
CREATING REUSABLE WELL-STRUCTURED PDF
AS A SEQUENCE OF COMPONENT OBJECT GRAPHIC

(COG) ELEMENTS.
Steven R. Bagley, David F. Brailsford and Matthew R. B. Hardy

Electronic Publishing Research Group
School of Computer Science & IT

University of Nottingham
Nottingham NG8 1BB, UK

{srb, dfb, mrh}@cs.nott.ac.uk

ABSTRACT
Portable Document Format (PDF) is a page-oriented, graphically
rich format based on PostScript semantics and it is also the format
interpreted by the Adobe Acrobat viewers. Although each of the
pages in a PDF document is an independent graphic object this
property does not necessarily extend to the components (headings,
diagrams, paragraphs etc.) within a page. This, in turn, makes the
manipulation and extraction of graphic objects on a PDF page into
a very difficult and uncertain process.

The work described here investigates the advantages of a model
wherein PDF pages are created from assemblies of COGs
(Component Object Graphics) each with a clearly defined graphic
state. The relative positioning of COGs on a PDF page is
determined by appropriate ‘spacer’ objects and a traversal of the
tree of COGs and spacers determines the rendering order. The
enhanced revisability of PDF documents within the COG model is
discussed, together with the application of the model in those
contexts which require easy revisability coupled with the ability to
maintain and amend PDF document structure.

Categories and Subject Descriptors
 I.7.2 [Document and Text Processing]: Document Preparation —
Markup languages; I.7.4 [Document and Text Processing]:
Electronic Publishing.

General Terms
 Algorithms, Documentation, Experimentation.
Keywords
PDF, graphic objects, Form Xobjects, Tagged PDF.

1. INTRODUCTION
Since its introduction in 1993 Adobe’s Acrobat viewer software
and the underlying PDF (Portable Document Format) have
established themselves as important de facto standards for the
faithful representation of page based, graphically rich, electronic
documents. At the time of writing release 6.0 of Acrobat has just
become available and the PDF specification has also been updated
to a revision level of 1.5.

Although it is possible to generate PDF directly from text
preparation software, a large number of PDF documents are still
created by passing the PostScript output from the given front-end
application into the Adobe Distiller software, which converts
PostScript into PDF. Distiller can optimise the PDF it generates
by removing PostScript procedures, for loops and so on and
replacing them by ‘in-line’ code but it has to be much more
careful in performing any optimisations that involve the graphic
state of objects on the page. In particular it is not generally safe to
alter the rendering order of text and graphic objects that was laid
down in the original PostScript. For this reason the quality of the
PDF, in terms of its flexibility for re-purposing the page content,
is very much determined by the original PostScript. There is
absolutely nothing, for example, that forces PostScript to render
its pages in ‘reading order’. An article such as this one, laid out in
two-column format, could very well be rendered in baseline sort
ordering wherein each sentence fragment terminates at the inter-
column gutter and the renderer then ‘hops the gutter’ to typeset an
unrelated sentence fragment to the right of the gutter. Indeed even
if the columns have been rendered in reading order, rather than
baseline sort order, the Acrobat text selection tool, relying as it
does on x and y positioning of individual words, will often
continue to jump the gutter, resulting in a selection across the full
width of the page when, perhaps, only a subset of the left-hand
column was needed.

1.1. Selecting text and graphic objects
The problems caused by arbitrary rendering order on a PDF page
are not too serious provided that the PDF file is regarded as being
a strictly ‘read only’ format. However, starting with Acrobat 3.0
(and PDF release 1.2) there have been some simple facilities for
performing ‘touch up’ on PDF pages in order, perhaps, to correct
page proofs immediately prior to printing. More recently this
Touch Up facility has been enhanced to allow graphic objects, as
well as text objects, to be selected and moved around the page
with a view to adjusting the final detailed layout of a page without
having to revert to the software that initially created and/or
integrated the PDF.

FINAL DRAFT of paper accepted for:
DocEng’03, November 20–22, 2003, Grenoble, France.
Copyright 2003 Bagley, Brailsford and Hardy

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/98052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Unfortunately use of the graphic Touch Up tool can reveal all the
previously discussed problems encountered with text: clicking on
the graphic object may result in selecting only a subset of it; an
attempt to drag a marquee around the entire object may result in
selecting objects outside the marquee simply because these were
originally part of the same PostScript path. In an ideal world it
would be possible to select a ‘clean’ subset of any text or graphic
object but very often it is necessary to import the entire PDF page
into an application such as Adobe Illustrator in order to edit out
extraneous material and to leave only the desired objects.

We decided to tackle the problems outlined so far by designing a
new model for creating and encapsulating PDF text and graphic
objects such that each object has a well-defined graphic state.
These objects we call COGs (Component Object Graphics)1 and
we now look at their properties and investigate ways in which
pages of COGs can be created.

2. THE COG MODEL
The COG model for documents attempts to alter the way a page is
described in a digital document format such as PDF. Many current
digital document formats can describe a page in a programmatic
fashion by using a Page Description Language (PDL) to specify
how the page raster is marked to create the final appearance.
Depending on the complexity of the PDL, these marks can range
from simple drawing primitives, offering support for drawing
lines, through to facilities for handling text, transparency and
raster images; some formats, notably PostScript, are full
programming languages in their own right. The document
renderer executes the PDL operators, in sequence, to produce the
final output. Generally speaking the overall graphic state of the
page is cumulative and builds up as a result of the particular
operators that are executed.

The COG model however, works from a different viewpoint. It
encapsulates the low-level primitives within distinct graphical
objects, which are executed in sequence to generate the page in a
logical and ‘object oriented’ manner.

