since intermediate samples are available, we

can obtain the intermediate subspace S′1, S
′
2 by applying PCA similarly. S1, S2 are called

synthetic intermediate subspaces while S′1, S
′
2 are called real intermediate subspaces.

6.2 Measures of Domain Shifts

We will investigate measures to characterize the nature and type of domain

shift so that appropriate adaptation methods can be developed and evaluated. For

example, pose variations correspond to geometric domain shifts, while appearance

shifts due to illumination variations provide photometric domain shifts. We will

integrate physical models to handle domain shifts due to pose and illumination

variations. Statistical models will be developed to address domain shifts due to

occlusions as these could be random. We will develop principled methods to predict

the adaptability of one domain to another. Public data sets, such as the CMU PIE
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and CMU MultiPIE data, which consists of faces at different poses illuminated by

multiple sources, can be the initial data sets that will enable this investigation.

6.3 Vision applications

Our previous efforts have focused on object recognition, face recognition and

activity recognition problems. We will continue to evaluate the effectiveness of

domain adaptation methods for object recognition problems in unconstrained con-

ditions. We will also investigate domain adaptation methods for other computer

vision algorithms, such as object detection and tracking. Object detection algo-

rithms require adaptation to objects and background clutter.

6.4 Hierarchical Latent Domain Adaptation

Large-scale image classification systems that are able to identify objects among

thousands of possible labels are receiving significant attention in recent years. How-

ever, we are often confronted with the situation that the test data only covers a

semantically related subset of all the objects whereas the training data contains

millions of samples from all the objects. This means that the training data and test

data have different label space and the label space of the test data are a subset of

that of training data. On the one hand, the general classifiers trained using all the

available training data is not optimal to the specific test tasks. On the other hand,

it is inefficient and suboptimal to retrain the classifiers whenever a test task is given.

We will focus on optimally adapting the general classifiers to specific task as shown
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Figure 6.2: Hierarchical latent domain adaptation. General classifiers are trained

over all the class labels in the bottom. The specific test task which are implicitly

given as a set of image queries come from a semantically related subset of all the

class labels. The goal is to adapt the general classifiers to specific test task.

in Figure 6.2.

A probabilistic model that jointly identifies the underlying test task and per-

forms prediction with a linear-time probabilistic inference algorithm was proposed

by [40]. However, this generative model has the following disadvantages:(1)Tree

structure of category labels is used for task discovery only but not for training of

the general classifiers. (2) It is not reasonable to model latent task space using

the Erland prior. (3) Each category label is treated equally during the label refine-

ment and the similarity of sibling nodes is not exploited. Future work will focus on

deriving discriminative model to adapt the general classifiers to specific tasks.
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Appendix A: Appendix

Here we give proofs of proposition 5.3.1 and 5.3.2 in Chapter 5.

A.1 Proof of Submodularity of Entropy Rate

Recall our definition of H(S):

H(S) = −
∑
i

ui
∑
j

pi,j(S)log(pi,j(S)) (A.1)

where ui is the stationary probability of vi in the stationary distribution and pi,j(S)

is the transition probability from vi to vj with respect to S. T

Proof. We prove the submodularity by showing

H(S ∪ {a1})−H(S) ≥ H(S ∪ {a1, a2})−H(S ∪ {a2}). (A.2)

It is known that the transition probability with respect to S is given as follows:

pi,j(S) =

{ wi,j

wi
=

∑
d∈S Ad,l

wi
if i 6= j

wi,i

wi
=

∑
d∈P\S Ad,l

wi
if i = j

(A.3)

where wi =
∑

m:ei,m∈E wi,m is the sum of incident weights of the vertex vi and

wi,i = wi −
∑

j 6=iwi,j, l is the index of the combination of pairwise classes (i, j) in

U . Without loss of generality, we assume that after the addition of attribute an into
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S, the transition probability becomes

pi,j(S ∪ {a1}) =

{ wi,j

wi
+

An,l

wi
if i 6= j

wi,i

wi
−

∑
j 6=i An,l

wi
if i = j.

