791 research outputs found

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Radio resource management and metric estimation for multicarrier CDMA systems

    Get PDF

    Connection admission control and packet scheduling for IEEE 802.16 networks

    Get PDF
    Includes bibliographical references.The IEEE 802.16 standard introduced as one of the Wireless Metropolitan Area Networks (WMAN) for Broadband Wireless Access (BWA) which is known as Worldwide Interoperability for Microwave Access (WiMAX), provides a solution of broadband connectivity to areas where wired infrastructure is economically and technically infeasible. Apart from the advantage of having high speeds and low costs, IEEE 802.16 has the capability to simultaneously support various service types with required QoS characteristics. ... While IEEE 802.16 standard defines medium access control (MAC) and physical (PHY) layers specification, admission control and packet scheduling mechanisms which are important elements of QoS provisioning are left to vendors to design and implement for service differentiation and QoS support

    Selective Fair Scheduling over Fading Channels

    Full text link
    Imposing fairness in resource allocation incurs a loss of system throughput, known as the Price of Fairness (PoFPoF). In wireless scheduling, PoFPoF increases when serving users with very poor channel quality because the scheduler wastes resources trying to be fair. This paper proposes a novel resource allocation framework to rigorously address this issue. We introduce selective fairness: being fair only to selected users, and improving PoFPoF by momentarily blocking the rest. We study the associated admission control problem of finding the user selection that minimizes PoFPoF subject to selective fairness, and show that this combinatorial problem can be solved efficiently if the feasibility set satisfies a condition; in our model it suffices that the wireless channels are stochastically dominated. Exploiting selective fairness, we design a stochastic framework where we minimize PoFPoF subject to an SLA, which ensures that an ergodic subscriber is served frequently enough. In this context, we propose an online policy that combines the drift-plus-penalty technique with Gradient-Based Scheduling experts, and we prove it achieves the optimal PoFPoF. Simulations show that our intelligent blocking outperforms by 40%\% in throughput previous approaches which satisfy the SLA by blocking low-SNR users

    Integrated control platform for converged optical and wireless networks

    Get PDF
    • …
    corecore