2.1. COGs
Our encapsulated graphical objects are what we have termed
COGs, where a COG is a representation of a logical block of
content on the page. This current paragraph would be an example
of a COG, as would the various headings on this page. The
description is deliberately left somewhat vague; the concept of
what constitutes a COG, and its optimum granularity, depends on
the page in question but even so a few basic ground rules can be
laid down.

Ideally, the COG should represent a logical block of content that
one might want to use again in some other context. If the
granularity of the COGs becomes too small, then reusing them
gives few benefits. Conversely, if the granularity becomes too
large then it becomes very difficult to reuse any part of interest
because the COG will then contain much extraneous material that
is of no use. The most appealing compromise seems to be to keep
the size of a textual COG at roughly the level of a paragraph and
for graphical COGs at a sensible level of encapsulation depending
on the context of their first use. A graphic of three cars in a sales

1 The acronym reflects the properties of COGs that draw upon the
Component Programming and Object-Oriented paradigms, as applied to
self-contained Graphic objects.

brochure for a motor company would probably be represented by
three COGs (one for each car), though in another context the
meaning of the graphic might suggest that they are better
represented as one COG.

2.2. Describing COGs
The COG represents a graphical block on the page, and requires
some ‘code’ to draw it. This code is nearly identical to that which
would draw the same material in a normal PDF document, but a
few adjustments are needed because of the nature of COG
encapsulation.

Traditionally, a PostScript document can be one long piece of
code with no page independence. That is to say the settings for
various properties (font, point size, text colour, stroke width etc)
are set up at an early stage and are changed only where necessary.
Indeed, finding the fragments of code that determine the graphics
state for some part of a given page can be a complex
programmatic task in its own right.

It is common to encounter graphics that have been drawn in an
order that defies all logic. A line diagram of the authors’ campus,
converted to PostScript from DXF, is famous for breaking off half
way through drawing the Computer Science building and then, in
the same ‘path’, proceeding to draw just a small portion of an
ornamental lake some 20 metres away.

A further problem with PDF produced from PostScript is that
there is nothing to prevent the components of a graphic being
placed using absolute page coordinates, rather than relative ones.
If this happens, any attempt to move the graphic on the page
requires the application to know where the graphic was originally
intended to be drawn.

The design of the COG model prevents both of the above
problems at the outset. The COGs do not know in which order
they will be drawn and must make no presumptions about
inherited graphics state. Secondly, COGs are intended to represent
distinct and logically separate objects. Thirdly, a COG has no idea
whereabouts on the page it will be drawn.

To realise the above properties a COG must be completely
encapsulated; it can make no assumption about inherited graphics
state and so must set up within itself all the properties it needs.
Finally, a COG must be drawn using a system of relative
coordinates so that it can be freely positioned anywhere on the
page.

2.3. Drawing COGs on the Page
The method of placing COGs on the page to create a final layout
is notionally similar to the way newspapers used to be laid out in
the days of metal type i.e. as blocks representing different articles,
photos, headlines and so on.

In the COG model the page is represented as an ordered list of
‘spacer’ objects, but at the very end of each spacer, once the
position coordinates are established, there appears a pointer to the
COG object itself containing the code to draw the object. A
traversal of this ordered list will draw each COG in the intended
reading order of a document. For example, a two-column
document like this one would lay out all the COGs in the left hand
column, followed by all those in the right hand column.

COGs can be moved around the page by altering the spacer code,
or the position of a particular spacer in the list. Any COG can be

replaced with a different one, very simply, by changing the COG
that the spacer object points to.

3. IMPLEMENTATION
Traditionally, a PDF page is described as a monolithic stream of
drawing operators that are executed in sequence to create the
markings that constitute the final output. Each PDF operator is
executed in the context of the graphical state left by the previously
executed operator, although there are commands that will save
and restore the current graphics state as we shall shortly discover.

When implementing COGs within PDF, we need to modify this
approach in two distinct ways: firstly, we need to ensure a clean
graphics state for each distinct block – in other words the graphics
operators executed in COG X should not have an effect on the
graphics operators executed in COG Y (and vice versa). Secondly,
we must be able to split an amorphous stream of PDF content into
distinct blocks of content (the COGs themselves).

3.1. Ensuring a clean graphic state
PDF provides us with mechanisms for manipulating the graphics
state as a whole and these can be used to allow each COG to
inherit a well-defined graphic state. Some details now follow.

3.1.1. External State
The PDF gs operator loads the graphics state from a dictionary
(known as an ExtGState dictionary) that defines the default
values for parameters such as line width, line style, etc. along with
various controls used in the prepress and professional printing
environments. At first sight this seems useful: we could load a
default graphic state at the beginning of each COG and proceed
from there. Unfortunately the graphic state loaded by the gs
operator is cumulative; each property of that state is added to the
current state. If a property is not explicitly defined in the newly
loaded state then the setting in the current state is retained. This
alone rules out the gs method for our purposes because properties
that are not explicitly defined in the new state will be inherited
from the previous COG object to be executed. In other words we
cannot specify a known graphics state using the gs operator
alone.

A second problem is that the ExtGState dictionary allows the
specification of many graphic state properties but there are some
strange omissions, such as the default stroke and fill colours. This
compounds the difficulties of using this method to fully specify a
graphic state for a COG.

3.1.2. Save and restore
PDF’s other methods of manipulating the graphics state, q and Q
(analogous to the PostScript operators gsave and grestore)
allow the current graphics state to be saved at any point, and then
restored later in the stream. Multiple save/restore operations are
allowed and these are implemented in a standard stack-like LIFO
fashion.

The effect of this is that the graphics state after a restore operation
is identical to what it was when the save operator was executed
(though this does not affect the marks already placed on the page).

