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Abstract: The accelerating transition of traditional industrial processes towards fully automated
and intelligent manufacturing is being witnessed in almost all segments. This major adoption of
enhanced technology and digitization processes has been originally embraced by the Factories of
the Future and Industry 4.0 initiatives. The overall aim is to create smarter, more sustainable, and
more resilient future-oriented factories. Unsurprisingly, introducing new production paradigms
based on technologies such as machine learning (ML), the Internet of Things (IoT), and robotics
does not come at no cost as each newly incorporated technique poses various safety and security
challenges. Similarly, the integration required between these techniques to establish a unified and
fully interconnected environment contributes to additional threats and risks in the Factories of the
Future. Accumulating and analyzing seemingly unrelated activities, occurring simultaneously in
different parts of the factory, is essential to establish cyber situational awareness of the investigated
environment. Our work contributes to these efforts, in essence by envisioning and implementing the
SMS-DT, an integrated platform to simulate and monitor industrial conditions in a digital twin-based
architecture. SMS-DT is represented in a three-tier architecture comprising the involved data and
control flows: edge, platform, and enterprise tiers. The goal of our platform is to capture, analyze,
and correlate a wide range of events being tracked by sensors and systems in various domains of the
factory. For this aim, multiple components have been developed on the basis of artificial intelligence
to simulate dominant aspects in industries, including network analysis, energy optimization, and
worker behavior. A data lake was also used to store collected information, and a set of intelligent
services was delivered on the basis of innovative analysis and learning approaches. Finally, the
platform was tested in a textile industry environment and integrated with its ERP system. Two
misuse cases were simulated to track the factory machines, systems, and people and to assess the role
of SMS-DT correlation mechanisms in preventing intentional and unintentional actions. The results
of these misuse case simulations showed how the SMS-DT platform can intervene in two domains in
the first scenario and three in the second one, resulting in correlating the alerts and reporting them to
security operators in the multi-domain intelligent correlation dashboard.

Keywords: smart factories; cybersecurity; Industry 4.0; multi-domain security and safety; digital
twins; security of Factories of the Future

1. Introduction

The introduction of the Industry 4.0 paradigm has introduced a digital revolution of
IT-driven aspects into industrial processes. Concepts such as the Internet of Things, smart
factories, and decentralized self-organization have been at the heart of this technological
revolution [1]. In this sense, the aim of the Industry 4.0 shift was to level up the automation of
factories by leveraging the capabilities of advanced sensors, embedded software, and robotics.
As a complementary paradigm, the Fifth Industrial Revolution (a.k.a. Industry 5.0) [2] has
been initialized to make efforts toward a sustainable, human-centric, and resilient European
industry. This new industrial movement aims at achieving societal goals beyond jobs and
growth. That being said, Industry 4.0 and 5.0 are attempts to capture the maximum value
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of new technologies while placing the well-being of the industry workers at the center of
the production process [3,4].

Additionally, the introduction of modern technologies to realize smart factories has led
to an increased intersection between cyber and physical components. The goal of Industrial
Cyber-Physical Systems (ICPS) is to combine engineering models and methods to manage
critical infrastructures on the basis of data captured from edge sensor networks. From a
security standpoint, the coexistence of cyber and physical counterparts in a networked
structure opens the doors for additional attacks and vulnerabilities to endanger future
industrial systems. This may lead to losses of economic benefits or disorder of social life [5].
In this regard, Intrusion Detection Systems (IDSs), Network Traffic Analysis (NTA), and
anomaly detection techniques are being used to mitigate security concerns [6].

In a related subject, the increasing connectivity in the Factory of the Future (FoF)
environments is usually accompanied by greater amounts of related security risks [7]. This
impact is enlarged when considering industrial systems that have never been technically
designed for a networked environment. Nevertheless, besides the security challenges this
interconnectivity poses to smart factories, it brings opportunities to address a variety of
threats and safety issues. The research problem our work aims to cover is to investigate the
effectiveness of correlating existing alerts to detect new ones. Such individual alerts being
generated separately might not indicate an abnormal situation, while if seen together would
help security operators to gain insights about dangerous situations in the industry. In this
regard, the possibility to accumulate and analyze activities taking place simultaneously in
different parts of the factory is a key enabler to such opportunities, primarily by correlating
large amounts of data, gathered from various sources, in order to establish cyber situational
awareness of the investigated environment. Such a kind of integrated security overview
would potentially allow for the adoption of suitable countermeasures in case of attacks [8].
Multiple approaches have been discussed in the literature to promote security and safety
in smart environments. Some architectures adopt multi-agent and multi-sensors systems to
detect emergency situations in intelligent buildings [9], industrial plants [10], and smart
factories [11,12]. Other proposed approaches extend the potentials of data correlation to
support security operators in collecting relevant data from various sources [13–15]. To
this end, inspecting seemingly unrelated events and correlating them in a smart industrial
context is crucial to obtain a holistic security and safety overview of the factory of the future.

Additionally, as a promising enabling technology to realize smart manufacturing,
Digital Twin (DT) is characterized by the cyber–physical integration that yields making
accurate predictions, rational decisions, and informed plans [16]. In manufacturing, digital
twins have attracted interests from big industrial players and are usually used to predict
and inform about equipment failures and non-optimal performance, as well as to improve
customer experience [17].

In the context of industry digitalization, factories invest in enterprise resource planning
systems (ERP) to manage their whole activities. These integrated tracking systems possess
great potential to increase efficiency, security, safety, and resilience of the targeted industrial
environments. Moreover, the ability to provide data and knowledge as a service is a
critical asset to answer the market needs and achieve business transformation. The main
contribution of our work is to provide knowledge as a service and introduce cyber-security
awareness into industrial ERP systems. This takes place by utilizing an increased set of
services, along with environmental and network sensors, in order to assure the safety,
security, and resilience of manufacturing systems, thus achieving a holistic optimization
and intelligent decision support of factories.

The application field of our work is a textile manufacturer, wherein the main assets
are specialized human resources, looms, and cutting machines. In this context, multiple
sensors have been installed and utilized to measure environmental conditions and monitor
machines parameters. A digital twin framework was employed to mirror the cognitive
status of various entities including network, employees, and equipment. A data lake has
also been used to store collected information, to easily access the data, and to analyze it
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to uncover abnormal patterns. Furthermore, we developed a set of intelligent services on
the basis of innovative data lake analysis and learning approaches, including (a) services
for aggregation of information from the real-time monitoring; (b) analytic services for the
efficiency and efficacy of data usage based on hybrid methodologies; (c) intelligent decision
support to transform the available data into knowledge that support decision making;
and (d) prediction applications and mechanisms for stream and complex event processing.
Additionally, human behavior was also modelled and simulated on the basis of affective
computation to investigate stress, fatigue, and lack of attention in the interactions between
humans and machines.

