1,334 research outputs found

    Ensemble Learning based Anomaly Detection for IoT Cybersecurity via Bayesian Hyperparameters Sensitivity Analysis

    Full text link
    The Internet of Things (IoT) integrates more than billions of intelligent devices over the globe with the capability of communicating with other connected devices with little to no human intervention. IoT enables data aggregation and analysis on a large scale to improve life quality in many domains. In particular, data collected by IoT contain a tremendous amount of information for anomaly detection. The heterogeneous nature of IoT is both a challenge and an opportunity for cybersecurity. Traditional approaches in cybersecurity monitoring often require different kinds of data pre-processing and handling for various data types, which might be problematic for datasets that contain heterogeneous features. However, heterogeneous types of network devices can often capture a more diverse set of signals than a single type of device readings, which is particularly useful for anomaly detection. In this paper, we present a comprehensive study on using ensemble machine learning methods for enhancing IoT cybersecurity via anomaly detection. Rather than using one single machine learning model, ensemble learning combines the predictive power from multiple models, enhancing their predictive accuracy in heterogeneous datasets rather than using one single machine learning model. We propose a unified framework with ensemble learning that utilises Bayesian hyperparameter optimisation to adapt to a network environment that contains multiple IoT sensor readings. Experimentally, we illustrate their high predictive power when compared to traditional methods

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Stacked Autoencoder and Meta-Learning based Heterogeneous Domain Adaptation for Human Activity Recognition

    Get PDF
    The field of human activity recognition (HAR) using machine learning approaches has gained a lot of interest in the research community due to its empowerment of automation and autonomous systems in industries and homes with respect to the given context and due to the increasing number of smart wearable devices. However, it is challenging to achieve a considerable accuracy for recognizing actions with diverse set of wearable devices due to their variance in feature spaces, sampling rate, units, sensor modalities and so forth. Furthermore, collecting annotated data has always been a serious issue in the machine learning community. Domain adaptation is a field that helps to cope with the issue by training on the source domain and labeling the samples in the target domain, however, due to the aforementioned variances (heterogeneity) in wearable sensor data, the action recognition accuracy remains on the lower side. Existing studies try to make the target domain feature space compliant with the source domain to improve the results, but it assumes that the system has a prior knowledge of the feature space of the target domain, which does not reflect real-world implication. In this regard, we propose stacked autoencoder and meta-learning based heterogeneous domain adaptation (SAM- HDD) network. The stacked autoencoder part is trained on the source domain feature space to extract the latent representation and train the employed classifiers, accordingly. The classification probabilities from the classifiers are trained with meta-learner to further improve the recognition performance. The data from tar- get domain undergoes the encoding layers of the trained stacked autoencoders to extract the latent representations, followed by the classification of label from the trained classifiers and meta- learner. The results show that the proposed approach is efficient in terms of accuracy score and achieves best results among the existing works, respectivel

    Transfer Learning in Human Activity Recognition: A Survey

    Full text link
    Sensor-based human activity recognition (HAR) has been an active research area, owing to its applications in smart environments, assisted living, fitness, healthcare, etc. Recently, deep learning based end-to-end training has resulted in state-of-the-art performance in domains such as computer vision and natural language, where large amounts of annotated data are available. However, large quantities of annotated data are not available for sensor-based HAR. Moreover, the real-world settings on which the HAR is performed differ in terms of sensor modalities, classification tasks, and target users. To address this problem, transfer learning has been employed extensively. In this survey, we focus on these transfer learning methods in the application domains of smart home and wearables-based HAR. In particular, we provide a problem-solution perspective by categorizing and presenting the works in terms of their contributions and the challenges they address. We also present an updated view of the state-of-the-art for both application domains. Based on our analysis of 205 papers, we highlight the gaps in the literature and provide a roadmap for addressing them. This survey provides a reference to the HAR community, by summarizing the existing works and providing a promising research agenda.Comment: 40 pages, 5 figures, 7 table