This save and restore method provides a method that preserves the
graphics state in its entirety. By saving the graphics state before
we execute a COG, and restoring it afterwards, we know that the
next COG will execute in exactly the same graphics state as the
first. This, then, provides an easy mechanism for defining the state

in which a COG will be executed and is our method of choice for
implementing COGs.

3.2. Structuring PDF Content
Each page in a PDF is represented by a COS2 dictionary[1]
similar to the following example:

<<
 /Type /Page

 /Parent 2 0 R
 /MediaBox [0 0 595 842]
 /Contents 4 0 R
 /Resources

 <<
 /ProcSet [/PDF /Text]
 /Font <<
 /F1 5 0 R

>>
 >>
>>

The dictionary contains key-value pairs that describe various
properties of page, such as its position within the pages tree
structure (Parent key), size (MediaBox), and what resources –
fonts, class of drawing operators, etc – the page uses
(Resources). Finally there is the Contents key. This is
usually a pointer to a stream that contains the actual sequence of
imaging operators that are used to draw the page.

A PDF file is a collection of many different objects (streams,
dictionaries, arrays etc) that are interlinked into a tree-like
structure3. To bring this about, objects within PDF can be
assigned a numerical index that allows them to be referred to from
elsewhere within the PDF. An example of object indexing can be
seen in the above example in the Parent and Contents keys,
which use syntax such as 2 0 R to reference the correct object.
The first numerical value refers to the object index; the second is a
generation number which allows objects to be easily updated with
a later version without having to rewrite the whole file. The
various generations of objects are held as addenda to the original
cross-reference table. The final keyword, R, denotes a reference
to an indirect object which exists somewhere else in the file. The
PDF Reference Manual [1] gives further details of all the above
properties.

While the above description describes the structure of the majority
of PDF files that are produced, the format itself provides two
mechanisms for splitting the actual content stream into logical
blocks. The first is by splitting the operators into multiple streams
and then having the content key of the dictionary point to an array
which, in turn, points to these streams. The second method is by
using a structure known as a Form XObject.

3.2.1. Content Arrays
The option of PDF content being described as an array of streams,
instead of a single stream, developed out of the need to be able
generate a PDF in a single-pass. Some imaging operators
(typically those involving bitmap images) require the size of the
data to be presented in the stream before the data itself is
presented. By splitting the original stream for the whole page into

2 COS – COS Object System, a recursively defined name for the objects
that represent the internals of a PDF.
3 This is the internal structure of the PDF data format and bears no
resemblance to the logical structure contained within a structured or
Tagged PDF.

multiple streams, data for a bitmap image can be written to stream
n (say) and its length can then be calculated and appended to the
end of stream n-1. The remainder of the page can be written out to
streams beginning at array position n+1. When a PDF interpreter
comes to render the page, it effectively concatenates the streams
together and reads them as one long stream.

Fortunately there are no restrictions on how arrays of streams can
be used in PDF. It is perfectly feasible to use them, as we do, for
segmenting a content stream into many smaller streams based on
an ‘object’ model in which each stream is responsible for drawing
one block of logical graphical content.

3.2.2. Form XObjects
The PDF Form XObject (pronounced as if it were one word,
FormXObject) is a remnant of PDF’s PostScript heritage and is
the equivalent of the PostScript Form. The name change in PDF
was made in order to avoid confusion with the representation of
conventional forms (e.g. for tax returns, expenses claims, job
applications etc.) The PostScript Form [2, page 206] was a
specialised PostScript procedure which when executed made no
alterations to the programming environment outside of itself, the
end result being that the output of the form could be cached by the
PostScript interpreter, so that its rendering would be much faster.

In PDF, the Form XObject [1] follows the same idea – it is an
externalised set of drawing operators that can be called at any
point within a page’s drawing stream. To identify a Form XObject
it is given a name in the page’s dictionary, which is linked to the
stream containing the drawing operators. To render a Form
XObject, one executes it using the Do operator:

/MyFormXObject Do

The Current Transformation Matrix (CTM) at the time of callout
sets the size and positioning of the Form XObject. A bounding
box, into which its output will be clipped, is included within the
Form Xobject’s definition.

A Form XObject is defined in the PDF as a so-called COS Stream
[1]. The header dictionary for this stream contains extra
information as shown in the example below (Note that the
standard COS Stream keys have been removed for clarity):

<<
 /Type /XObject
 /Subtype /Form
 /FormType 1
 /BBox [0 0 1000 1000]
 /Matrix [1 0 0 1 0 0]
 /Resources <<
 /ProcSet [/PDF]

>>
 …
>>

Most of the keys are obvious: the Type and Subtype keys
define it as a Form XObject, the BBox sets the bounding box and
the Matrix key sets a transformation matrix between the Form
Xobject’s graphics space and that of the page.

Form XObjects have the useful property that when they are
executed they make no changes to the graphics state; their
execution is implicitly wrapped up between q and Q (graphics
save and restore) operations.

3.3. Implementing COGs within PDF
Initial COG-PDF tests began by using the method of segregating
the page content COS stream into an array of multiple streams.
This was a development of similar work carried out by Smith and
Brailsford [3] in which the possibility of using Form XObjects,
rather than stream arrays, had been envisaged but had had to be
rejected because of their limited implementation in early releases
of Acrobat.

A close reading of later revisions of the PDF specification,
coupled with advice from Adobe’s Acrobat Engineering group,
led us to the conclusion that the problems Smith and Brailsford
faced with PDF Form XObjects no longer existed. Form Xobjects
were now the clear choice for implementing COGs.

Although the implementation is now predominantly based around
Form XObjects, it still uses the original method of arrays of
streams. The contents of these arrays are the spacer objects, which
in turn contain pointers to COGs.