All the mentioned systems are combined in the integrated SMS-DT platform that
we developed to simulate and monitor realistic industrial installations in a DT-based
architecture. Figure 1 depicts the key capabilities and envisioned schema of our systems.
With this novel knowledge module and integration, ERP systems will be able to derive the
best operational conditions, as well as to optimize and automatically control the resources,
taking into account the real-time, or near real-time, situational awareness of the complete
factory environment (i.e., cyber-physical systems, materials, social and economic variables).

Sensors 2022, 22, x FOR PEER REVIEW 3 of 26 
 

 

status of various entities including network, employees, and equipment. A data lake has 

also been used to store collected information, to easily access the data, and to analyze it to 

uncover abnormal patterns. Furthermore, we developed a set of intelligent services on the 

basis of innovative data lake analysis and learning approaches, including (a) services for 

aggregation of information from the real-time monitoring; (b) analytic services for the ef-

ficiency and efficacy of data usage based on hybrid methodologies; (c) intelligent decision 

support to transform the available data into knowledge that support decision making; and 

(d) prediction applications and mechanisms for stream and complex event processing. 

Additionally, human behavior was also modelled and simulated on the basis of affective 

computation to investigate stress, fatigue, and lack of attention in the interactions between 

humans and machines. 

All the mentioned systems are combined in the integrated SMS-DT platform that we 

developed to simulate and monitor realistic industrial installations in a DT-based archi-

tecture. Figure 1 depicts the key capabilities and envisioned schema of our systems. With 

this novel knowledge module and integration, ERP systems will be able to derive the best 

operational conditions, as well as to optimize and automatically control the resources, 

taking into account the real-time, or near real-time, situational awareness of the complete 

factory environment (i.e., cyber-physical systems, materials, social and economic varia-

bles). 

 

Figure 1. Key capabilities of the holistic security and safety architecture. 

The rest of this document is organized as follows: In Section 2, we list similar previ-

ous and ongoing activities. Section 3 presents a brief description of digital twins and how 

they can be implemented in industrial environments. Section 4 and its sub-sections illus-

trate the different dimensions of our SMS-DT platform, including developed systems and 

intelligent services. Section 5 describes the textile industry use-case as well as two misuse-

cases that can be discovered and prevented using the SMS-DT platform. Finally, we con-

clude our work in Section 6. 

2. State of the Art 

Cyber security threats are major issues that affect the sustainability of manufacturing 

in Industry 4.0 [18]. This is primarily because malicious software or virus attacks can ac-

cess different machines and affect the manufacturing activities running on the same net-

work infrastructure. Similarly, the transition to more open network architectures brings 

new security challenges to smart factory systems, primarily due to the huge amounts of 

connecting IoT devices such as sensors, actuators, and edge-computing units, along with 

Figure 1. Key capabilities of the holistic security and safety architecture.

The rest of this document is organized as follows: In Section 2, we list similar previous
and ongoing activities. Section 3 presents a brief description of digital twins and how they
can be implemented in industrial environments. Section 4 and its sub-sections illustrate the
different dimensions of our SMS-DT platform, including developed systems and intelligent
services. Section 5 describes the textile industry use-case as well as two misuse-cases that
can be discovered and prevented using the SMS-DT platform. Finally, we conclude our
work in Section 6.

2. State of the Art

Cyber security threats are major issues that affect the sustainability of manufacturing
in Industry 4.0 [18]. This is primarily because malicious software or virus attacks can
access different machines and affect the manufacturing activities running on the same
network infrastructure. Similarly, the transition to more open network architectures brings
new security challenges to smart factory systems, primarily due to the huge amounts of
connecting IoT devices such as sensors, actuators, and edge-computing units, along with
other end devices in automated information networks [19]. In this regard, most previous
and ongoing activities try to envision general architectures to simulate and optimize
processes in smart factories. Others provide surveys to investigate security issues in
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modern industrial systems. However, we identified a relatively limited number of studies
that focus on the integrated security of smart factories as a critical factor to secure persistent
and risk-free production conditions. We highlight the most relevant studies to our work in
the following paragraphs.

Studies have been conducted to leverage the potential of new technologies to generate
useful insights and achieve safer and more secure industrial environments. The authors
of [11] describe a machine-learning-based and context-aware intrusion detection system
in a smart factory environment. This system architecture has three main phases: (i) data
capturing from sensors and resources, (ii) model building and inferring using unsuper-
vised/supervised models, and (iii) threat visualizing in a real-time representation. The
results of this study showed better detection rates for anomaly signs. Additionally, the au-
thors of [12] worked on maintaining security over large data-driven systems in Industry 4.0.
Thus, they proposed a new threat intelligence scheme that models the dynamic interactions
of physical and network components. It consists of two modules: smart management and
threat intelligence. The first module handles heterogeneous data captured from sensors,
actuators, and network traffic, while the second one discovers anomalous activities in
physical and network systems. The scheme was evaluated, and it outperformed other peer
mechanisms. In another context, the authors of [10] state that due to the huge amount of
involved variables, the selection of alerts in industrial settings tends to be difficult. Thus,
the authors resorted to semantic web and machine learning techniques to propose an
industrial-context-aware recommendation system. The solution has an adaptive interface
to make non-intrusive recommendations to facilitate the decision-making process. The
system was evaluated using a real database and showed promising results.

On the other hand, the rapid technological development and emergence of new
digitization capabilities have promoted the realization of smart factories. This requires
leveraging new design methodologies that rely in the first place on data-driven and AI-
assisted approaches. Digital/virtual factory and smart/cloud manufacturing are some
of major trends in the digitalization of a Factory of the Future that were compared and
analyzed by [20]. On the basis of this analysis, the building blocks of the Factory of the
Future were proposed in the form of a reference framework for the realization of a digital
twin model. The framework consists of various interconnected components such as IoT
technologies, cloud manufacturing (private, public, hybrid), factory models (smart, digital,
virtual), and multiple forms of infrastructure as service modules. According to the authors,
there are multiples challenges in this context, primarily in terms of model accuracy and
fidelity that requires higher degrees of synchronization between virtual and real shop
floor entities.

IoTwins is a European project that works on facilitating the implementation of Industry
4.0 technologies to increase productivity, safety, resiliency, and environmental impact [21].
The project leverages the concept of hybrid DTs to create reference architectures for produc-
tion plants and processes. Hybrid DTs mix both data-driven and model-driven approaches.
The data-driven aspect refers to cloud-based data analysis and machine learning models,
while the model-driven aspect represents software simulators that mimic the behavior of
physical assets in connection with the data-driven models. The proposed architecture of the
IoTwins project is described in [22] with multiple layers: IoT, edge, cloud, and application
layers, along with authentication and ancillary services. In this research, an industry-related
use case was presented to show how to leverage this platform to execute distributed DTs for
predictive–maintenance purposes. The use case collects different application requirements
and, as a result, proposes a solution that includes front-end, back-end, and production
monitoring tools and components. COGNITWIN is another European project that sets
standards for the design, development, and operation of the European process industry [23].
This project introduces hybrid and cognitive digital twins through four big data and AI
pipeline steps adapted for digital twins. In relation to this project, the work by [24] presents
the DT pipeline framework of the COGNITWIN project by illustrating the use of a hybrid
DT approach with a focus on the DT support for predictive maintenance. The presented
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approach aims to reduce energy consumption and average duration of machine downtimes.
The authors concluded that the pipeline can be used for similar cases in the process industry.
Furthermore, hybrid DTs have been also discussed as an enabling technology for the fourth
industrial revolution. The study by [25] discovers the combination of virtual reality, 3D
imaging, and hybrid DTs for factory layout planning. In this work, three industrial case
studies were presented by utilizing the hybrid digital twin models. The results showed
that using such models, discovering implicit knowledge can improve solution fidelity,
and multiple issues during planning and installation phases can be avoided. In a later
publication, the authors presented the combination of 3D laser scanning, virtual reality,
CAD models, and simulation modelling in a hybrid digital twin [26], wherein the results
also showed that the planning process can be noticeably improved, yielding benefits in
all phases.