    Holistic Security and Safety for Factories of the Future

    Get PDF
    The accelerating transition of traditional industrial processes towards fully automated and intelligent manufacturing is being witnessed in almost all segments. This major adoption of enhanced technology and digitization processes has been originally embraced by the Factories of the Future and Industry 4.0 initiatives. The overall aim is to create smarter, more sustainable, and more resilient future-oriented factories. Unsurprisingly, introducing new production paradigms based on technologies such as machine learning (ML), the Internet of Things (IoT), and robotics does not come at no cost as each newly incorporated technique poses various safety and security challenges. Similarly, the integration required between these techniques to establish a unified and fully interconnected environment contributes to additional threats and risks in the Factories of the Future. Accumulating and analyzing seemingly unrelated activities, occurring simultaneously in different parts of the factory, is essential to establish cyber situational awareness of the investigated environment. Our work contributes to these efforts, in essence by envisioning and implementing the SMS-DT, an integrated platform to simulate and monitor industrial conditions in a digital twin-based architecture. SMS-DT is represented in a three-tier architecture comprising the involved data and control flows: edge, platform, and enterprise tiers. The goal of our platform is to capture, analyze, and correlate a wide range of events being tracked by sensors and systems in various domains of the factory. For this aim, multiple components have been developed on the basis of artificial intelligence to simulate dominant aspects in industries, including network analysis, energy optimization, and worker behavior. A data lake was also used to store collected information, and a set of intelligent services was delivered on the basis of innovative analysis and learning approaches. Finally, the platform was tested in a textile industry environment and integrated with its ERP system. Two misuse cases were simulated to track the factory machines, systems, and people and to assess the role of SMS-DT correlation mechanisms in preventing intentional and unintentional actions. The results of these misuse case simulations showed how the SMS-DT platform can intervene in two domains in the first scenario and three in the second one, resulting in correlating the alerts and reporting them to security operators in the multi-domain intelligent correlation dashboard.The present work has been developed under the EUREKA ITEA3 Project Cyber-Factory#1 (ITEA-17032) and Project CyberFactory#1PT (ANI—P2020 40124) co-funded by Portugal 2020. Furthermore, this work also received funding from the project UIDB/00760/2020.info:eu-repo/semantics/publishedVersio

    Agriculture 4.0 and beyond: Evaluating cyber threat intelligence sources and techniques in smart farming ecosystems

    Get PDF
    The digitisation of agriculture, integral to Agriculture 4.0, has brought significant benefits while simultaneously escalating cybersecurity risks. With the rapid adoption of smart farming technologies and infrastructure, the agricultural sector has become an attractive target for cyberattacks. This paper presents a systematic literature review that assesses the applicability of existing cyber threat intelligence (CTI) techniques within smart farming infrastructures (SFIs). We develop a comprehensive taxonomy of CTI techniques and sources, specifically tailored to the SFI context, addressing the unique cyber threat challenges in this domain. A crucial finding of our review is the identified need for a virtual Chief Information Security Officer (vCISO) in smart agriculture. While the concept of a vCISO is not yet established in the agricultural sector, our study highlights its potential significance. The implementation of a vCISO could play a pivotal role in enhancing cybersecurity measures by offering strategic guidance, developing robust security protocols, and facilitating real-time threat analysis and response strategies. This approach is critical for safeguarding the food supply chain against the evolving landscape of cyber threats. Our research underscores the importance of integrating a vCISO framework into smart farming practices as a vital step towards strengthening cybersecurity. This is essential for protecting the agriculture sector in the era of digital transformation, ensuring the resilience and sustainability of the food supply chain against emerging cyber risks

    Process monitoring for material extrusion additive manufacturing: a state-of-the-art review

    Get PDF
    Qualitative uncertainties are a key challenge for the further industrialization of additive manufacturing. To solve this challenge, methods for measuring the process states and properties of parts during additive manufacturing are essential. The subject of this review is in-situ process monitoring for material extrusion additive manufacturing. The objectives are, first, to quantify the research activity on this topic, second, to analyze the utilized technologies, and finally, to identify research gaps. Various databases were systematically searched for relevant publications and a total of 221 publications were analyzed in detail. The study demonstrated that the research activity in this field has been gaining importance. Numerous sensor technologies and analysis algorithms have been identified. Nonetheless, research gaps exist in topics such as optimized monitoring systems for industrial material extrusion facilities, inspection capabilities for additional quality characteristics, and standardization aspects. This literature review is the first to address process monitoring for material extrusion using a systematic and comprehensive approach
    corecore