(A.4)

For simplicity of notation, we let pi,j(S) = pi,j and pi,j(S∪{an}) = pi,j+∆n
i,j, n = 1, 2,

where ∆n
i,j is symmetric,i.e. ∆n

i,j = ∆n
j,i. We note that ∆n

i,j 6=i ≥ 0 and ∆n
i,i =

−
∑

j 6=i ∆
n
i,j ≤ 0. ∆n

i,j = 0 means that the addition of an does not increase the edge

weight ei,j while ∆n
i,j > 0 means that the addition of an increase wi,j. Similarly, we

let pi,j(S ∪ {a1, a2}) = pi,j + ∆1
i,j + ∆2

i,j.

H(S ∪ {a1})−H(S) (A.5)

= −
∑
i

ui
∑
j

(pi,j + ∆i,j) log((pi,j + ∆i,j) +
∑
i

ui
∑
j

pi,j log pi,j (A.6)

= −
∑
i

∑
j

wi(pi,j + ∆i,j)

w0

log(pi,j + ∆i,j)−
∑
i

∑
j

wi(pi,j + ∆i,j)

w0

log
wi
w0

(A.7)

+
∑
i

∑
j

wipi,j
w0

log
wi
w0

+
∑
i

∑
j

wipi,j
w0

log pi,j (A.8)

= −
∑
i

∑
j

wi(pi,j + ∆i,j)

w0

log
wi(pi,j + ∆i,j)

w0

+
∑
i

∑
j

wipi,j
w0

log
wipi,j
w0

(A.9)

= −
∑
i

∑
j

wipi,j
w0

log
wi(pi,j + ∆i,j)

w0

+
∑
i

∑
j

wipi,j
w0

log
wipi,j
w0

(A.10)

−
∑
i

∑
j

wi∆i,j

w0

log
wi(pi,j + ∆i,j)

w0

(A.11)

Now we prove the first two terms and the las term are larger than zeros respectively.

−
∑
i

∑
j

wipi,j
w0

log
wi(pi,j + ∆i,j)

w0

+
∑
i

∑
j

wipi,j
w0

log
wipi,j
w0

(A.12)

=
∑
i

∑
j

wipi,j
w0

log

wipi,j
w0

wi(pi,j+∆i,j)

w0

(A.13)
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≥
∑
i

∑
j

wipi,j
w0

log

∑
i

∑
j
wipi,j
w0∑

i

∑
j
wi(pi,j+∆i,j)

w0

(A.14)

=
∑
i

∑
j

wipi,j
w0

log 1 = 0 (A.15)

by the definition of transition probability
∑

j(pi,j + ∆i,j) =
∑

j pi,j = 1 and the

Log-sum inequality stated as follows.

Proposition A.1.1. (Log-sum inequality) For non-negative numbers a1, a2, ..., an

and b1, b2, ..., bn
n∑
i=1

ai log
ai
bi
≥ (

n∑
i=1

ai) log

∑n
i=1 ai

sumn
n=1bi

(A.16)

with equality if and only if ai
bi

= constant.

−
∑
i

∑
j

wi∆i,j

w0

log
wi(pi,j + ∆i,j)

w0

(A.17)

= −
∑
i

∑
j 6=i

wi∆i,j

w0

log
wi(pi,j + ∆i,j)

w0

−
∑
i

wi∆i,i

w0

log
wi(pi,i + ∆i,i)

w0

(A.18)

= −
∑
i

∑
j 6=i

wi∆i,j

w0

log
wi(pi,j + ∆i,j)

w0

+
∑
i

∑
j 6=i

wi∆i,j

w0

log
wi(pi,i + ∆i,i)

w0

(A.19)

=
∑
i

∑
j 6=i

wi∆i,j

w0

log
pi,i + ∆i,i

pi,j + ∆i,j

(A.20)

A.1.1 Submodularity

Proof. We prove the submodularity by showing

H(S ∪ {a1})−H(S) ≥ H(S ∪ {a1, a2})−H(S ∪ {a2}). (A.21)

Similarly, for simplicity of notation, we let pi,j(S ∪ {a1}) = pi,j + ∆1
i,j and
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pi,j(S ∪ {a1, a2}) = pi,j + ∆1
i,j + ∆2

i,j.