In a related subject, the platform of smart factories requires having both workers and
robots working simultaneously in one environment. According to [27], the collaboration
between humans and robots in industrial settings can be hazardous. In this paper, the
authors present a systematic review of the safety concerns of human–robot collaboration
(HRC). According to this study, HRC systems can be tremendously complex, and the
real-world AI systems including HRC applications should be designed to able to prevent
unintended or harmful behavior. Moreover, AI-based (smart) robotic systems are strongly
becoming one of the main areas of focus in manufacturing towards future factories. In a
similar work, the authors of [28] investigated the safety of workers in a factory shop floor.
The authors used sensors to gather normal and abnormal data of human activities at the
factory, in which a real-life situations dataset was also developed.

To this end, and with respect to the scanned literature, the majority of conducted
studies contributed to the security of smart factories from a partial or domain-specific
angle. However, we were unable to find relevant efforts that try to approach the security
issues from a holistic and inter-domain perspective. The work presented in this paper
is an extension to our previous multi-domain security awareness for Factories of the
Future [29]. Primarily, it brings enhancements in terms of leveraging the capabilities
of factory simulations and digital twins to create a digital representation of the factory
components. The approach we are describing here is totally new in terms of promoting
security monitoring in smart industrial settings by capturing and correlating seemingly
unrelated alerts from multiple domains (network, human behavior, energy consumption,
etc.). Such alerts may seem to be quite normal or not critical if seen individually. However,
they might be able to detect dangerous scenarios if correlated with other events occurring
simultaneously in other domains. In this paper, we describe our envisioned architecture,
its integrated systems, and the intelligent correlation components.

3. Digital Twins in the Factories of the Future

Several definitions of digital twins exist in the literature, and each author adapts
the definition according to their purpose. However, all the definitions have something
in common. Generally, a DT can be defined as a simulation of something in a specific
environment [30]. Digital twins in manufacturing have been widely discussed in the
literature. Several works were conducted to survey, review, and classify digital twins
concepts, applications, and technologies from different perspectives [31–35]. Conversely,
others proposed DT-based knowledge-driven framework and systems architectures to
simulate data exchange in physical and digital layers in smart manufacturing [36–41].

In the context of the manufacturing sector, the ability to simulate all industry processes,
along with an increasing level of digitalization and complexity of machines and products,
will offer faster, safer, and less expensive modifications to existing and future asset/system
implementation. Moreover, since DTs can run in parallel to their physical counterparts,
changing specific parameters in the production process, adapting capacities, or using differ-
ent raw materials can all be simulated using a DT. Therefore, for the factories of the future,
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digital twins allow them to increase efficiency and productivity, supporting companies in
monitoring plant construction, managing assets, and testing their end products [42].

The ability of DTs to run synchronously with their physical parts is also crucial to
ensure the safety and security of the FoF systems [43]. Using DT simulation, it is possible
to perform deep inspections of their behavior without the risk of disrupting the operational
technology services. Using intelligent services, it is possible to track data inconsistencies
between the physical and the virtual parts of the systems in order to reduce unpredicted
and undesirable issues caused by several factors, such as network failures or erroneous
human interactions [44].

The human dimension in FoF is also of crucial importance, not only from the manufac-
turing optimization point of view but also in terms of fostering security in FoF. However,
this area is in a very early stage of development. Moreover, most of the efforts being made
in this area are only interested in modeling human behavior for an ergonomic evaluation
or even a human simulation. However, validation of the models, collection of real worker
data to provide model inputs, comparison of the simulation results with the manufacturing
systems, and sensitivity analysis are significant innovation fields where further research is
needed [45].

In the context of our work, we aimed to use real worker data to develop models that
allow its inclusion in the FoF modeling activities through DT development. Thus, our
system interprets and mirrors human emotions/states, such as fatigue, lack of attention, or
stress. For that, not only operator facial expressions are analyzed but also, using affective
computing, the events generated from the user interaction with terminals are considered.
Additionally, our model also simulates the complete cyber-physical manufacturing systems.
This way, we aim to overcome the usual inability of DTs to comprehensively inform deci-
sions, not only at the individual machine level but also in the entire production ecosystem.
Sensor data collected from machines and the shop floor environment will be analyzed in
our SMS-DT, thus allowing a quick reaction to anomalies and fast recovery processes. Our
system aims to analyze a large set of heterogeneous data and to explore data dependencies,
thus providing unexplored perspectives of the shop floor. The SMS-DT system learns from
data collected on the shop floor with several models implemented, for example, to forecast
the energy consumption of equipment and the consumption from the different sections of
the factory.

The modeling of human behavior, detection of abnormal network traffic or behaviors,
and energy modeling and consumption forecasting are key features of our SMS-DT system.
It not only detects abnormal behaviors from the technical, environmental, and human
dimensions, but it also raises alarms and alerts, expected to reach the right person at the
right time. The SMS-DT system avoids intrusive mechanisms in the operator’s routine so
that our assessment does not become an influencing factor in the system, thus avoiding
any impact on production.

Technically speaking, many companies do not have the expertise or resources required
to effectively implement digital twins. This becomes even further complicated considering
the lack of consensus on unified concepts, standards, technologies, and procedures [41].
Several software solutions exist to implement digital twins; however, most of them are
focused on only one specific digital twin specification. Moreover, the main solutions
are proprietary software designed to fulfill the company’s product aim. From the few
open-source solutions available, we have identified Eclipse Ditto and ThingsBoard as the
most interesting ones. ThingsBoard [46] allows for the collection, processing, and data
visualization of many devices. It generates alarms through a rule chain engine. On the
other hand, Eclipse Ditto [47] is designed for the Internet of Things. It holds models of
“things” as JSON objects, and it has an API that supports HTTP, WebSocket, and other
industrial protocols such as MQTT.
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4. SMS-DT Platform

Several reference architecture models have been developed in recent years to address
the issues of integration and interoperability in the context of smart manufacturing. The
initial architecture modeling focused strongly on the business and operational levels, while
newer approaches tried to also include architectural aspects of the involved systems. 1990’s
PERA (Purdue Enterprise Reference Architecture) [48] is an example of the first category,
which aims at computer-integrated manufacturing. More recent architectures have been
created within Industry 4.0 initiative, with the models proposed by Platform Industrie
4.0 [49] and Industrial Internet Consortium (IIC) [50], two of the largest organizations that
research topics related to industry and industrial internet, respectively. Other prominent
architectures include the ENISA Purdue Model [51], IBM Industry 4.0 [52], and NIST
Service-Oriented Architecture [53].