3.3.1. COG PDF Spacers
The job of the spacer is to image a specific COG at a specific
point on the page. The COG itself is drawn by executing the Form
XObject in the standard fashion.

To position the COG at the correct place on the page, we alter the
CTM of the page to move the origin to the bottom-left hand
position of the COG. Since the COG’s content stream is designed
to be drawn with respect to an origin of (0,0), the spacer does not
need to be aware of the COG’s latent positioning operators in
order to translate it to the correct position on the page. This makes
programmatic manipulation of the COGs on a page very simple—
the spacer can be manipulated to alter the COG’s position without
knowledge of what is inside the COG itself.

Even though the Form XObject is responsible for cleaning up its
own alterations to the graphics state, the spacer itself still needs to
save and restore the graphics state. This is because the translate
operator’s effects are cumulative. A translation of (100,100)
followed by a translation of (50,50) is identical to a single
translation of (150, 150). By saving and restoring the graphics
state at the beginning and end of the spacer we are able to nullify
these cumulative effects.

The final COS stream for a spacer is of the form:

q 1 0 0 1 0 0 300 300 cm /CogName Do Q

The q and Q make sure that the spacer doesn’t affect the current
graphics state. The cm operator is the standard CTM manipulation
operator in PDF. Its integer arguments precede it, in postfix
notation, and the last two of these denote the translation that is to
be performed before rendering the COG..

3.3.2. The inner structure of a COG
COGs are just standard Form XObjects, with a few extra entries in
the dictionary that enable the COG system to identify them. A
COG’s dictionary will look similar to what follows (note that the
standard Form XObject information has been greyed out for
clarity – details of these standard dictionary entries can be found
in PDF Reference Manual)

<<
/Type /XObject

 /Subtype /Form

 /Cogged true
 /Name /Cog00000000
 /Width 640
 /Height 200
 /FormType 1
 /BBox [0 0 595 100]
 /Length 423
 /Resources

<<
 /Font

<<
 /PB 3 0 R

>>
 /ProcSet [/PDF /Text]

>>
>>
The first extra key is the Cogged key; this tells the consumer
that this is a COG and not just an ordinary Form XObject. The
Name key gives the COG a unique name by which it can be
referenced. Eventually this will be a variation on the standard
UUID [5], though initial tests have used a simpler naming
scheme.

The Width and Height key are self-explanatory, and are
provided so that applications can determine whether it is possible
for a particular COG to fit in a particular space in the page.

The Content stream of the COG Form XObject is identical to a
normal Form XObject. However, they must be drawn with their
bottom-left corner at (0,0) or the spacer will not position them
correctly. Also, they must not make any assumptions about
default graphical state; if they want 10pt Times Roman, they must
ask for 10pt Times Roman explicitly.

3.3.3. Extra Details
In addition to the definitions of the COGs and spacers themselves,
a few other rules are needed in order to produce a correct COG-
PDF.

Firstly, the COGs must be imaged on a page in reading order.
That is, if COG B contains a paragraph that follows on from COG
A then the spacer in the page Contents for COG B must be after
that for COG A.

Secondly, and importantly, the only objects allowed in the pages
Content Stream array are spacer objects with embedded pointers
to COGs. No other Content streams are allowed which might
draw extra items on the page, for this would break the concept of
COGs – where everything is drawn inside a COG. Any extraneous
drawing operators would firstly, not be COGs and could therefore
not be manipulated by programs expecting COGs. Secondly, and
more importantly, they could alter the graphics state from the
norm, which would alter the way subsequent COGs would be
imaged.

3.4. Generating COG PDF
None of the current PDF code generators (MacOS X, Adobe
Distiller, etc) provides any kind of hooks to coerce them into
generating COG-PDF files and so it has been necessary to develop
our own tools. But once a COG-PDF file has been created it can
be viewed with the help of demonstration plugin that we have
developed for Adobe Acrobat. This enables the bounding boxes of
the COGs to be seen and each COG can be dragged and dropped
to a new position on the page. This enables users to see the

possibilities of the COG approach as opposed to using Adobe
Touch-Up on monolithic, non-COG, PDF files.

Two approaches have been developed for producing COG-PDF;
the first is a simple extension of the idea behind Juggler [3] and
the second is a back-end processor for the ditroff [4] typesetting
system.

3.4.1. COG script
COG script, like Juggler before it, was a proof-of-concept
exercise. A COG script functions by taking many PDFs and
extracting the Content stream of the first page from each of them
and converting these pages to COGs. The software, implemented
as a plugin for Adobe Acrobat, is driven by a simple script, which
lists the PDF files from which to import COGs and specifies
where to position the eventually created COGs on the page. At
the present stage the script is just a list of file names together with
the desired (x,y) positions for the COGs on the composite page.

Experiments with this plugin, were helpful in allowing ideas to be
quickly tested and developed. These experiments resulted in
standardization of the COG-PDF implementation to the one
described above.

3.4.2. pdfdit
The COG script method suffers from the constraint that it can
only make a COG out of the smallest portion of PDF material that
can be guaranteed to have a clean graphics state. Given that most
PDF files are still produced by Distiller this means that the
smallest COG has to be a whole page.

It was decided that some system was needed that could generate
COG-PDF directly from a suitable originating application. The
application chosen was the ditroff typesetting system developed
by Brian Kernighan in the late 1970s [4].

Ditroff is a device-independent version of the original troff
program. It takes input in the form of a marked-up ASCII text file
and outputs commands to draw the page in what we shall term
Ditroff Intermediate Code (DIC). This format predated PostScript
by several years and aimed to be a simple yet comprehensive code
that could be translated into any imaging device’s own native
language. Indeed, DIC is sufficiently simple and expressive that it
helped tip the balance in favour of choosing ditroff, though
another major factor was the authors’ familiarity with the system
and its inner workings. Alternative formats were looked at, but
they either had excessively complex file formats (Microsoft
Word) or would require substantial time investment to write an
equivalent backend driver (dvi/LATEX).

