459 research outputs found

    Tracking sub-page components in document workflows

    Get PDF
    Documents go through numerous transformations and intermediate formats as they are processed from abstract markup into final printable form. This notion of a document workflow is well established but it is common to find that ideas about document components, which might exist in the source code for the document, become completely lost within an amorphous, unstructured, page of PDF prior to being rendered. Given the importance of a component-based approach in Variable Data Printing (VDP) we have developed a collection of tools that allow information about the various transformations to be embedded at each stage in the workflow, together with a visualization tool that uses this embedded information to display the relationships between the various intermediate documents. In this paper, we demonstrate these tools in the context of an example document workflow but the techniques described are widely applicable and would be easily adaptable to other workflows and for use in teaching tools to illustrate document component and VDP concepts

    Reflowable documents composed from pre-rendered atomic components

    Full text link

    Encapsulating and manipulating component object graphics (COGs) using SVG

    Full text link

    Creating reusable well-structured pdf as a sequence of component object graphic (cog) elements

    Get PDF
    Portable Document Format (PDF) is a page-oriented, graphically rich format based on PostScript semantics and it is also the format interpreted by the Adobe Acrobat viewers. Although each of the pages in a PDF document is an independent graphic object this property does not necessarily extend to the components (headings, diagrams, paragraphs etc.) within a page. This, in turn, makes the manipulation and extraction of graphic objects on a PDF page into a very difficult and uncertain process. The work described here investigates the advantages of a model wherein PDF pages are created from assemblies of COGs (Component Object Graphics) each with a clearly defined graphic state. The relative positioning of COGs on a PDF page is determined by appropriate "spacer" objects and a traversal of the tree of COGs and spacers determines the rendering order. The enhanced revisability of PDF documents within the COG model is discussed, together with the application of the model in those contexts which require easy revisability coupled with the ability to maintain and amend PDF document structure

    Improving typography and minimising computation for documents with scalable layouts

    Get PDF
    Since the 1980s, two paradigms have dominated the representation of formatted electronic documents: flowable and fixed. Flowable formats, such as HTML, EPUB, or those used by word processors, allow documents to scale to any arbitrary page size, but typographical compromises must be made since the layout is computed in real time, and is re-computed each time the document is displayed. Conversely, fixed formats such as SVG or PDF are afforded the potential for arbitrarily complex typography, but are constrained to the fixed layout that is set at the time of creation. With the recent surge in popularity of low-powered portable reading devices -- from tablets to e-readers to mobile phones -- there is an expectation that documents should scale to any size, maintain their high-quality typography, and not provide unnecessary strain on an already overloaded battery. This thesis defines a novel paradigm for electronic document representation -- the Malleable Document -- whereby documents are partially typeset at the time of creation, leaving enough flexibility that their content can be flowed to arbitrary page sizes with minimal computation. One tradeoff encountered is that of increased file size, and this is addressed with a bespoke, computationally-light compression scheme. A sample implementation is presented that transforms documents from a source format into Malleable Document format, alongside a lightweight display engine that enables the documents to be viewed and resized on a wide range of devices, mobile and otherwise. Reviews of the technical aspects and a user study to evaluate the quality of the system's rendering and layout show that the Malleable Document paradigm is a promising alternative to both fixed and flowable formats, and builds upon the best of both approaches

    Documenting, Interpreting, Publishing, and Reusing : Linking archaeological reports and excavation archives in the virtual space

    Get PDF
    This PhD thesis examines how application of 3D visualization and related digital analytical tools is having a transformative impact on archaeological practice via improvement of visual-spatial thinking and the strengthening of conceptual understanding. However, the deployment of these new digital methods is essentially still at an experimental stage. Therefore, the thesis undertakes a critical evaluation of current progress, identifying both shortcomings and opportunities. It argues that more work is needed to systematically identify and resolve current operational challenges in order to create improved digital frameworks that can strengthen future performance across the wider discipline.The PhD research is based on four “parallel experiments” designed to facilitate mutual enrichment and on-going refinement. Each individual experiment generated research articles, which investigate how particular 3D and digital methods can be adapted to diverse kinds of archaeological sites and features,each with unique characteristics. The articles demonstrate how particular methods can be deployed to constantly refine and improve documentation procedures, and to review and adjust interpretation during the excavation process. In total, the thesis produced five research articles and three new web-based publishing systems.Overall, the thesis demonstrates that application, proactive evaluation and constant improvement of new 3D visualization and digital analytical tools will play an increasingly significant role in strengthening and better integrating future archaeological methods and practice. The research also generates original insights and new digital platforms that together underline the importance of applying these new digital tools across the wider archaeological discipline. Finally, the thesis cautions that digital innovation needs to be anchored in an "open science" culture, including strong ethical frameworks and commitment to FAIR principles (i.e. Findability, Accessibility, Interoperability, and Reusability) of data archiving as a key component of research design and wider societal engagement

    Improving typography and minimising computation for documents with scalable layouts

    Get PDF
    Since the 1980s, two paradigms have dominated the representation of formatted electronic documents: flowable and fixed. Flowable formats, such as HTML, EPUB, or those used by word processors, allow documents to scale to any arbitrary page size, but typographical compromises must be made since the layout is computed in real time, and is re-computed each time the document is displayed. Conversely, fixed formats such as SVG or PDF are afforded the potential for arbitrarily complex typography, but are constrained to the fixed layout that is set at the time of creation. With the recent surge in popularity of low-powered portable reading devices -- from tablets to e-readers to mobile phones -- there is an expectation that documents should scale to any size, maintain their high-quality typography, and not provide unnecessary strain on an already overloaded battery. This thesis defines a novel paradigm for electronic document representation -- the Malleable Document -- whereby documents are partially typeset at the time of creation, leaving enough flexibility that their content can be flowed to arbitrary page sizes with minimal computation. One tradeoff encountered is that of increased file size, and this is addressed with a bespoke, computationally-light compression scheme. A sample implementation is presented that transforms documents from a source format into Malleable Document format, alongside a lightweight display engine that enables the documents to be viewed and resized on a wide range of devices, mobile and otherwise. Reviews of the technical aspects and a user study to evaluate the quality of the system's rendering and layout show that the Malleable Document paradigm is a promising alternative to both fixed and flowable formats, and builds upon the best of both approaches

    AFRANCI : multi-layer architecture for cognitive agents

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Stimulating Personal Development and Knowledge Sharing

    Get PDF
    Koper, R., Stefanov, K., & Dicheva, D. (Eds.) (2009). Proceedings of the 5th International TENCompetence Open Workshop "Stimulating Personal Development and Knowledge Sharing". October, 30-31, 2008, Sofia, Bulgaria: TENCompetence Workshop.The fifth open workshop of the TENCompetence project took place in Sofia, Bulgaria, from 30th to 31st October 2008. These proceedings contain the papers that were accepted for publication by the Program Committee.The work on this publication has been sponsored by the TENCompetence Integrated Project that is funded by the European Commission's 6th Framework Programme, priority IST/Technology Enhanced Learning. Contract 027087 [http://www.tencompetence.org
    • …
    corecore