H(S ∪ {a1})−H(S)−H(S ∪ {a1, a2}) +H(S ∪ {a2}) (A.22)

= −
∑
i

∑
j

wi(pi,j + ∆1
i,j)

w0

log
wi(pi,j + ∆1

i,j)

w0

+
∑
i

∑
j

wipi,j
w0

log
wipi,j
w0

(A.23)

+
∑
i

∑
j

wi(pi,j + ∆1
i,j + ∆2

i,j)

w0

log
wi(pi,j + ∆1

i,j + ∆2
i,j)

w0

(A.24)

−
∑
i

∑
j

wi(pi,j + ∆2
i,j)

w0

log
wi(pi,j + ∆2

i,j)

w0

(A.25)

= −
∑
i

∑
j

wi(pi,j + ∆1
i,j)

w0

log
wi(pi,j + ∆1

i,j)

w0

(A.26)

+
∑
i

∑
j

wi(pi,j + ∆1
i,j)

w0

log
wi(pi,j + ∆1

i,j + ∆2
i,j)

w0

(A.27)

+
∑
i

∑
j

wi∆
2
i,j

w0

log
wi(pi,j + ∆1

i,j + ∆2
i,j)

w0

(A.28)

−
∑
i

∑
j

wi(pi,j + ∆2
i,j)

w0

log
wi(pi,j + ∆2

i,j)

w0

(A.29)

+
∑
i

∑
j

wipi,j
w0

log
wipi,j
w0

(A.30)

= −
∑
i

∑
j

wi(pi,j + ∆1
i,j)

w0

log
wi(pi,j + ∆1

i,j)

w0

(A.31)

+
∑
i

∑
j

wi(pi,j + ∆1
i,j)

w0

log
wi(pi,j + ∆1

i,j + ∆2
i,j)

w0

(A.32)

+
∑
i

∑
j

wi(pi,j + ∆2
i,j)

w0

log
wi(pi,j + ∆1

i,j + ∆2
i,j)

w0

(A.33)

−
∑
i

∑
j

wi(pi,j + ∆2
i,j)

w0

log
wi(pi,j + ∆2

i,j)

w0

(A.34)

+
∑
i

∑
j

wipi,j
w0

log
wipi,j
w0

−
∑
i

∑
j

wipi,j
w0

log
wi(pi,j + ∆1

i,j + ∆2
i,j)

w0

(A.35)

=
∑
i

∑
j

wi(pi,j + ∆1
i,j)

w0

log

wi(pi,j+∆1
i,j+∆2

i,j)

w0

wi(pi,j+∆1
i,j)

w0

(A.36)
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+
∑
i

∑
j

wi(pi,j + ∆2
i,j)

w0

log

wi(pi,j+∆1
i,j+∆2

i,j)

w0

wi(pi,j+∆2
i,j)

w0

(A.37)

+
∑
i

∑
j

wipi,j
w0

log

wipi,j
w0

wi(pi,j+∆1
i,j+∆2

i,j)

w0

(A.38)

≥
∑
i

∑
j

wi(pi,j + ∆1
i,j)

w0

log

∑
i

∑
j

wi(pi,j+∆1
i,j+∆2

i,j)

w0∑
i

∑
j

wi(pi,j+∆1
i,j)

w0

(A.39)