DIC output consists of a stream of operators (usually expressed by
single letter codes) that inform the typesetter how to image the
page content. With a few exceptions, the output consists of the
operator followed by any parameters (typically either integers or a
single character). White space is used to disambiguate parameters
or operators. Table 1 presents a brief list of commonly used
operators and their purpose; a full list can be found in [4].

sN set point size to N

fN select font mounted at N

cX Image character X at current point

HN Move to absolute horizontal position N

(N > 0)

VN As above, but vertical (down is
positive)

hN Move relative N units (to the right; N >
0)

vN As above, but vertical (down; N > 0)

NNc Move right NN, then image character c
(NN is exactly 2 digits!)

nb a end of line (for information; b = space
before line, a = space after)

w paddable word space (for information)

pN new page N begins – resets cursor to
top of page

Table 1. The ditroff standard operations
To understand how the output of ditroff is converted to a COG-
PDF, it is necessary to be familiar with the general structure of
ditroff’s output. Presented below is the DIC output that prints
‘Hello World’ on the page. The code has been split into blocks to
help the subsequent discussion of its operation.

x T psc
x res 576 1 1
x init

V0

p1

x font 1 R
x font 2 I

…

s10
f1

H576

s18

V1920
cH
h104ce
64l40l40o

w

h108cW
h136co
72r48l40d

n192 0

H576
V2112

…

x trailer
V6336
x stop

The first block of code uses the x operator, which is used to
embed device operations into the output. This is initialisation code
which tells the output postprocessor about the output device that

ditroff was expecting and its resolution (specified in dots per
inch). PDF and PostScript’s shared graphics model enables us to
use a pseudo-resolution of 576 dpi; this resolution was chosen
because it is close to that of many output devices and it has a large
number of factors (including 72 – the number of PostScript points
per inch).

The second block moves the cursor to vertical position zero,
whilst the third block begins page 1 (also moving the cursor to
vertical position zero). The fourth block maps the fonts that ditroff
believes are mounted in each font position. In this case we are
using only Times-Roman (R) and Times-Italic (I).

As the next few blocks show, the output from ditroff is not
optimised – largely due to its single-pass nature. The default point
size (10pt) and face (Times-Roman) are set up in block five, even
though block seven alters the point size (to the required 18pt).
Block six moves the cursor to horizontal position 576, which
equates to a one inch indent.

Block six starts to render text. The vertical cursor is moved to the
text’s baseline (1920 units, 3.33inches from the top), and an ‘H’ is
imaged. Next, the cursor is advanced 104 units to the right of its
current position. This stops the next glyph being imaged over the
top of the previous (unlike other systems, imaging a character in
DIC does not alter the cursor position). Next an ‘e’ is imaged.
Again the cursor is advanced, this time using the optimised form
where a move and an image operation can be encoded as precisely
two digits followed by the character to image (this limits the move
to a maximum of 99 device units, hence the previous moves are
performed with the h operator). The rest of the word ‘Hello’ is
imaged in the same way.

The next operator in the stream (ninth block) informs the post-
processor of a word break. While no action is necessary, it is
useful in ensuring that the output is Tagged PDF compliant by
explicitly marking all spaces in the PDF content stream.

Block ten images ‘World’ onto the page in a similar fashion to
block eight. The w operator in block nine does not advance the
cursor, so the first part of block ten has to move the cursor over
the last character and the space gap.

Block eleven signals the end of a line, again this is for information
only. However, it does provide a copy of the current vertical
spacing in troff (as the space before parameter), which is useful
for inferring where COGs begin and end. The next block resets
the cursor to the left margin and moves it to the baseline of the
next text line.

The final block signifies to the post-processor that the stream has
finished and it can send a stop signal to the output device.

A back-end program for ditroff, called pdfdit, was written to
convert the DIC output code into COG-PDF. The expressiveness
of DIC output (not the least its clear signalling of the end of each
output line—a facility lamentably missing from LATEX’s dvi) is
good enough for pdfdit to infer what might constitute a COG
when using a standard layout of the kind imposed by the use of
the popular troff ms, or mm, macros. The standard layout imposed
by these macro sets separates all paragraphs/headings and other
logical graphical blocks by a few points over and above the
standard leading. Given that DIC makes the current line height
available at all times, for every line, it is easy to see if the drop is

greater than the line height and if so the program closes the
current COG and starts work on the next.

In addition to inferring implicit COG breaks, extra macros were
added to the ms set to allow the explicit definition of a COG
block. These new macros place extra, device-specific, commands
(using the x operator) into the DIC output which are then
recognised by pdfdit to encapsulate the graphical output into a
COG.

Although its purpose differs from the traditional usage, pdfdit acts
like any other program language compiler. As in traditional
compilers, pdfdit can be split into separate phases; a syntax
analyser, semantic analyser, a code optimiser, and a code
generator. An extra phase inserted into pdfdit is the COGifier that
groups graphics operations into COGs. However in the interests of
program efficiency and due to the relative lack of structure in the
ditroff output, the phases are not kept rigidly distinct within pdfdit.

Syntax analysis of the input stream is performed, and for each
operator a handler function is called. The function performs a
semantic analysis of each operator and also assembles all the
character glyphs into word blocks (though, depending on kerning,
they may end up being sub-word blocks, especially if accents are
involved). The width and height of the text runs, and their position
on the page, are calculated using the font metrics, and this
information is then stored into a queue. Additional information is
queued relating to line breaks, COG break markers and page
breaks. This approach has the added benefit of optimising out the
additional superfluous moves that can be seen in the DIC input.