To describe the SMS-DT platform, we decided to follow the IIRA architecture model
based on ISO/IEC/IEEE 42010:2011 and presented by the Industrial Internet Consortium
(2017) [54]. It was built as an open architecture with a wide array of applications across
industries. The term industrial internet is used to represent the Internet of Things, machines,
computers, and people, enabling intelligent industrial operations using advanced data
analytics for transformational business outcomes [55]. Figure 2 illustrates, using the three-
tier architecture, the different components of SMS-DT. The three-tier architecture comprises
three different tiers that play specific roles in processing the data flows and control flows
involved in usage activities: edge, platform, and enterprise tiers. The edge tier collects
data from the edge nodes using the proximity network. The architectural characteristics
of this tier are dependent on the specific use cases. The platform tier is used to send
the control commands from the enterprise to the edge tier. It also receives data that
are ingested, organized, and then stored in the appropriate place. Non-domain-specific
services such as data query and analytics are also possible in this tier. Optionally, it may
also provide management functions for devices and assets. The enterprise tier carries out
industry domain-specific business applications and related decision support systems. It
also provides interfaces to businesses end-users and operation specialists. This tier often
receives data flows from the edge and platform tier. It also issues control commands to the
platform and edge tier.
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Considering the SMS-DT platform, on the shop floor or edge tier, several events are
tracked: equipment, sensors, humans interacting with each other, humans interacting with
robots and terminals, robots that communicate with each other, etc. Information such as
equipment state, energy sensor measurements, human facial images, human interaction
with mouse and keyboard, and network traffic can be captured and sent to a data lake in
the platform tier, where all information is stored. A data processing module acts as a data
broker, feeding and receiving data from the other modules. The data are pre-processed
according to the data modality, e.g., filtering noisy data on an image or audio record, or
missing records from a sensor are removed or replaced by default values. Furthermore,
in multi-modality approaches, the data are aggregated from different data sources and
stored in a data lake. The digital twin module mirrors the cognitive status of the employees,
energy, and network state. Using intelligent techniques, these different modules monitor,
detect, and predict issues in the system. As a result, they send alerts to a multi-domain
component that correlates all the alerts to obtain universal monitoring of the occurring
events. The correlator also assists in establishing cyber situational awareness and adopting
suitable countermeasures in case of attacks. All the information in the different modules
can be visualized in different dashboards, aggregated in a common visual interface at the
enterprise tier. Here, it is possible to display a summary of the different events and the
alerts generated in real time.

4.1. Sensing and Monitoring the Shop Floor

SMS-DT comprises a digital twin that allows for the emulation of the equipment on
the shop floor and its surrounding environment. A brief overview of the digital twin
architecture can be seen in Figure 3. It is based on Eclipse Ditto, an open-source digital twin
application that allows for the storage of information regarding a ”thing” or equipment.
Ditto can receive information from sensors or equipment by HTTP or MQTT protocols and
make it available through a REST API. It stores the thing’s information as JSON objects,
allowing any change to be made to these objects, even partially, using versatile access URLs
in the REST API. Ditto was chosen because of its open-source nature and flexibility. The
only other comparable open-source software is ThingsBoard, which we found to be less
flexible. Changes are quickly made on Ditto software, with a simple call to the REST API,
while in ThingsBoard it is hard to deal with the changes. In our implementation, Eclipse
Ditto ran as a multi-container docker through the tool Docker compose.
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The sensor information is read from the data lake through the Node-RED application.
Node-RED is a Node.js-based relay application for wiring together hardware devices
through messages exchange, which we used as an information broker. It reads sensor data
and inserts it in bulk in our database. The information gathered from the sensors is then
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stored in ElasticSearch, a highly scalable NoSQL database with a powerful search and
analytics engine. ElasticSearch along with Kibana and Logstash composes the open-source
ELK Stack [56]. We used ElasticSearch to store data, such as sensor readings and test results,
in a way that can be scaled for an industrial environment. Kibana is a data exploration and
visualization tool that runs on top of the ElasticSearch database. We used it to provide the
equipment data visualization dashboards for the digital twin. A graphical user interface
was developed, and Kibana dashboards were embedded in order to assure easy access to
all this information.

As a prototype, we deployed a partial digital twin of three pieces of equipment
that mirrors the equipment state information. The equipment DT visual component is
composed of two pages, a map that allows for the selection of equipment and viewing
basic information Figure 4, and the equipment panel (Figure 5).
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Figure 5. SMS-DT equipment panel info.

The equipment panel displays not only the state information stored in the DT software
(Ditto) but also two dashboards. One dashboard shows gauges with the current average
sensor data from the last twenty seconds, while the other shows historical sensor data from
the last hour in the form of graphical timelines and maximum and minimum values, as can
be seen in Figure 6.
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Since we were dealing with important shop-floor data, we also had an authentication
page to ensure that only allowed persons to have access the application. Keycloak [57],
an open-source authentication software that supports Open ID connect, was used for
that aim since it allows user information management and provides authentication and
authorization capabilities.

4.2. Human Behavior Dimension

Human resources are a crucial asset of any factory. The performance of each worker
during the working day greatly affects the factory’s production. Moreover, a stressed or
fatigued worker is more likely to mis-operate machines or make mistakes when dealing
with them. A lack of attention during the job can affect the continuity of the factory’s
processes or even cause injuries to the workers and/or co-workers. In this context, it is
important to understand if these mistakes are accidental or malicious. To determine this,
understanding human intention by comparison with normal behavior patterns is required.
Therefore, it becomes important to monitor the operator’s behavior during work to avoid
unexpected and unpleasant issues.

Fatigue is one of the most important operator states to be detected, since it greatly
impairs the operator’s performance, especially in industry settings. There are several
methods and/or technologies currently being used to detect fatigue and other associated
states, namely, visual facial detection, keyboard and mouse interaction patterns analysis,
and mental chronometry. In the context of textile factory circumstances, we believe that
mental chronometry is one of the useful techniques to be implemented. Mental chronometry
is the study of response time or reaction time (RT) in tasks [58]. It can be used to infer
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fatigue levels since it has been demonstrated that with the onset of fatigue, reaction time
decreases, and the number of errors increases [59]. Visual tasks such as Go/NoGo testing
can be used with success to measure response inhibition in these factors [60]. In a Go/NoGo
task, a subject must perform repetitive motor responses to two stimuli, Go and No-Go.
In the Go stimulus, the subject is normally presented with a visual stimulus that requires
the worker to press a button. In the No-Go stimulus, the subject is required to inhibit the
usual go response, abstaining from performing an action. Stroop interference is another
task where one is required to suppress a dominant response [61].

