1,776 research outputs found

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity

    Discovering Evolutionary Stepping Stones through Behavior Domination

    Full text link
    Behavior domination is proposed as a tool for understanding and harnessing the power of evolutionary systems to discover and exploit useful stepping stones. Novelty search has shown promise in overcoming deception by collecting diverse stepping stones, and several algorithms have been proposed that combine novelty with a more traditional fitness measure to refocus search and help novelty search scale to more complex domains. However, combinations of novelty and fitness do not necessarily preserve the stepping stone discovery that novelty search affords. In several existing methods, competition between solutions can lead to an unintended loss of diversity. Behavior domination defines a class of algorithms that avoid this problem, while inheriting theoretical guarantees from multiobjective optimization. Several existing algorithms are shown to be in this class, and a new algorithm is introduced based on fast non-dominated sorting. Experimental results show that this algorithm outperforms existing approaches in domains that contain useful stepping stones, and its advantage is sustained with scale. The conclusion is that behavior domination can help illuminate the complex dynamics of behavior-driven search, and can thus lead to the design of more scalable and robust algorithms.Comment: To Appear in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017

    Computational Social Creativity

    Get PDF
    This article reviews the development of computational models of creativity where social interactions are central. We refer to this area as computational social creativity. Its context is described, including the broader study of creativity, the computational modeling of other social phenomena, and computational models of individual creativity. Computational modeling has been applied to a number of areas of social creativity and has the potential to contribute to our understanding of creativity. A number of requirements for computational models of social creativity are common in artificial life and computational social science simulations. Three key themes are identified: (1) computational social creativity research has a critical role to play in understanding creativity as a social phenomenon and advancing computational creativity by making clear epistemological contributions in ways that would be challenging for other approaches; (2) the methodologies developed in artificial life and computational social science carry over directly to computational social creativity; and (3) the combination of computational social creativity with individual models of creativity presents significant opportunities and poses interesting challenges for the development of integrated models of creativity that have yet to be realized

    Past Visions of Artificial Futures: One Hundred and Fifty Years under the Spectre of Evolving Machines

    Full text link
    The influence of Artificial Intelligence (AI) and Artificial Life (ALife) technologies upon society, and their potential to fundamentally shape the future evolution of humankind, are topics very much at the forefront of current scientific, governmental and public debate. While these might seem like very modern concerns, they have a long history that is often disregarded in contemporary discourse. Insofar as current debates do acknowledge the history of these ideas, they rarely look back further than the origin of the modern digital computer age in the 1940s-50s. In this paper we explore the earlier history of these concepts. We focus in particular on the idea of self-reproducing and evolving machines, and potential implications for our own species. We show that discussion of these topics arose in the 1860s, within a decade of the publication of Darwin's The Origin of Species, and attracted increasing interest from scientists, novelists and the general public in the early 1900s. After introducing the relevant work from this period, we categorise the various visions presented by these authors of the future implications of evolving machines for humanity. We suggest that current debates on the co-evolution of society and technology can be enriched by a proper appreciation of the long history of the ideas involved.Comment: To appear in Proceedings of the Artificial Life Conference 2018 (ALIFE 2018), MIT Pres

    WebAL Comes of Age: A review of the first 21 years of Artificial Life on the Web

    Get PDF
    We present a survey of the first 21 years of web-based artificial life (WebAL) research and applications, broadly construed to include the many different ways in which artificial life and web technologies might intersect. Our survey covers the period from 1994ā€”when the first WebAL work appearedā€”up to the present day, together with a brief discussion of relevant precursors. We examine recent projects, from 2010ā€“2015, in greater detail in order to highlight the current state of the art. We follow the survey with a discussion of common themes and methodologies that can be observed in recent work and identify a number of likely directions for future work in this exciting area

    Necessary Conditions for Open-Ended Evolution

    Get PDF
    Evolution on Earth is widely considered to be an effectively endless process. Though this phenomenon of open-ended evolution (OEE) has been a topic of interest in the artificial life community since its beginnings, the field still lacks an empirically validated theory of what exactly is necessary to reproduce the phenomenon in general (including in domains quite unlike Earth). This dissertation (1) enumerates a set of conditions hypothesized to be necessary for OEE in addition to (2) introducing an artificial life world called Chromaria that incorporates each of the hypothesized necessary conditions. It then (3) describes a set of experiments with Chromaria designed to empirically validate the hypothesized necessary conditions. Thus, this dissertation describes the first scientific endeavor to systematically test an OEE framework in an alife world and thereby make progress towards solving an open question not just for evolutionary computation and artificial life, but for science in general
    • ā€¦
    corecore