After the input has been parsed, the queue is processed by the
‘COGifier’. This works by segmenting the queue of word blocks
into separate COGs. Explicitly marked COGs are simple to
handle. Inferred COGs are created by breaking down the queue
into lines of text, and then seeing if the distance between the
average baseline of two adjacent lines is different to the vertical
spacing given in the DIC code, if it is then a new COG is said to
have been started. In both cases, the bounding box of the COG is
calculated by taking the union of the area of all the (sub)word
blocks within it.

This leaves with an array of COGs for each page. The final phase
is to convert these COGs to use relative coordinates (at this point
they are still using the ditroff device units) and to correct the axis
(ditroff use the top left corner as the origin whilst PDF uses the
bottom-left). The resultant COGs still use ditroff device units, and
so these are scaled to PDF space (making sure that no rounding
errors occur which might cause characters to shift slightly). The
converted COGs are then compiled down to PDF code and linked
to form the final document.

Although pdfdit produces a COG-PDF file which is completely
compatible with any properly engineered PDF viewing
application, it offers no advantage over a conventional PDF file
unless the viewer application is equipped with a plugin to exploit
the advantages of the COG representation. It should also be noted
that if a viewing application such as Acrobat attempts to optimise
or rewrite a COG-PDF file it would destroy the COG nature of the
PDF.

3.4.3. COG shuffler
We have already described our Acrobat plugin, which allows
COGs to be highlighted and moved around the page. Figures 1a–
1c show some of the features in action.

Figure 1a – Acrobat displaying the bounding box of the
COGs on the page.

Figure 1b – A COG being dragged to a new location

Figure 1c – The COGs in their new location
To check that the appearance of the COGs was truly invariant
with respect to their positioning on the page, a ‘shuffle’ button
was added to the user interface of the plugin. This button causes a
random permutation of the COGs on the page.

4. BENEFITS OF COGS
It might seem eccentric to undertake this COGs research if the
displayed result appears, to the user, very much like a
conventional PDF file. While this reaction is understandable, it
fails to take into account the possibilities opened up when a PDF
is generated using COGs.

4.1. Extracting PDF Content
It can sometimes be useful to be able to extract content from a
PDF, for reuse elsewhere, whether interactively within an
Acrobat-like environment, or programmatically (possibly within
some sort of server-based application). Recent versions of Adobe
Acrobat have shipped with a tool called the Touch-Up tool. This
tool allows the user to make minor alterations to the PDF within
the PDF environment.

Another facility offered by Touch Up is the ability to extract
content from a PDF file. This is done by using the ‘Touch-Up
Object Tool’, which allows the user to select graphical objects.
However, Touch-Up’s opinion as to what constitutes a graphical
object will not always coincide with that of the user. As far as
Touch-Up is concerned a graphical object is the smallest possibly
extraction of graphics commands from the content stream material
that corresponds to where the user has clicked. This is
demonstrated in figure 3 below:

Figure 3 – A user attempting to select the dice with the
Touch-Up tool.

Here the user wishes to select the dice plan displayed in Acrobat,
so she clicks over part of the dice, only to find that Touch-Up
selects just a single spot underneath the mouse pointer. The user is
then forced to either select each part of the diagram by hand, or to
attempt to select all of it by dragging a marquee around the
desired material.

Although this is not a problem for a simple diagram, it becomes
more and more difficult as the image complexity increases.
Problems become acute if the graphic we are interested in has
become occluded behind another object. Indeed, it is possible for
an object to become occluded even when there is no apparent
graphic object nearby to overlapping it. At this stage, in a
conventional PDF file it becomes necessary to import the page of
the PDF into a package such as Adobe Illustrator to perform a
thorough clean-up prior to editing out unwanted objects.

4.1.1. Programmatic extraction
Extracting a graphic or an image programmatically can be quite a
challenge in a conventional PDF file because there is not
necessarily any clearly defined order in which the graphic is
drawn on the page. To faithfully extract a graphic, the extraction
program would need to parse the content stream and build up a
table describing each mark laid down on the page, its properties
(stroke width, fill colour etc) and its location. It would then have
to walk over this list and work out which operators contribute to
the graphic of interest. It is likely some operators (for example, a
border drawn around the whole page) may appear to overlap the
area of interest, when in fact they are not part of the graphic itself.
Finally there is the problem of signalling to the extraction
program which graphic you are interested in. All of these issues,
and more, are what the Adobe Touch-Up plugin has to cope with
when being used interactively.

4.1.2. Programmatic extraction using COGs
With a COG PDF, the process of extraction becomes much
simpler than in conventional PDF. Extracting a particular graphic
is now just a matter of selecting the correct COG on the page, and
copying its definition out of the PDF. Identification of the COG
can either be done interactively or by using the COG’s unique ID.
The user does not need to worry about selecting all parts of the
graphic, because the COG explicitly groups them, but the
extraction tool does need to be COG-PDF aware.

The biggest advantage of all in the COG approach is that an
extraction tool does not need to worry about how a COG is drawn,
or how its drawing operators are distributed within the content
stream or even what the graphics state is for each of the executed
PDF operators. These problems are shielded from the extraction
program by the fact the COGs are encapsulated.

4.2. Updating content
Sometimes it is necessary to update content on a PDF page with a
more recent version at the last minute before a page is sent to an
image setting device. Last-minute replacement of raster images
with higher-resolution versions is a well-established technique
using methods such as Open Prepress Interface (OPI), but
replacing vector images is much harder. The example outlined
below was brought to our attention by a digital prepress manager
as this paper was being authored.

A company logo featured on every page of a large print job.
Unfortunately the graphic itself did not rasterise properly and so
needed to be replaced on every page. The customer, in response to
this problem, had created a new, clean, version of the logo that
rasterised cleanly, and he wanted to update every page with the
new version.

