5,383 research outputs found

    Statistical Models for Querying and Managing Time-Series Data

    Get PDF
    In recent years we are experiencing a dramatic increase in the amount of available time-series data. Primary sources of time-series data are sensor networks, medical monitoring, financial applications, news feeds and social networking applications. Availability of large amount of time-series data calls for scalable data management techniques that enable efficient querying and analysis of such data in real-time and archival settings. Often the time-series data generated from sensors (environmental, RFID, GPS, etc.), are imprecise and uncertain in nature. Thus, it is necessary to characterize this uncertainty for producing clean answers. In this thesis we propose methods that address these important issues pertaining to time-series data. Particularly, this thesis is centered around the following three topics: Computing Statistical Measures on Large Time-Series Datasets. Computing statistical measures for large databases of time series is a fundamental primitive for querying and mining time-series data [31, 81, 97, 111, 132, 137]. This primitive is gaining importance with the increasing number and rapid growth of time-series databases. In Chapter 3, we introduce the Affinity framework for efficient computation of statistical measures by exploiting the concept of affine relationships [113, 114]. Affine relationships can be used to infer a large number of statistical measures for time series, from other related time series, instead of computing them directly; thus, reducing the overall computational cost significantly. Moreover, the Affinity framework proposes an unified approach for computing several statistical measures at once. Creating Probabilistic Databases from Imprecise Data. A large amount of time-series data produced in the real-world has an inherent element of uncertainty, arising due to the various sources of imprecision affecting its sources (like, sensor data, GPS trajectories, environmental monitoring data, etc.). The primary sources of imprecision in such data are: imprecise sensors, limited communication bandwidth, sensor failures, etc. Recently there has been an exponential rise in the number of such imprecise sensors, which has led to an explosion of imprecise data. Standard database techniques cannot be used to provide clean and consistent answers in such scenarios. Therefore, probabilistic databases that factor-in the inherent uncertainty and produce clean answers are required. An important assumption i while using probabilistic databases is that each data point has a probability distribution associated with it. This is not true in practice — the distributions are absent. As a solution to this fundamental limitation, in Chapter 4 we propose methods for inferring such probability distributions and using them for efficiently creating probabilistic databases [116]. Managing Participatory Sensing Data. Community-driven participatory sensing is a rapidly evolving paradigm in mobile geo-sensor networks. Here, sensors of various sorts (e.g., multi-sensor units monitoring air quality, cell phones, thermal watches, thermometers in vehicles, etc.) are carried by the community (public vehicles, private vehicles, or individuals) during their daily activities, collecting various types of data about their surrounding. Data generated by these devices is in large quantity, and geographically and temporally skewed. Therefore, it is important that systems designed for managing such data should be aware of these unique data characteristics. In Chapter 5, we propose the ConDense (Community-driven Sensing of the Environment) framework for managing and querying community-sensed data [5, 19, 115]. ConDense exploits spatial smoothness of environmental parameters (like, ambient pollution [5] or radiation [2]) to construct statistical models of the data. Since the number of constructed models is significantly smaller than the original data, we show that using our approach leads to dramatic increase in query processing efficiency [19, 115] and significantly reduces memory usage

    Multiple Priors as Similarity Weighted Frequencies

    Get PDF
    In this paper, we consider a decision-maker who tries to learn the distribution of outcomes from previously observed cases. For each observed sequence of cases the decision-maker predicts a set of priors expressing his beliefs about the underlying probability distribution. We impose a version of the concatenation axiom introduced in BILLOT, GILBOA, SAMET AND SCHMEIDLER (2005) which insures that the sets of priors can be represented as a weighted sum of the observed frequencies of cases. The weights are the uniquely determined similarities between the observed cases and the case under investigation.

    Information Extraction, Data Integration, and Uncertain Data Management: The State of The Art

    Get PDF
    Information Extraction, data Integration, and uncertain data management are different areas of research that got vast focus in the last two decades. Many researches tackled those areas of research individually. However, information extraction systems should have integrated with data integration methods to make use of the extracted information. Handling uncertainty in extraction and integration process is an important issue to enhance the quality of the data in such integrated systems. This article presents the state of the art of the mentioned areas of research and shows the common grounds and how to integrate information extraction and data integration under uncertainty management cover

    Multiple Priors as Similarity Weighted Frequencies

    Get PDF
    In this paper, we consider a decision-maker who tries to learn the distribution of outcomes from previously observed cases. For each observed sequence of cases the decision-maker predicts a set of priors expressing his beliefs about the underlying probability distribution. We impose a version of the concatenation axiom introduced in BILLOT, GILBOA, SAMET AND SCHMEIDLER (2005) which insures that the sets of priors can be represented as a weighted sum of the observed frequencies of cases. The weights are the uniquely determined similarities between the observed cases and the case under investigation.

