8,999 research outputs found

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Small Footprint Multilayered Millimeter-Wave Antennas and Feeding Networks for Multi-Dimensional Scanning and High-Density Integrated Systems

    Get PDF
    This paper overviews the state-of-the-art of substrate integrated waveguide (SIW) techniques in the design and realization of innovative low-cost, low-profile and low-loss (L3) millimeter-wave antenna elements, feeding networks and arrays for various wireless applications. Novel classes of multilayered antenna structures and systems are proposed and studied to exploit the vertical dimension of planar structures to overcome certain limita-tions in standard two-dimensional (2-D) topologies. The developed structures are based on two techniques, namely multi-layer stacked structures and E-plane corners. Differ-ent E-plane structures realised with SIW waveguide are presented, thereby demonstrating the potential of the proposed techniques as in multi-polarization antenna feeding. An array of 128 elements shows low SLL and height gain with just 200g of the total weight. Two versions of 2-D scanning multi-beam are presented, which effectively combine frequency scanning with beam forming networks. Adding the benefits of wide band performance to the multilayer structure, two bi-layer structures are investigated. Different stacked antennas and arrays are demonstrated to optimise the targeted antenna performances in the smallest footprint possible. These structures meet the requirement for developing inexpensive compact millimeter-wave antennas and antenna systems. Different structures and architectures are theoretically and experimentally studied and discussed for specific space- and ground-based appli-cations. Practical issues such as high-density integration and high-volume manufacturability are also addressed

    Conformal Antenna Array for Millimeter-Wave Communications: Performance Evaluation

    Full text link
    In this paper, we study the influence of the radius of a cylindrical supporting structure on radiation properties of a conformal millimeter-wave antenna array. Bent antenna array structures on cylindrical surfaces may have important applications in future mobile devices. Small radii may be needed if the antenna is printed on the edges of mobile devices and in items which human beings are wearing, such as wrist watches, bracelets and rings. The antenna under study consists of four linear series-fed arrays of four patch elements and is operating at 58.8 GHz with linear polarization. The antenna array is fabricated on polytetrafluoroethylene substrate with thickness of 0.127 mm due to its good plasticity properties and low losses. Results for both planar and conformal antenna arrays show rather good agreement between simulation and measurements. The results show that conformal antenna structures allow achieving large angular coverage and may allow beam-steering implementations if switches are used to select between different arrays around a cylindrical supporting structure.Comment: Keywords: conformal antenna, millimeter-wave communications, patch antenna array. 11 pages, 10 figures, 1 tabl

    Toward End-to-End, Full-Stack 6G Terahertz Networks

    Full text link
    Recent evolutions in semiconductors have brought the terahertz band in the spotlight as an enabler for terabit-per-second communications in 6G networks. Most of the research so far, however, has focused on understanding the physics of terahertz devices, circuitry and propagation, and on studying physical layer solutions. However, integrating this technology in complex mobile networks requires a proper design of the full communication stack, to address link- and system-level challenges related to network setup, management, coordination, energy efficiency, and end-to-end connectivity. This paper provides an overview of the issues that need to be overcome to introduce the terahertz spectrum in mobile networks, from a MAC, network and transport layer perspective, with considerations on the performance of end-to-end data flows on terahertz connections.Comment: Published on IEEE Communications Magazine, THz Communications: A Catalyst for the Wireless Future, 7 pages, 6 figure
    • …
    corecore