Using Touch-Up each part of the object had to be selected using a
marquee but, unfortunately, this also had the unstoppable side-
effect of selecting the page number next to the diagram.

The page number would then have to be deselected manually on
each page and, to compound the problem, it was not possible on
some pages to select the logo at all because it was occluded by
other objects. The digital prepress manager ended up having to
load each page into Adobe Illustrator, and found he was spending
about 10 minutes per page correcting the problem. In the end, he
gave up and solved the problem manually by masking out the
damaged logo on the film prior to preparing the printing plates.

4.2.1. Shareability of COGs
If this problem PDF had been a COG-PDF, our digital prepress
manager’s job would have been considerably simpler. The COG
format would have trivialised the selection of the logo itself and
would have made the insertion of a new version very simple.

At first glance it might seem necessary to perform this task on
every page of the document but the encapsulation property of
COGs enables them to be shared and reused. There is nothing to
prevent any number of spacer objects from indirectly referencing
the same COG and in this way a COG-PDF file could point to the
same company logo COG from each page. A simple replacement
of this one COG with a later version creates a revised version of
the document in one operation.

4.3. Further Benefits
Although, only two benefits have been outlined in detail above,
they are by no means the only ones. Our demonstration plugin
shows how COGs enable the user to manipulate a page layout far
more easily than with a normal PDF.

As the next section shows, there are more benefits to be gained as
we extend the COG format still further.

5. FUTURE WORK
The basis of the COG model for documents, and its PDF
implementation, have now been set out. Some of the more
interesting prospects for further development are outlined below.

5.1. COG Linking
As it stands, a COG-PDF, however it is produced, is a final-form
document and there is no way to add external COGs that are not
part of the original. One way to achieve extra flexibility is to go
beyond the one-COG-per-page of Juggler and to adopt the idea of
a linker from programming language compiler technology.

In this case a COG-producer such as pdfdit would no longer
produce a stand-alone COG-PDF file; rather it would produce
many small PDF files containing just one COG each or perhaps a
library of COGs, in a single file, with clear demarcations between
them. To accompany these COGs, there would be a script that
states on what page, and at which location, each COG would be
positioned. A second program, the COG linker, would take this
script file and produce the final COG-PDF. This would allow
pdfdit to include references to ‘foreign’ COGs, including
graphical elements above and beyond troff’s capabilities, which
could then be included at link time to produce the final document.

5.1.1. Late Binding
Following on from the idea of the linker, the next step would be to
remove the need for static linking and to extend the Acrobat
environment (by the use of plugins), so that it can load in a COG
script directly, rather like a dynamic linker. This would mean that
a COG-PDF file, when viewed, would always contain the latest
version of the COGs (although there may be times when this
would be undesirable and so facilities must be added to freeze a
document to a particular version of a COG).

5.2. Metadata
As it stands, a document is a collection of COGs laid out on a
page in a particular order. However, no checks are made to see if
the COGs make sense when placed in that order. For example, if a
journal paper contains several COGs in 12pt Times Roman, and
suddenly one of them is set in 36pt Helvetica before continuing in
12pt Times, there is a fair chance that the COG might be out of
place. On the other hand, if the document in question were a
newspaper, this might make perfect sense.

What is needed is to add some more information to each COG
describing both the physical appearance of the COG and what it
supposedly represents. It would then be possible for a program to
use this information to check the document for consistency.

5.3. Automatic layout
The discussion of COG scripts so far envisages the COGs being
laid out at specific positions on a page. There is no reason why
this should always be the case. An alternative would be to supply
the COG linker with general rules about how the document should

be laid out: e.g. there should be 6pts of space between each
paragraph, but only 3pts separating a heading and a paragraph;
captions should always be centred under the object they are
describing, and so on. The COG linker would then use this
information along with the metadata to lay out the COGs on the
page, in a similar fashion to the pm program developed by
Kernighan and Van Wyk [6].

This approach would help greatly if a COG needed to be updated;
any alterations in its dimensions would no longer run the risk of it
overflowing other COGs further down the page.

6. COGS AND LOGICAL STRUCTURE
Appearance-based mark-up (like that in PDF and PostScript)
describes the appearance of a page very precisely so that it can be
displayed identically anywhere. To this end, details of the fonts
used, their size and their positioning, are attached to the text
strings making up the document. We have now seen how these
properties (e.g. 9 pt. body text; 12 pt. headings) can be attached as
metadata to the COG objects. However, a COG for the present
paragraph would have no innate knowledge that it actually
represented a ‘paragraph’.

A particularly interesting possibility is to create COGs of a
granularity that aligns, in some way, with the logical structure of a
document. Logical mark-up (as typified by XML applications and
to some extent by formatters such as LaTeX), tags the
components of a document by what they actually are. For
example, this particular paragraph would be tagged as being a
paragraph; the heading as being a heading (probably at a specific
level). These logical tags, or elements, can then be nested together
to form a hierarchical Document Structure Tree.

6.1. PDF and Structure
In PDF version 1.3, and Acrobat 4, Adobe added support to the
PDF standard for carrying a Document Structure Tree. A brief
outline of this implementation is now given, though readers are
encouraged to consult reference [1] for a fuller description.

Unlike XML, where the tags that build the tree hierarchy are
interleaved with textual content, PDF models the structure tree
separately and its elements point to the required content data.
Within the PDF format the structure tree is built up from
dictionaries that represent the different elements, similar to the
way an XML tree is presented to a programmer when loaded via
the Document Object Model (DOM).

