351,239 research outputs found

    Cross-Layer Design for Green Power Control

    Full text link
    In this work, we propose a new energy efficiency metric which allows one to optimize the performance of a wireless system through a novel power control mechanism. The proposed metric possesses two important features. First, it considers the whole power of the terminal and not just the radiated power. Second, it can account for the limited buffer memory of transmitters which store arriving packets as a queue and transmit them with a success rate that is determined by the transmit power and channel conditions. Remarkably, this metric is shown to have attractive properties such as quasi-concavity with respect to the transmit power and a unique maximum, allowing to derive an optimal power control scheme. Based on analytical and numerical results, the influence of the packet arrival rate, the size of the queue, and the constraints in terms of quality of service are studied. Simulations show that the proposed cross-layer approach of power control may lead to significant gains in terms of transmit power compared to a physical layer approach of green communications.Comment: Presented in ICC 201

    MPEG-4 video transmission using distributed TDMA MAC protocol over IEEE 802.15.4 wireless technology

    Get PDF
    The issues of green technology nowadays give an inspiration to the researcher to make all the future design to be energy efficient. Medium Access Control (MAC) layer is the most effective layer to provide energy efficient due to its ability to control the physical radio directly. One of the important applications in the future is a video transmission that can be transmitted with low-cost and low power consumption. MPEG-4 is one of the international standards for moving video. MPEG-4 provide better compression and primarily design at low bit rate communication. In order to achieve good quality for video application, the design at MAC layer must be strong. Therefore, to increase the performance of the MPEG-4 in IEEE 802.15.4, in this paper we propose a cross layer design between MAC layer and Application layer. A priority queue will be implemented at MAC scheduling depends on the level of frame important in MPEG-4 format frame. A distributed Time division Multiple Access (TDMA) will be used for MAC protocol to provide reliable data transmission for high priority frame

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Cross-layer distributed power control: A repeated games formulation to improve the sum energy-efficiency

    Get PDF
    The main objective of this work is to improve the energy-efficiency (EE) of a multiple access channel (MAC) system, through power control, in a distributed manner. In contrast with many existing works on energy-efficient power control, which ignore the possible presence of a queue at the transmitter, we consider a new generalized cross-layer EE metric. This approach is relevant when the transmitters have a non-zero energy cost even when the radiated power is zero and takes into account the presence of a finite packet buffer and packet arrival at the transmitter. As the Nash equilibrium (NE) is an energy-inefficient solution, the present work aims at overcoming this deficit by improving the global energy-efficiency. Indeed, as the considered system has multiple agencies each with their own interest, the performance metric reflecting the individual interest of each decision maker is the global energy-efficiency defined then as the sum over individual energy-efficiencies. Repeated games (RG) are investigated through the study of two dynamic games (finite RG and discounted RG), whose equilibrium is defined when introducing a new operating point (OP), Pareto-dominating the NE and relying only on individual channel state information (CSI). Accordingly, closed-form expressions of the minimum number of stages of the game for finite RG (FRG) and the maximum discount factor of the discounted RG (DRG) were established. The cross-layer model in the RG formulation leads to achieving a shorter minimum number of stages in the FRG even for higher number of users. In addition, the social welfare (sum of utilities) in the DRG decreases slightly with the cross-layer model when the number of users increases while it is reduced considerably with the Goodman model. Finally, we show that in real systems with random packet arrivals, the cross-layer power control algorithm outperforms the Goodman algorithm.Comment: 36 pages, single column draft forma
    • …
    corecore