Therefore, we developed a Go/NoGo test framework that can be accessed by the
digital twin interface presented in the previous section (Figure 7). On a normal textile shop
floor, it is usual that operators need to react to some machine alarms. Thus, our aim was
to redirect the operators to this testing framework if an anomalous reaction time to this
alarm was detected. The framework developed has two variations of the tests. First, a basic
Go/NoGo test is triggered. Then, on the basis of the results, the framework can question the
user about their fatigue level using a USAFSAM fatigue scale [62]. We think that providing
workers with early warnings about their fatigue level can allow better fatigue management
and thus improve the operator’s performance.
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Additionally, the user interaction patterns with the ERP system as well as peripheral
devices (keyboard/mouse/screen) are captured and analyzed as they assist in the detection
of fatigue and other associated states in operators. For example, the analysis of micro-
expressions in the operator’s face or sudden changes in the operator’s speech are good
indicators of the operator’s performance. Not only stress and fatigue can be detected
with this analysis, but also malicious actions of the operators can be recognized. Several
technologies and solutions have been proposed with success in this field, such as the
analyses of physiological signals, speech signals, and human facial images [63].

In this context, we decided to study how facial emotion recognition [64] and speech [65]
can be used to detect and classify the subject’s emotions. From our study emerged the
Human Behavior Analyzer, a tool that we developed to monitor the emotions of shop
floor workers. This module captures and analyzes behavioral signs via two integrated
components: the camera application (CA) and the emotion detector (ED). The former keeps
track of the operator’s emotions and records real-time footage of the user via a webcam.
The latter classifies the emotion expressed in the images captured by the webcam. Both
components are implemented in Python using frameworks such as PyQT, FastAPI, and
OpenCV. As described in Figure 8, the CA captures footage of the operator and sends it
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to the ED. In turn, this component starts the classification process, which consists of three
processing and one classification phases: (i) image preprocessing; (ii) person identification;
(iii) face identification; and (iv) emotion classification.
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Figure 8. Human Behavior Analyzer workflow.

In the first phase, the received image is converted to RGB format and normalized by
dividing the three colors channels by 255. The preprocessed image then enters the second
phase, which consists of identifying the primary person in the frame. Resorting to object
detection methods, we used the ssd_512_mobilenet1.0_coco pretrained algorithm made
available by GluonCV [66] to perform the person detection. Only the person with the
highest detection percentage is considered for the analysis. The third phase takes the pose
outputted from the pretrained algorithm and uses it as input to simple_pose_resnet18_v1b
pre-trained algorithm, made available by the same framework as an object detector, which
provides facial coordinates of the identified person. This information is then used to crop
the image in order to avoid misclassifications caused by the surrounding environment.
Lastly, the facial image of the operator is then classified by an EfficientNet Convolutional
Neural Network [67] trained on an FER2013 dataset [68]. This module considers seven
emotions based on the Ekman Model of Basic Emotions [69]. These are angry, surprised,
disgusted, happy, fearful, sad, and neutral. Upon emotion classification of the operator,
ED correlates the image output with the IP address of the source PC where the image was
taken from, thus preserving the operator’s public integrity and confidentiality. The results
are then returned to the CA and are also published to the data lake to be consumed by other
subscribed modules in the SMS-DT platform. On the basis of the assessment of streamed
frames, the CA suggests taking fatigue tests in case the majority of obtained emotions are
negative for a long period of time, as shown in Figure 8.

4.3. Network Dimension

Intrusion detection systems have been largely used to identify and deal with different
threats, primarily by analyzing network traffic and reporting eventual unnatural occur-
rences. Suricata [70] is an example of an open-source IDS that supports several protocols
and has several rulesets that can be easily extended. Even using several rules to filter
the network traffic received, the IDSs deal with large amounts of diverse data. Machine
learning is particularly useful at dealing with large and varied datasets, which are crucial to
developing an accurate intrusion detection system. Thus, the huge challenge that intrusion
detection represents can be supported by machine learning techniques.

Therefore, we built a machine learning engine that works together with Suricata IDS
to identify different threats. The ruleset of the Suricata IDS instance used was extended
with rules designed according to the investigated shop floor to match its specific threats
and anomalies. This ruleset is completely flexible and allows the administrator to add new
detection rules. Each rule consists of an action (what happens when the signature matches),
the header (protocol, IP, ports, direction), and options. When a match with a rule occurs, an
alert is raised (according to the action defined). The ML engine was developed to help in
the detection of new attack patterns and new vulnerabilities. The structure of this engine
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is described in Figure 9. The ML engine receives the network traffic and uses anomaly
detection (unsupervised learning) and misuse-based (supervised learning) models to detect
attacks and anomalies. Then, this information is outputted to help in the detection of
security incidents.
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The ML creator is the core of the ML engine. It is responsible for continuously creating
new models to improve the performance of the ML engine. This is very important since
due to the fast emergence of new attacks, data need to be constantly updated. The creation
process consists of three main stages: pre-processing, training, and evaluation, as can be
seen in Figure 10.
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Pre-processing: in terms of traffic monitoring, most raw traffic network information is
not prepared to be fed into machine learning algorithms. As such, most algorithms require
some processing of the data to function properly, e.g., removal of 0 variance features, or
removal of invalid values. Moreover, some parsers also need to be built to ensure the
match with machine learning algorithm input. Feature selection and feature engineering
are techniques that aim to reduce the number of variables in the data to remove noise
and accelerate the models. They are also used to create new features that have better
relationships with the target variables.

Training and evaluation: the training process occurs after carefully splitting the avail-
able data into train and test sets and putting away the testing set for later use. If the data
are enough, the train set is further split into a validation dataset that is used to evaluate
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every model trained in the training set until a performance goal is achieved. In the last
instance, the model is tested on the test set, and if the results are satisfactory, the model is
deployed. In the case of data shortage in the training set, the model can be trained using
cross-validation, where the training set is split into k parts or folds, and then the model is
tested independently on each of the parts while being trained on the aggregation of the
other k-1 parts. The performance is then calculated as the average of the performance of
all folds.

In the first stage, we performed several experiments using public datasets. Some
unsupervised learning techniques, which may hold the key to the detection of zero-day
attacks, were studied. Additionally, feature selection and ensemble methods were applied
to recent datasets to develop valid models to detect intrusions as soon as they occur. A
robust and simplified framework that allows for the optimization of any machine learning
model was also built. All these works were developed with the aim of improving the
intrusion detection capability. Note that these experiments corresponded to a first phase
of the continuous improvement of the ML engine. In this phase, we used the publicly
available datasets that are intended to resemble real data traffic to create the first models
to be included in the ML engine. We used these datasets since they have several different
attacks, typically used in real networks, that allow machine learning algorithms to learn
how to detect them. Then, the ML engine was fine-tuned with real data from the actual
network of the inspected shop floor.