To enable nodes of the PDF structure tree to point to the content
they enclose, markers are placed within the content stream itself
to demarcate the blocks of content. These markers are then given
a unique number called an MCID (Marked Content Identifier) that
allows them to be referenced from the element dictionary.
Sometimes the content stream may not allow a single MCID to
wrap the content of some logical element without including other
disjoint content. In this case the element dictionary can point to
multiple MCIDs. The content for the element is taken to be the
union of these MCID blocks. It is also possible to specify children
in the PDF structure tree as a mixture of element dictionaries and
MCIDs. This is closely analogous to the idea of mixed content in
XML.

With the advent of PDF 1.4, the structure implementation was
refined further and given the name Tagged PDF to differentiate it
from PDF 1.3’s Structured PDF. This was basically a refinement

of the rules for structure, which included a mandatory end marker
to terminate each word (a space character or equivalent must be
provided, in addition to the horizontal movement needed to justify
the text). Furthermore, the page content has to be set out in
reading order. The rules of Tagged PDF allow PDF files to be
read out aloud by voice synthesiser software, or reflowed for
display on devices such as PDAs and mobile phones.

6.2. Editing PDF Structure
It is possible, in Adobe Acrobat, to edit the structure tree of a PDF
interactively and a similar editing can be achieved
programmatically via an Acrobat plugin. New elements can be
added, old elements deleted and the whole structure rearranged as
necessary.

However, contrary to users’ expectations, manipulation of the
structural ordering will generally have no effect on the page
appearance. For example, if one changes the order of two
paragraphs in the structure tree, this will not be reflected within
the document as seen on screen (though it will lead to a different
reading order if it is read by screen-reading software).

This effect arises because the structure tree is external to the Page
Content. Unlike an XML document, where the structure tree
defines the route through the document, and the content is
interleaved within it, the structure tree in a PDF is an external
construct that has often been added in after the document content
has been established.

6.3. Structured COGs
At present a COG-PDF file is unstructured. This does not have to
be the case and by amending the COG-PDF specification it is
possible to incorporate logical structure into COG-PDF. An
outline of these amendments now follows.

In structured PDF, the content of an element is wrapped inside an
MCID that is then pointed to by the structure tree. This approach
causes problems if we try to marry structure with COG-PDF
because MCIDs have a back pointer into the structure tree. This,
in turn, means that if a Form XObject, contains an MCID it points
back to a specific place in the structure tree thereby rendering the
COG ‘impure’ and capable of being used just once in a document.
Given that the whole idea of a COG is that of a shareable object,
which can be used multiple timesent, this limitation poses quite a
problem. Fortunately, if the MCID is placed just after the spacer
code, and immediately prior to the call of a COG FormXObject,
then the COG remains ‘pure’ and can be reused, in a Tagged PDF,
without any limitations.

We propose, therefore, to limit the structure tree in a COG PDF
file so that it points to block-level elements whose minimum
granularity is a single COG. We can then place the MCID
operators into the spacers and link the spacer objects into the
structure tree as normal.

One advantage of structuring PDFs around a COG model is that it
becomes easy for an application to update the appearance of the
PDF, if desired, whenever the structure tree is edited. It becomes
simply a matter of manipulating the spacers to lay the document
out in a different way. Consistency checks can be carried out if
the ideas outlined in section 5 are followed. The addition of
metadata to COGs, to describe their properties can check whether
it makes sense to move some particular content to a new place.

The structure tree, in essence, becomes a script for driving the
order of the layout.

7. CONCLUSIONS
We feel enthusiastic and optimistic about the future of the COG
model of PDF files Its application in creating material such as
catalogues is plain to see: descriptions of items for sale could be
authored in a variety of applications and placed onto pages, either
via a linker script or via interactive placement, as currently
implemented in our plugin [7]. The beauty of this approach is that
last-minute alterations to a page, prior to going to press, are easily
accommodated and the very nature of COGs allows one instance
of an object to be shared among many pages rather than needing
to be replicated many times.

Allied to all of the above advantages is the fact that COGs, of the
granularity we propose, are natural candidates for participating in
PDF structure trees, especially if the Adobe Standard Structure
Tags, as set out in reference [1], are used. The structure tree can
act as a template for reordering the COGs into any desired
rendering order on the page.

Once some more experience has been gained in generating and
manipulating COG-PDF files the time will come to tackle the
much harder task of attempting to rewrite badly composed
‘legacy’ PDF pages into sequences of COGs.

8. ACKNOWLEDGEMENTS
We thank the Acrobat Engineering team at Adobe Systems Inc.
for many useful comments and suggestions,

9. REFERENCES
1. Adobe Systems Incorporated, PDF Reference (Third
Edition) version 1.4, ISBN 0-201-75839-3,
Addison-Wesley, December 2001.
2. Adobe Systems Incorporated, PostScript Language
Reference Manual (Third Edition), ISBN 0-201-37922-9,
Addison-Wesley, February 1999.
3. Philip N. Smith and David F. Brailsford, “Towards
Structured Block-based PDF,” Electronic Publishing—
Origination, Dissemination and Design, vol. 8, nos. 2 and
3, pp. 153–165, June/September 1995. Available on-line at
http://cajun.cs.nott.ac.uk/compsci/epo/p
apers/epoddtoc.html
4. B. W. Kernighan, “A Typesetter Independent TROFF,”
Computing Science Technical Report No. 97, Bell
Laboratories, Murray Hill, New Jersey 07974, March 1982.
5. Universally Unique Identifiers (UUID).
http://www.globecom.net/ietf/draft/
draft-leach-uuids-guids-01.html
6. Brian W. Kernighan and Christopher J. Van Wyk, “Page
Makeup by Postprocessing Text Formatter Output,”
Computing Systems, vol. 2, no. 1, pp. 103–131, 1989.
7. The COG-PDF home page
http://www.eprg.org/cogs

