451 research outputs found

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Dielectric Resonator Antennas: Applications and developments in multiple-input, multiple-output technology

    Get PDF
    This article presents a comprehensive review of multiple-input, multiple-output (MIMO) dielectric resonator antennas (DRAs) that have evolved in the past decade. In addition to the major challenges faced during designing an MIMO DRA, this article also discusses research gaps that must be filled in the future. Exploring the advantages of DRAs, numerous novel designs have been proposed in the last few years

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    A comprehensive survey on 'circular polarized antennas' for existing and emerging wireless communication technologies

    Get PDF
    Circular polarized (CP) antennas are well suited for long-distance transmission attainment. In order to be adaptable for beyond 5G communication, a detailed and systematic investigation of their important conventional features is required for expected enhancements. The existing designs employing millimeter wave, microwave, and ultra-wideband (UWB) frequencies form the elementary platform for future studies. The 3.4-3.8 GHz frequency band has been identified as a worthy candidate for 5G communications because of spectrum availability. This band comes under UWB frequencies (3.1-10.6 GHz). In this survey, a review of CP antennas in the selected areas to improve the understanding of early-stage researchers specially experienced antenna designers has presented for the first time as best of our knowledge. Design implementations involving size, axial ratio, efficiency, and gain improvements are covered in detail. Besides that, various design approaches to realize CP antennas including (a) printed CP antennas based on parasitic or slotted elements, (b) dielectric resonator CP antennas, (c) reconfigurable CP antennas, (d) substrate integrated waveguide CP antennas, (e) fractal CP antennas, (f) hybrid techniques CP antennas, and (g) 3D printing CP antennas with single and multiple feeding structures have investigated and analyzed. The aim of this work is to provide necessary guidance for the selection of CP antenna geometries in terms of the required dimensions, available bandwidth, gain, and useful materials for the integration and realization in future communication systems

    Design and Implementation of an Integrated Solar Panel Antenna for Small Satellites

    Get PDF
    Thesis (PhD (Electrical Engineering))--Cape Peninsula University of Technology, 2019This dissertation presents a concept for a compact, low-profile, integrated solar panel antenna for use on small satellites in low Earth orbit. To date, the integrated solar panel antenna design approach has primarily been, patch (transparent or non-transparent) and slot radiators. The design approach presented here is proposed as an alternative to existing designs. A prototype, comprising of an optically transparent rectangular dielectric resonator was constructed and can be mounted on top of a solar panel of a Cube Satellite. The ceramic glass, LASF35 is characterised by its excellent transmittance and was used to realise an antenna which does not compete with solar panels for surface area. Currently, no closed-form solution for the resonant frequency and Q-factor of a rectangular dielectric resonator antenna exists and as a first-order solution the dielectric waveguide model was used to derive the geometrical dimensions of the dielectric resonator antenna. The result obtained with the dielectric waveguide model is compared with several numerical methods such as the method of moments, finite integration technique, radar cross-section technique, characteristic mode analysis and finally with measurements. This verification approach was taken to give insight into the resonant modes and modal behaviour of the antenna. The interaction between antenna and a triple-junction gallium arsenide solar cell is presented demonstrating a loss in solar efficiency of 15.3%. A single rectangular dielectric resonator antenna mounted on a ground plane demonstrated a gain of 4.2 dBi and 5.7 dBi with and without the solar cell respectively. A dielectric resonator antenna array with a back-to-back Yagi-Uda topology is proposed, designed and evaluated. The main beam of this array can be steered can steer its beam ensuring a constant flux density at a satellite ground station. This isoflux gain profile is formed by the envelope of the steered beams which are controlled using a single digital phase shifter. The array achieved a beam-steering limit of ±66° with a measured maximum gain of 11.4 dBi. The outcome of this research is to realise a single component with dual functionality satisfying the cost, size and weight requirements of small satellites by optimally utilising the surface area of the solar panels

    Development of micromachined millimeter-wave modules for next-generation wireless transceiver front-ends

    Get PDF
    This thesis discusses the design, fabrication, integration and characterization of millimeter wave passive components using polymer-core-conductor surface micromachining technologies. Several antennas, including a W-band broadband micromachined monopole antenna on a lossy glass substrate, and a Ka-band elevated patch antenna, and a V-band micromachined horn antenna, are presented. All antennas have advantages such as a broad operation band and high efficiency. A low-loss broadband coupler and a high-Q cavity for millimeter-wave applications, using surface micromachining technologies is reported using the same technology. Several low-loss all-pole band-pass filters and transmission-zero filters are developed, respectively. Superior simulation and measurement results show that polymer-core-conductor surface micromachining is a powerful technology for the integration of high-performance cavity, coupler and filters. Integration of high performance millimeter-wave transceiver front-end is also presented for the first time. By elevating a cavity-filter-based duplexer and a horn antenna on top of the substrate and using air as the filler, the dielectric loss can be eliminated. A full-duplex transceiver front-end integrated with amplifiers are designed, fabricated, and comprehensively characterized to demonstrate advantages brought by this surface micromachining technology. It is a low loss and substrate-independent solution for millimeter-wave transceiver integration.Ph.D.Committee Chair: John Papapolymerou; Committee Chair: Manos Tentzeris; Committee Member: Gordon Stuber; Committee Member: John Cressler; Committee Member: John Z. Zhang; Committee Member: Joy Laska

    Reconfigurable Microwave Semiconductor Plasma Antenna

    Get PDF
    Reconfigurable antennas have been a subject of rapidly increased interest during the past decades. This has been prompted by the increased demand on new wireless communications technology in both civilian and military directions. Moreover, different types of reconfigurations have been identified and investigated to keep up with the demand for new technologies. In this research, the possibility of designing reconfigurable Dielectric Resonator Antennas (DRAs) have been explored with different types of reconfigurability directions, especially with the increased interest in the area of DRAs during the past three decades. These results have been satisfactory in general. The main aim of this research is to experiment with different reconfigurability designs, each purpose is to achieve one type of reconfigurability or more. This includes, polarisation reconfigurability in Chapter Three, frequency agility in Chapters Four and Five, beam steering and gain agility in Chapter Five. Furthermore, this research main aim has been to investigate new ways to exploit the advantages of the semiconductor plasma in reconfigurable antennas. However, research’s limited resources led to reduce the efforts in this area to only one experiment, which is presented in Chapter Six, based on a similar design presented in Chapter Four. Although the results have been conflicted for the last experiment, the results shown that the used reconfigurability medium (AlGaN/GaN HFETs) can be benefitted better from it in other application. Two models have been introduced for polarisation reconfigurability, a hemispherical DRA couple with reconfigurable annular slot excitation, and a notched rectangular DRA with reconfigurable parasitic strip(s). Both designs shown the possibility of achieving LP/CP radiations. In addition, rectangular DRAs that are excited with single, as well as multiple, slot have been studied. Prototypes have been built and measured with reasonable agreement between practical and simulated results. Furthermore, the work has been extended to study a reconfigurable DRA linear array where several designs have been investigated including single and dual-slot for two and four-element linear arrays. The single-slot model reconfiguration resulted in the expected beam steering alongside the array direction. On the other hand, both frequency tuning and beam steering have been achieved with the dual-slots models. Finally, the semiconductor plasma reconfigurable antennas have been considered with the investigation of AlGaN/GaN HFETs as a replacement for the well investigated and presented silicon SPIN diodes. The prototype has been measure and discrepancies between measurements and simulations have been discussed

    Multiband and Wideband Antennas for Mobile Communication Systems

    Get PDF
    • …
    corecore