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    Viewpoints on emergent semantics

    Get PDF
    Authors include:Philippe Cudr´e-Mauroux, and Karl Aberer (editors), Alia I. Abdelmoty, Tiziana Catarci, Ernesto Damiani, Arantxa Illaramendi, Robert Meersman, Erich J. Neuhold, Christine Parent, Kai-Uwe Sattler, Monica Scannapieco, Stefano Spaccapietra, Peter Spyns, and Guy De Tr´eWe introduce a novel view on how to deal with the problems of semantic interoperability in distributed systems. This view is based on the concept of emergent semantics, which sees both the representation of semantics and the discovery of the proper interpretation of symbols as the result of a self-organizing process performed by distributed agents exchanging symbols and having utilities dependent on the proper interpretation of the symbols. This is a complex systems perspective on the problem of dealing with semantics. We highlight some of the distinctive features of our vision and point out preliminary examples of its applicatio

    Treatment of imprecision in data repositories with the aid of KNOLAP

    Get PDF
    Traditional data repositories introduced for the needs of business processing, typically focus on the storage and querying of crisp domains of data. As a result, current commercial data repositories have no facilities for either storing or querying imprecise/ approximate data. No significant attempt has been made for a generic and applicationindependent representation of value imprecision mainly as a property of axes of analysis and also as part of dynamic environment, where potential users may wish to define their “own” axes of analysis for querying either precise or imprecise facts. In such cases, measured values and facts are characterised by descriptive values drawn from a number of dimensions, whereas values of a dimension are organised as hierarchical levels. A solution named H-IFS is presented that allows the representation of flexible hierarchies as part of the dimension structures. An extended multidimensional model named IF-Cube is put forward, which allows the representation of imprecision in facts and dimensions and answering of queries based on imprecise hierarchical preferences. Based on the H-IFS and IF-Cube concepts, a post relational OLAP environment is delivered, the implementation of which is DBMS independent and its performance solely dependent on the underlying DBMS engine

    Inferring Complex Activities for Context-aware Systems within Smart Environments

    Get PDF
    The rising ageing population worldwide and the prevalence of age-related conditions such as physical fragility, mental impairments and chronic diseases have significantly impacted the quality of life and caused a shortage of health and care services. Over-stretched healthcare providers are leading to a paradigm shift in public healthcare provisioning. Thus, Ambient Assisted Living (AAL) using Smart Homes (SH) technologies has been rigorously investigated to help address the aforementioned problems. Human Activity Recognition (HAR) is a critical component in AAL systems which enables applications such as just-in-time assistance, behaviour analysis, anomalies detection and emergency notifications. This thesis is aimed at investigating challenges faced in accurately recognising Activities of Daily Living (ADLs) performed by single or multiple inhabitants within smart environments. Specifically, this thesis explores five complementary research challenges in HAR. The first study contributes to knowledge by developing a semantic-enabled data segmentation approach with user-preferences. The second study takes the segmented set of sensor data to investigate and recognise human ADLs at multi-granular action level; coarse- and fine-grained action level. At the coarse-grained actions level, semantic relationships between the sensor, object and ADLs are deduced, whereas, at fine-grained action level, object usage at the satisfactory threshold with the evidence fused from multimodal sensor data is leveraged to verify the intended actions. Moreover, due to imprecise/vague interpretations of multimodal sensors and data fusion challenges, fuzzy set theory and fuzzy web ontology language (fuzzy-OWL) are leveraged. The third study focuses on incorporating uncertainties caused in HAR due to factors such as technological failure, object malfunction, and human errors. Hence, existing studies uncertainty theories and approaches are analysed and based on the findings, probabilistic ontology (PR-OWL) based HAR approach is proposed. The fourth study extends the first three studies to distinguish activities conducted by more than one inhabitant in a shared smart environment with the use of discriminative sensor-based techniques and time-series pattern analysis. The final study investigates in a suitable system architecture with a real-time smart environment tailored to AAL system and proposes microservices architecture with sensor-based off-the-shelf and bespoke sensing methods. The initial semantic-enabled data segmentation study was evaluated with 100% and 97.8% accuracy to segment sensor events under single and mixed activities scenarios. However, the average classification time taken to segment each sensor events have suffered from 3971ms and 62183ms for single and mixed activities scenarios, respectively. The second study to detect fine-grained-level user actions was evaluated with 30 and 153 fuzzy rules to detect two fine-grained movements with a pre-collected dataset from the real-time smart environment. The result of the second study indicate good average accuracy of 83.33% and 100% but with the high average duration of 24648ms and 105318ms, and posing further challenges for the scalability of fusion rule creations. The third study was evaluated by incorporating PR-OWL ontology with ADL ontologies and Semantic-Sensor-Network (SSN) ontology to define four types of uncertainties presented in the kitchen-based activity. The fourth study illustrated a case study to extended single-user AR to multi-user AR by combining RFID tags and fingerprint sensors discriminative sensors to identify and associate user actions with the aid of time-series analysis. The last study responds to the computations and performance requirements for the four studies by analysing and proposing microservices-based system architecture for AAL system. A future research investigation towards adopting fog/edge computing paradigms from cloud computing is discussed for higher availability, reduced network traffic/energy, cost, and creating a decentralised system. As a result of the five studies, this thesis develops a knowledge-driven framework to estimate and recognise multi-user activities at fine-grained level user actions. This framework integrates three complementary ontologies to conceptualise factual, fuzzy and uncertainties in the environment/ADLs, time-series analysis and discriminative sensing environment. Moreover, a distributed software architecture, multimodal sensor-based hardware prototypes, and other supportive utility tools such as simulator and synthetic ADL data generator for the experimentation were developed to support the evaluation of the proposed approaches. The distributed system is platform-independent and currently supported by an Android mobile application and web-browser based client interfaces for retrieving information such as live sensor events and HAR results

    Proceedings of the Third International Workshop on Management of Uncertain Data (MUD2009)

    Get PDF
    • …
    corecore