4.4. Optimization Dimension

One of the main capabilities of digital twins in smart factories is to simulate the pro-
cesses and situations of both physical and digital components. Simulation-based modules
might help in monitoring, assessing, and analyzing the performance of multiple aspects in a
manufacturing environment. Intelligent-based simulation tools can be developed not only
to promote decision making in smart factories but also to optimize the ongoing processes
and help in avoiding unseen and undesired behaviors.

Due to its vital role and contribution in almost all components of modern industrial
systems, monitoring power consumption in FoF is of paramount importance. It is crucial to
secure a solid overview of the different parts of the factory and their current and predicted
behavior. In this context, we developed energy forecasting tools and analyzers to provide
dynamic forecasting services for buildings and factories. The aim of our tools is to compare
and build forecasting models using machine learning algorithms and historical data sets.
They produce predictions for short- and medium-term horizons for the observed entities,
in essence by utilizing historical data sets with the most common input features, such
as previous consumption values, weather data, and time contextual fields (hour, day of
the week, day of the month, month of the year, year, etc.). Technically speaking, the
tools are standalone web applications that deliver their services via interactive graphical
user interfaces. The energy forecasting tools are configurable and built in Python using
Django web framework and Scikit-learn library [71]. Some prediction services are also
provided remotely using Restful API services. The tools utilize multiple machine learning
models including Adaboost.R2 [72], random forest [73], gradient boosting regressor [74],
support vector regressor [75], and linear regressor [76]. They also provide a variety of
dynamic energy forecasting services from model training, prediction, and tuning to other
customized services.

Furthermore, one of the key features of the developed tools is to analyze the actual
power consumption for a set of observers/sensors in real time. Using machine learning
models, the energy analyzers predict future energy records for each observer, compare
actual and predicted values, and generate forecasting-based alerts. To achieve this goal,
the analyzer runs through two periodical phases. The training phase is when a training
scheduler for each observer is set and triggered. In this phase, the latest historical energy
consumption data for the observer are retrieved and pre-processed. Then, they are ag-
gregated into a specific timestamp and used to train a supervised ML model, resulting
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in an up-to-date trained prediction model for each subscribed observer. We designed an
input data adapter to extend the energy analyzer to retrieve power records from multiple
channels, including APIs, databases, and static MS Excel files. On the other hand, the
scanning phase is when a scanning scheduler for each observer is defined and triggered.
During this process, the actual energy consumption for the targeted observer is retrieved.
The previously trained model is used to predict the expected consumption. Then, the ana-
lyzer compares both predicted and actual consumptions and assesses the difference. If the
assessment found that the actual consumption exceeds the normal predicted one, an alert is
triggered and sent to a broadcasting channel. For this aim, we designed an alert triggering
mechanism to allow broadcasting alerts to multiple channels such as APIs, databases,
and Apache Kafka topics. Figure 11 shows the JSON structure of an alert generated and
broadcasted by our energy forecasting analyzer from the textile shop floor.
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In our context, all alerts being generated and triggered by the energy analyzers are
sent to a Kafka topic so that they can be consumed by other modules in our architecture
and correlated with events taking place in other parts of the investigated space.

4.5. Multi-Domain Dimension

In the FoF environment, it is essential to develop mechanisms that ensure the max-
imum availability of production assets in crisis situations. An important issue to be
considered is the correlation of the information from different sources in the FoF environ-
ment, namely, information about shop floor monitoring (energy consumption analysis and
human behavior monitoring) and information about intrusion detection (network behavior
monitoring). Figure 12 shows an overview of the correlation of the investigated shop floor
information. As can be observed, different cyber and physical events on the shop floor are
collected. These events are sent through the Kafka engine to a multi-domain correlator that
will work on the correlation. Apache Kafka is a distributed publish-subscribe messaging
system that maintains feeds of messages in partitioned and replicated topics [77]. All alerts
broadcasting modules are producers to Kafka topics, while a consumer was implemented
to read the messages from the subscribed topics. When the consumer obtains messages, it
also sends them to the correlator for correlation processing.
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As Figure 12 depicts, the SMS-DT is built upon a microservices architecture with all
components talking to each other using application programming interfaces. The data are
fed into each domain analyzer from corresponding loggers and sensors where relevant
historical and standard datasets might also be utilized. Each monitoring analyzer has
multiple submodules and tools that work on analyzing the live streams of input records,
as described in detail in the previous sections. Each module has its own interactive
user interfaces that allow the security operator to monitor and control domain-specific
conditions. Afterward, when an abnormal behavior is detected in any of the monitored
domains, the corresponding analyzer generates a relevant alert and sends it to a Kafka
topic. Alerts being broadcasted to Kafka are then consumed by the multidomain awareness
module that works on correlating the inter-domain alerts and delivers insights via its own
interface about detected security activities in the monitored environment. The technical
details and inter-linking between all analyzers were comprehensively described in the
previous sections. This cyber resilience mechanism represents an intelligent multi-domain
correlator that works to correlate different cyber and physical events received from different
data sources on the shop floor. The aim is to provide the user the ability to understand that
an attack is occurring through the events being received, as it is important that the user
understands what is happening to allow the design of future prevention measures.

For the multi-domain correlator, the SMS-DT platform utilizes its own intelligent
correlator (IC) whose function is to correlate the data collected from all previously consid-
ered domains. The IC utilized in the platform is a shorter version of the Hybrid Intrusion
Detection System presented by Dias et al. [78]. The Hybrid IDS is a highly interpretable
and explainable rule-based IDS. The authors’ proposal stands out for its ML support on
increasing the knowledgebase by generating new rules. This makes the IDS much more
robust and resistant over time. However, the main benefit of using this correlator is its
ability to calculate new evidence from the consumed data, along with its intrusion detection
capability, which was maintained in our platform. The IC is composed of two different
components: drools backend (DB) and correlator interface (CI).

The DB is the correlating component that uses the drools engine [79] to produce
inferences using the knowledge base and the calculated dynamic evidences. This com-
ponent allows users to perform Create, Update, Read, and Delete (CRUD) operations on
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the rules that compose the knowledge base. It is also automated to perform and persist
all correlations made in regard of the collected alerts. As mentioned earlier, all message-
producing modules are publishers to the Kafka topic, while the DB is a consumer of the
alerts produced by the different domains. This component was developed in Java and uses
the Spring Framework to follow Representational State Transfer (REST) architecture. In
terms of the internal process, the correlation process occurs in a configured cadence. Every
time the DB reaches an execution point, it starts by consuming all alerts published during
that time window. Then, the information is filtered in order to obtain a set of valuable
pieces of evidence and compute new ones. These forms of evidence are then sent to the
drools inference engine, which takes care of correlating the data, along with the rules
registered in the knowledge base. When the inference results in a warning or a danger
state, a justification is created. This confers the system a high transparency, interpretability,
and explainability. The correlation interface is an interactive web-based tool to control the
system and provide an overview about the SMS-DT platform and its components. Using
a set of dashboards and visualization techniques, it helps operators manage and obtain
details about occurring alerts and their correlations in the entire investigated environment.

