37,441 research outputs found

    5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments

    Get PDF
    For the development of new 5G systems to operate in bands up to 100 GHz, there is a need for accurate radio propagation models at these bands that currently are not addressed by existing channel models developed for bands below 6 GHz. This document presents a preliminary overview of 5G channel models for bands up to 100 GHz. These have been derived based on extensive measurement and ray tracing results across a multitude of frequencies from 6 GHz to 100 GHz, and this document describes an initial 3D channel model which includes: 1) typical deployment scenarios for urban microcells (UMi) and urban macrocells (UMa), and 2) a baseline model for incorporating path loss, shadow fading, line of sight probability, penetration and blockage models for the typical scenarios. Various processing methodologies such as clustering and antenna decoupling algorithms are also presented.Comment: To be published in 2016 IEEE 83rd Vehicular Technology Conference Spring (VTC 2016-Spring), Nanjing, China, May 201

    A Proposed 3D Extension to the 3GPP/ITU Channel Model for 800 MHz and 2.6 GHz Bands

    Get PDF

    Distributed drone base station positioning for emergency cellular networks using reinforcement learning

    Get PDF
    Due to the unpredictability of natural disasters, whenever a catastrophe happens, it is vital that not only emergency rescue teams are prepared, but also that there is a functional communication network infrastructure. Hence, in order to prevent additional losses of human lives, it is crucial that network operators are able to deploy an emergency infrastructure as fast as possible. In this sense, the deployment of an intelligent, mobile, and adaptable network, through the usage of drones—unmanned aerial vehicles—is being considered as one possible alternative for emergency situations. In this paper, an intelligent solution based on reinforcement learning is proposed in order to find the best position of multiple drone small cells (DSCs) in an emergency scenario. The proposed solution’s main goal is to maximize the amount of users covered by the system, while drones are limited by both backhaul and radio access network constraints. Results show that the proposed Q-learning solution largely outperforms all other approaches with respect to all metrics considered. Hence, intelligent DSCs are considered a good alternative in order to enable the rapid and efficient deployment of an emergency communication network

    A novel approach to CFD analysis of the urban environment

    Get PDF
    The construction of cities, with their buildings and human activities, not only changes the landscape, but also influences the local climate in a manner that depends on many different factors and parameters: weather conditions, urban thermo-physical and geometrical characteristics, anthropogenic moisture and heat sources. Land-cover and canopy structure play an important role in urban climatology and every environmental assessment and city design face with them. Inside the previous frame, the objective of this study is both to identify both the key design variables that alter the environment surrounding the buildings, and to quantified the extension area of these phenomena. The tool used for this study is a 2D computational fluid dynamics (CFD) numerical simulation considering different heights for buildings, temperature gaps between undisturbed air and building’s walls, velocities of undisturbed air. Results obtained allowed to find a novel approach to study urban canopies, giving a qualitative assessment on the contribution and definition of the total energy of the area surrounding the buildings

    Assessing Simulations of Imperial Dynamics and Conflict in the Ancient World

    Get PDF
    The development of models to capture large-scale dynamics in human history is one of the core contributions of cliodynamics. Most often, these models are assessed by their predictive capability on some macro-scale and aggregated measure and compared to manually curated historical data. In this report, we consider the model from Turchin et al. (2013), where the evaluation is done on the prediction of "imperial density": the relative frequency with which a geographical area belonged to large-scale polities over a certain time window. We implement the model and release both code and data for reproducibility. We then assess its behaviour against three historical data sets: the relative size of simulated polities vs historical ones; the spatial correlation of simulated imperial density with historical population density; the spatial correlation of simulated conflict vs historical conflict. At the global level, we show good agreement with population density (R2<0.75R^2 < 0.75), and some agreement with historical conflict in Europe (R2<0.42R^2 < 0.42). The model instead fails to reproduce the historical shape of individual polities. Finally, we tweak the model to behave greedily by having polities preferentially attacking weaker neighbours. Results significantly degrade, suggesting that random attacks are a key trait of the original model. We conclude by proposing a way forward by matching the probabilistic imperial strength from simulations to inferred networked communities from real settlement data

    A complex network approach to urban growth

    Get PDF
    The economic geography can be viewed as a large and growing network of interacting activities. This fundamental network structure and the large size of such systems makes complex networks an attractive model for its analysis. In this paper we propose the use of complex networks for geographical modeling and demonstrate how such an application can be combined with a cellular model to produce output that is consistent with large scale regularities such as power laws and fractality. Complex networks can provide a stringent framework for growth dynamic modeling where concepts from e.g. spatial interaction models and multiplicative growth models can be combined with the flexible representation of land and behavior found in cellular automata and agent-based models. In addition, there exists a large body of theory for the analysis of complex networks that have direct applications for urban geographic problems. The intended use of such models is twofold: i) to address the problem of how the empirically observed hierarchical structure of settlements can be explained as a stationary property of a stochastic evolutionary process rather than as equilibrium points in a dynamics, and, ii) to improve the prediction quality of applied urban modeling.evolutionary economics, complex networks, urban growth
    • …
    corecore