33 research outputs found

    STAIR Captions: Constructing a Large-Scale Japanese Image Caption Dataset

    Full text link
    In recent years, automatic generation of image descriptions (captions), that is, image captioning, has attracted a great deal of attention. In this paper, we particularly consider generating Japanese captions for images. Since most available caption datasets have been constructed for English language, there are few datasets for Japanese. To tackle this problem, we construct a large-scale Japanese image caption dataset based on images from MS-COCO, which is called STAIR Captions. STAIR Captions consists of 820,310 Japanese captions for 164,062 images. In the experiment, we show that a neural network trained using STAIR Captions can generate more natural and better Japanese captions, compared to those generated using English-Japanese machine translation after generating English captions.Comment: Accepted as ACL2017 short paper. 5 page

    Unsupervised Cross-lingual Image Captioning

    Full text link
    Most recent image captioning works are conducted in English as the majority of image-caption datasets are in English. However, there are a large amount of non-native English speakers worldwide. Generating image captions in different languages is worth exploring. In this paper, we present a novel unsupervised method to generate image captions without using any caption corpus. Our method relies on 1) a cross-lingual auto-encoding, which learns the scene graph mapping function along with the scene graph encoders and sentence decoders on machine translation parallel corpora, and 2) an unsupervised feature mapping, which seeks to map the encoded scene graph features from image modality to sentence modality. By leveraging cross-lingual auto-encoding, cross-modal feature mapping, and adversarial learning, our method can learn an image captioner to generate captions in different languages. We verify the effectiveness of our proposed method on the Chinese image caption generation. The comparisons against several baseline methods demonstrate the effectiveness of our approach.Comment: 8 page

    Lessons learned in multilingual grounded language learning

    Full text link
    Recent work has shown how to learn better visual-semantic embeddings by leveraging image descriptions in more than one language. Here, we investigate in detail which conditions affect the performance of this type of grounded language learning model. We show that multilingual training improves over bilingual training, and that low-resource languages benefit from training with higher-resource languages. We demonstrate that a multilingual model can be trained equally well on either translations or comparable sentence pairs, and that annotating the same set of images in multiple language enables further improvements via an additional caption-caption ranking objective.Comment: CoNLL 201

    XL-NBT: A Cross-lingual Neural Belief Tracking Framework

    Full text link
    Task-oriented dialog systems are becoming pervasive, and many companies heavily rely on them to complement human agents for customer service in call centers. With globalization, the need for providing cross-lingual customer support becomes more urgent than ever. However, cross-lingual support poses great challenges---it requires a large amount of additional annotated data from native speakers. In order to bypass the expensive human annotation and achieve the first step towards the ultimate goal of building a universal dialog system, we set out to build a cross-lingual state tracking framework. Specifically, we assume that there exists a source language with dialog belief tracking annotations while the target languages have no annotated dialog data of any form. Then, we pre-train a state tracker for the source language as a teacher, which is able to exploit easy-to-access parallel data. We then distill and transfer its own knowledge to the student state tracker in target languages. We specifically discuss two types of common parallel resources: bilingual corpus and bilingual dictionary, and design different transfer learning strategies accordingly. Experimentally, we successfully use English state tracker as the teacher to transfer its knowledge to both Italian and German trackers and achieve promising results.Comment: 13 pages, 5 figures, 3 tables, accepted to EMNLP 2018 conferenc

    Image Pivoting for Learning Multilingual Multimodal Representations

    Get PDF
    In this paper we propose a model to learn multimodal multilingual representations for matching images and sentences in different languages, with the aim of advancing multilingual versions of image search and image understanding. Our model learns a common representation for images and their descriptions in two different languages (which need not be parallel) by considering the image as a pivot between two languages. We introduce a new pairwise ranking loss function which can handle both symmetric and asymmetric similarity between the two modalities. We evaluate our models on image-description ranking for German and English, and on semantic textual similarity of image descriptions in English. In both cases we achieve state-of-the-art performance.Comment: 7 pages, EMNLP 201

    Japanese SimCSE Technical Report

    Full text link
    We report the development of Japanese SimCSE, Japanese sentence embedding models fine-tuned with SimCSE. Since there is a lack of sentence embedding models for Japanese that can be used as a baseline in sentence embedding research, we conducted extensive experiments on Japanese sentence embeddings involving 24 pre-trained Japanese or multilingual language models, five supervised datasets, and four unsupervised datasets. In this report, we provide the detailed training setup for Japanese SimCSE and their evaluation results

    Cross-linguistic differences and similarities in image descriptions

    Get PDF
    Automatic image description systems are commonly trained and evaluated on large image description datasets. Recently, researchers have started to collect such datasets for languages other than English. An unexplored question is how different these datasets are from English and, if there are any differences, what causes them to differ. This paper provides a cross-linguistic comparison of Dutch, English, and German image descriptions. We find that these descriptions are similar in many respects, but the familiarity of crowd workers with the subjects of the images has a noticeable influence on description specificity.Comment: Accepted for INLG 2017, Santiago de Compostela, Spain, 4-7 September, 2017. Camera-ready version. See the ACL anthology for full bibliographic informatio
    corecore