5. Textile Industrial Use-Case

The end-user of this use-case is a company with solutions for textile labels for branding
and promotional effects, and of elastane and rubber-coated yarns for several applications
in the textile industry. Present in the market for 50 years, the company is a reference in the
textile sector and has a multinational cross-sector client portfolio. In a continuous search for
improvement, our end-user aims to adopt technological and innovative solutions that can
produce a reduction in costs without adversely affecting the performance of the production
lines and associated machines.

As in most textile companies, the main assets of our end-user are specialized hu-
man resources, Jacquard and Rapier Looms, and cutting machines. The manufacturing
resources of the Jacquard and Rapier processes are sensitized, which allows, for exam-
ple, the calculation of energy consumption. Roughly speaking, the shop floor has five
main sections:

• The weaving section, where the raw product is prepared to feed the Rapier looms.
• Two different sections with looms, one with Rapier looms and the other with Jacquard looms.
• A cutting division where the pattern pieces woven on the looms are cut.
• A final stage where a sequence of different operations is performed to provide the

pieces their final commercial appearance.

All these sections have a terminal with a system that is used by the operators to register
the production orders. These terminals are also used in the Jacquard and Rapier looms
sections to download to a USB flash drive some production order information that needs
to be inserted into the looms system. In the two sections with looms, the data of some
sensors are collected and sent to the ERP system. In the cutting division, some more recent
machines have a Windows production terminal that allows for direct interaction with the
local ERP. As can be inferred from the previous description, all the processes in the textile
factory have a strong manual component: it is the operators who register in the ERP what is
done in the machines; they are also responsible for inserting in the machine the information
needed to execute the order, and Jacquard and Rapier looms have connection ports (e.g.,
USB and serial) that can be used to interact with them. This carries a great risk of incidents
because the operator can make (accidentally or not) some mistakes.

This use-case is well suited for our purpose as it is a paradigmatic example of small
and medium companies, with both advanced and legacy equipment, and with a long
history and simultaneously evolving to the Industry 4.0 model, combining automation
and manual work. The FoF needs to have secure-hardened and reliable solutions and it is
crucial to empowering these solutions, providing increased efficiency and value to the FoF.
Artificial intelligence services bring light to this aim, providing intelligent mechanisms to
extract knowledge from the available data.
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Thus, in this use case, three different Jacquard looms were completely monitored.
Environmental sensors, such as temperature and humidity, which may influence the quality
of the final product, were utilized. Induction sensors to monitor loom parameters, number
of meters produced, power analyzers, and flowmeters were also used to collect data
on the shop floor. The collected information was stored in a data lake that simplified
the access to data and the detection of abnormal patterns, resulting in deriving insights
about existing and future operations in close-to-real-time scenarios. Furthermore, a set
of disruptive intelligent services based on innovative data lake analysis and learning
approaches fostered a sustainable, secure, distributed, and efficient set of data knowledge
services. Human behavior was also modelled and simulated to investigate stress, fatigue,
and lack of attention.

Therefore, using this use-case, we demonstrated the main features that can be de-
livered to our end-user, which include a set of different data analytics techniques for
features extraction, cross-checking manufacturing, human behavior modelling, and context
variables. Such techniques support production optimization, increased efficiency, and
predictive actions (such as predictive manufacturing). The deliverables also combine data
analytics for anomaly detection, as well as advanced decision support system using the data
provided by the sensors to ensure a continuous improvement and optimization. Finally, we
also delivered machine learning and knowledge-as-a-service models that generate insights
and recommendations and guide decision making among the manufacturing system as
a whole.

5.1. Misuse-Case Scenarios

A misuse-case describes the steps and scenarios that an actor performs in order to
accomplish a malicious act against a system or business process. To demonstrate the
efficiency and utility of the previously described tools in the detection and remediation
of these malicious actions, in the next sections, we describe two misuse-case scenarios on
a high level. We decided to have two different types of actors: an operator who makes a
mistake that causes a problem in the production line (unintentional attack) and a malicious
person who intentionally causes a problem to the company (intentional attack). It is worth
noting that we implemented all previously mentioned components and integrated them
with the textile shop floor systems. Then, we used them to simulate the scenarios of the
following misuse cases in data captured from the real industrial environment.

5.1.1. Misuse-Case A: Unintentional Attack Action

The final product can be affected by an accidental error caused by an operator. The
error can be caused by using the wrong material. It can also happen due to an error on
the loom that the operator cannot avoid due to their lack of attention, fatigue, or even
inexperience. Therefore, in this storyline, the misbehavior of the production process is
caused by an underperforming employee that, due to his tiredness level, misbehaves with
the work that should be done. The product is then wrongly produced, as detected in the
quality assessment stage of the production, forcing the restart of the production line. This
storyline is represented in Figure 13.
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To prevent such unintentional scenarios, the SMS-DT platform plays a role in detecting
abnormal actions via the intervention of three components: the human and energy analyzers
and the intelligent correlator.
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The human behavior analyzer can detect the tiredness of the operator and raise an
alert about the operator’s state. A nearby camera that is responsible for capturing the
worker’s behavior is streaming real-time footage. The camera application receives the
video stream and sends it to the emotion detector. The emotion detector module classifies
the worker’s status on the basis of the streamed pictures and generates an alert due to
a reported negative emotion. The alert is reported to the human behavior interface and
sent with all relevant information to the corresponding topic in the Kafka data lake. As
a preventive measure, the platform might ask the worker to conduct a fatigue test before
continuing the work. In terms of energy monitoring, the energy consumption analyzer
maintains a regularly updated model for the energy consumption for each machine on the
shop floor. It also captures the real-time consumption through the installed loggers. The
mistakes that the fatigued or underperforming worker has made lead to an uncommon
behavior of some machines or to have some of them completely stopped. During the
frequent scanning process, the energy forecasting tool compares the current consumption
with the predicted values on the basis of the consumption profile for each machine. Thus, it
detects the deviations in the real-time energy values and generates an alert (see Figure 11).
Then, it reports the alert to both its interface and the corresponding topic in the Kafka data
lake. Afterwards, having the previous two alerts produced to Kafka topics along with other
alerts, the drools backend engine in the intelligent correlator consumes all alerts and starts
to correlate them. For example, on the basis of the rules stored in its knowledge base, it
infers a danger status due to having the previous two alerts triggered at the same period.
Accordingly, the engine generates an alert and reports it in the multi-domain awareness
dashboard so that it instantly reaches to the security operator who receives it and handles
it accordingly. The detailed processes and internal techniques of each component are
described in detail in Section 4. Figure 14 shows a generated rule responsible for detecting
such a dangerous situation due to abnormal behaviors in both human monitoring and
energy domains.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 26 
 

 

 

Figure 13. Misuse-case A: unintentional attack action. 

To prevent such unintentional scenarios, the SMS-DT platform plays a role in detect-

ing abnormal actions via the intervention of three components: the human and energy 

analyzers and the intelligent correlator. 

