2 research outputs found

    Creep modelling of polypropylenes using artificial neural networks trained with Bee algorithms

    Get PDF
    Polymeric materials, being capable of high mouldability, usability of long lifetime up to 50 years and availability at low cost properties compared to metallic materials, are in demand but finite element-based design engineers have limited means in terms of the limited material data and mathematical models. In particular, in the analysis of products with complex geometry, the stresses and strains of various amounts formed in the product should be known and evaluated in terms of a precise design of the product to fulfil life expectancy. Due to time and cost constraints, experimental data cannot be available for all cases required in analysis, therefore, finite element method-based simulations are commonly used by design engineers. This is also computationally expensive and requires a simpler and more precise way to complete the design more realistically. In this study, the whole creep behaviour of polypropylene for all stresses were obtained with 10% accuracy errors by artificial neural networks trained using existing experimental test results of the materials for a particular working range. The artificial neural network model was trained with traditional as well as heuristic based methods. It is demonstrated that heuristically trained ANN models have provided much accurate and precise results, which are in line with 10% accuracy of experimental data

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems
    corecore