+
∑
i

∑
j

wi(pi,j + ∆2
i,j)

w0

log

∑
i

∑
j

wi(pi,j+∆1
i,j+∆2

i,j)

w0∑
i

∑
j

wi(pi,j+∆2
i,j)

w0

(A.40)

+
∑
i

∑
j

wipi,j
w0

log

∑
i

∑
j
wipi,j
w0∑

i

∑
j wi(pi,j+∆1

i,j+∆2
i,j)

w0

(A.41)

=
∑
i

∑
j

wi(pi,j + ∆1
i,j)

w0

log 1 +
∑
i

∑
j

wi(pi,j + ∆2
i,j)

w0

log 1 (A.42)

+
∑
i

∑
j

wipi,j
w0

log 1 (A.43)

= 0. (A.44)

by the definition of the transition probability

∑
j

pi,j =
∑
j

(pi,j + ∆1
i,j) =

∑
j

(pi,j + ∆1
i,j + ∆2

i,j) = 1 (A.45)

A.2 Proof of Monotonically Increasing Submodularity of Coverage

Term

The proof contains two parts. The first part proves Q(S) is monotonically

increasing. In the second part, we show that Q(S) is submodular.
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A.2.1 Proof of the monotonically increasing property

Proof. Let S be a subset of attributes and a1 ∈ P be any attribute. We prove

the monotonically increasing property

Q(S ∪ {a1})−Q(S) ≥ 0. (A.46)

Q(S ∪ {a1})−Q(S) =
∑
ul∈U

max
d∈S∪{a1}

Ad,l −
∑
ul∈U

max
d∈S

Ad,l (A.47)

=
∑
ul∈U

[max(max
d∈S

Ad,l, A1,l)−max
d∈S

Ad,l] ≥ 0 (A.48)

A.2.2 Proof of the submodularity

Proof. We prove the submodularity by showing

Q(S ∪ {a1})−Q(S) ≥ Q(S ∪ {a1, a2})−Q(S ∪ {a2}). (A.49)

.

Q(S ∪ {a1})−Q(S) ≥ Q(S ∪ {a1, a2})−Q(S ∪ {a2}) (A.50)

=
∑
ul∈U

[max(max
d∈S

Ad,l, A1,l)−max
d∈S

Ad,l −max(max
d∈S

Ad,l, A1,l, A2,l) (A.51)

+ max(max
d∈S

Ad,l, A2,l)]. (A.52)

Depending on which term from the three terms maxd∈S Ad,l, A1,l and A2,l is largest,

we consider three cases and prove that

Ql = max(max
d∈S

Ad,l, A1,l)−max
d∈S

Ad,l−max(max
d∈S

Ad,l, A1,l, A2,l)+max(max
d∈S

Ad,l, A2,l) ≥ 0

(A.53)

137



for given ul ∈ U .

Case 1: Assume that maxd∈S Ad,l is the largest, i.e. maxd∈S Ad,l ≥ A1,l,maxd∈S Ad,l ≥

A2,l, then

Ql = max
d∈S

Ad,l −max
d∈S

Ad,l −max
d∈S

Ad,l + max
d∈S

Ad,l = 0. (A.54)

Case 2: Assume that A1,l is the largest, i.e. A1,l ≥ maxd∈S Ad,l, A1,l ≥ maxd∈S ,

then

Ql = A1,l −max
d∈S

Ad,l − A1,l + max
d∈S

Ad,l (A.55)

= max(max
d∈S

Ad,l, A2,l)−max
d∈S

Ad,l ≥ 0. (A.56)

Case 3: Assume that A2,l is the largest, i.e. A2,l ≥ maxd∈S Ad,l, A2,l ≥ maxd∈S ,

then

Ql = max(max
d∈S

Ad,l, A1,l)−max
d∈S

Ad,l − A2,l + A2,l (A.57)

= max(max
d∈S

Ad,l, A1,l)−max
d∈S

Ad,l ≥ 0. (A.58)
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