The human behavior analyzer can detect the tiredness of the operator and raise an 

alert about the operator’s state. A nearby camera that is responsible for capturing the 

worker’s behavior is streaming real-time footage. The camera application receives the 

video stream and sends it to the emotion detector. The emotion detector module classifies 

the worker’s status on the basis of the streamed pictures and generates an alert due to a 

reported negative emotion. The alert is reported to the human behavior interface and sent 

with all relevant information to the corresponding topic in the Kafka data lake. As a pre-

ventive measure, the platform might ask the worker to conduct a fatigue test before con-

tinuing the work. In terms of energy monitoring, the energy consumption analyzer main-

tains a regularly updated model for the energy consumption for each machine on the shop 

floor. It also captures the real-time consumption through the installed loggers. The mis-

takes that the fatigued or underperforming worker has made lead to an uncommon be-

havior of some machines or to have some of them completely stopped. During the fre-

quent scanning process, the energy forecasting tool compares the current consumption 

with the predicted values on the basis of the consumption profile for each machine. Thus, 

it detects the deviations in the real-time energy values and generates an alert (see Figure 

11). Then, it reports the alert to both its interface and the corresponding topic in the Kafka 

data lake. Afterwards, having the previous two alerts produced to Kafka topics along with 

other alerts, the drools backend engine in the intelligent correlator consumes all alerts and 

starts to correlate them. For example, on the basis of the rules stored in its knowledge base, 

it infers a danger status due to having the previous two alerts triggered at the same period. 

Accordingly, the engine generates an alert and reports it in the multi-domain awareness 

dashboard so that it instantly reaches to the security operator who receives it and handles 

it accordingly. The detailed processes and internal techniques of each component are de-

scribed in detail in Section 4. Figure 14 shows a generated rule responsible for detecting 

such a dangerous situation due to abnormal behaviors in both human monitoring and 

energy domains. 

 

Figure 14. Negative emotions and energy deviations rule generated by SMS-DT systems. Figure 14. Negative emotions and energy deviations rule generated by SMS-DT systems.

5.1.2. Misuse-Case B: Intentional Attack Scenario

A malicious person who may have access to the looms can intentionally damage
the loom, for example, by causing technical problems; or, they can produce more pieces
than the ones in the service order, causing economic damages to the company or selling
counterfeit products. In this story line (Figure 15), an attacker aims to produce pieces of
a renowned end-user’s customer to sell them in the black market. To achieve their goal,
the attacker needs the product designs, usually stored in the end-user system, as well as
access to the looms to then produce the parts according to the customer’s design. Thus, the
attacker starts the attack with two different attacks: one to an end-users’ administrator to
obtain privileged access to the administrator computer and find the customer’s designs;
the other to an end-user employee to coerce the employee and have access to the looms.
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After having access to the customer’s designs and coercing the employee, the attacker and
the employee access end-user’s facilities to use the looms at unusual hours and produce
the pieces to sell them in the black market. Figure 15 represents the different steps of
this storyline.
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Using the tools described in the previous sections, we can alert about these malicious
actions. Figure 16 represents the intervention of our systems into multiple steps of this
misuse case, as described in the next paragraph.
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Figure 16. Misuse-case B: intentional attack scenario with SMS-DT detection solutions.

All components will orchestrate to detect such a type of attack and alert the security
personnel. After the phishing email to an end-user’s administrator, the attacker executes
a network scan to find the customer’s designs. The machine-learning-based IDS of the
network analyzer monitors the network traffic in real time. Accordingly, it will be able to
detect the abnormal access of the company resources, generating an alert and reporting it
to the Kafka data lake. On the other hand, the camera application of the human behavior
analyzer captures footage of the employee and sends it to the emotion detector, which in
turn identifies the employee’s negative emotions resulting from the attacker’s coercion and
reports corresponding alerts to the Kafka topic. Additionally, using the looms at unusual
hours will be detected by the forecasting tool, which monitors the real-time consumption
and compares it to the loom’s regular profile. As a result, an energy consumption alert is
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also created and sent to the data lake. Figure 17 shows the three mentioned alerts generated
by SMS-DT systems as inspected in the intelligent correlation interface. With all these
alerts being received by the intelligent correlator at the same time, they will be intelligently
correlated in a similar manner to the previous misuse case. The resulting correlation
alert with all the details can be instantly seen in the multi-domain awareness dashboard.
The detailed mechanism and models of how each component works is comprehensively
described in Section 4. Finally, Figure 18 depicts some danger and warning alert correlations
as inspected in the intelligent correlation interface.
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6. Conclusions

The inevitable transition from traditional industrial environments into modern facto-
ries has been accompanied by increasing connectivity between cyber and physical com-
ponents. Realizing smart factories requires advanced models to simulate and control the
combination of various complex systems that were not originally designed to operate in a
unified architecture. Despite this combination resulting in optimized production processes,
the introduction of newly developed techniques compromises the overall system to a wide
range of security and safety concerns. To this end, having a centralized mechanism to
monitor all industrial modules is very necessary, not only to have an overall overview
of the investigated environment, but also to correlate events occurring simultaneously in
different parts of the system.

Our SMS-DT platform was developed to capture attacks, vulnerabilities, and safety
issues on the basis of intelligent correlation of messages from multiple domains in an
industrial cyber-physical environment. Relying on the digital twin approach and intelligent
services, the SMS-DT utilizes environmental sensors, network monitoring, and workers
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behavior analysis models to deliver real-time multi-domain situational awareness in smart
factories. Nevertheless, regardless of their operational complexity, most modern factories
utilize heterogeneous and highly integrated systems, most of which deals with new tech-
nologies that might be not yet stable to run faultlessly. This makes it difficult even for small-
and medium-sized factories to secure proper continuous productions. For this reason, our
SMS-DT platform has been developed to fulfill this requirement. Nonetheless, there are still
many opportunities for future approaches to build upon our platform to investigate this
gap and bridge it accordingly. Future activities might focus on discovering further domains
other than the three ones covered in this study. For example, researchers can integrate IoT
sensors and other embedded systems to monitor environmental conditions on the shop
floor, such as the internal temperature, workers/machines movement, functional alarms
produced by machines, and access control to restricted industry departments. Additionally,
with the SMS-DT platform overloaded with numerous AI-based systems, there is a need to
assess the combined computational cost and proper techniques for all included machine
learning models while working together. The role of cloud-based architectures to handle
this load can also be investigated. This assessment does not include only the performance
of prediction models, but also the robustness and explainability of such models to correlate
alerts and generate new ones. Moreover, considering the continuous evolution of machine
learning models, the investigation of better deep learning and neural network models for
both alerts detection and correlation is also an open area for research, taking into account
the most efficient techniques to generate insights in real-time or near real-time conditions.

Finally, we strongly believe that the detection of abnormal or dangerous situations
based on alert patterns from multiple domains can generate sharable insights, as the
same pattern that is discovered in specific industrial situations might apply to multiple
other industries. This implies the need for security specialists and other stakeholders and
policymakers to define frameworks and standards to share such re-usable insights in order
to protect the overall industrial community while keeping the sensitive details for each use
case securely maintained.
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