5 research outputs found

    Creating reusable well-structured pdf as a sequence of component object graphic (cog) elements

    Get PDF
    Portable Document Format (PDF) is a page-oriented, graphically rich format based on PostScript semantics and it is also the format interpreted by the Adobe Acrobat viewers. Although each of the pages in a PDF document is an independent graphic object this property does not necessarily extend to the components (headings, diagrams, paragraphs etc.) within a page. This, in turn, makes the manipulation and extraction of graphic objects on a PDF page into a very difficult and uncertain process. The work described here investigates the advantages of a model wherein PDF pages are created from assemblies of COGs (Component Object Graphics) each with a clearly defined graphic state. The relative positioning of COGs on a PDF page is determined by appropriate "spacer" objects and a traversal of the tree of COGs and spacers determines the rendering order. The enhanced revisability of PDF documents within the COG model is discussed, together with the application of the model in those contexts which require easy revisability coupled with the ability to maintain and amend PDF document structure

    Reflowable documents composed from pre-rendered atomic components

    Full text link

    Encapsulating and manipulating component object graphics (COGs) using SVG

    Full text link

    Tracking sub-page components in document workflows

    Get PDF
    Documents go through numerous transformations and intermediate formats as they are processed from abstract markup into final printable form. This notion of a document workflow is well established but it is common to find that ideas about document components, which might exist in the source code for the document, become completely lost within an amorphous, unstructured, page of PDF prior to being rendered. Given the importance of a component-based approach in Variable Data Printing (VDP) we have developed a collection of tools that allow information about the various transformations to be embedded at each stage in the workflow, together with a visualization tool that uses this embedded information to display the relationships between the various intermediate documents. In this paper, we demonstrate these tools in the context of an example document workflow but the techniques described are widely applicable and would be easily adaptable to other workflows and for use in teaching tools to illustrate document component and VDP concepts

    Documents as functions

    Get PDF
    Treating variable data documents as functions over their data bindings opens opportunities for building more powerful, robust and flexible document architectures to meet the needs arising from the confluence of developments in document engineering, digital printing technologies and marketing analysis. This thesis describes a combination of several XML-based technologies both to represent and to process variable documents and their data, leading to extensible, high-quality and 'higher-order' document generation solutions. The architecture (DDF) uses XML uniformly throughout the documents and their processing tools with interspersing of different semantic spaces being achieved through namespacing. An XML-based functional programming language (XSLT) is used to describe all intra-document variability and for implementing most of the tools. Document layout intent is declared within a document as a hierarchical set of combinators attached to a tree-based graphical presentation. Evaluation of a document bound to an instance of data involves using a compiler to create an executable from the document, running this with the data instance as argument to create a new document with layout intent described, followed by resolution of that layout by an extensible layout processor. The use of these technologies, with design paradigms and coding protocols, makes it possible to construct documents that not only have high flexibility and quality, but also perform in higher-order ways. A document can be partially bound to data and evaluated, modifying its presentation and still remaining variably responsive to future data. Layout intent can be re-satisfied as presentation trees are modified by programmatic sections embedded within them. The key enablers are described and illustrated through example
    corecore