4 research outputs found

    Motion capture based motion analysis and motion synthesis for human-like character animation.

    Get PDF
    Motion capture technology is recognised as a standard tool in the computer animation pipeline. It provides detailed movement for animators; however, it also introduces problems and brings concerns for creating realistic and convincing motion for character animation. In this thesis, the post-processing techniques are investigated that result in realistic motion generation. Anumber of techniques are introduced that are able to improve the quality of generated motion from motion capture data, especially when integrating motion transitions from different motion clips. The presented motion data reconstruction technique is able to build convincing realistic transitions from existing motion database, and overcome the inconsistencies introduced by traditional motion blending techniques. It also provides a method for animators to re-use motion data more efficiently. Along with the development of motion data transition reconstruction, the motion capture data mapping technique was investigated for skeletal movement estimation. The per-frame based method provides animators with a real-time and accurate solution for a key post-processing technique. Although motion capture systems capture physically-based motion for character animation, no physical information is included in the motion capture data file. Using the knowledge of biomechanics and robotics, the relevant information for the captured performer are able to be abstracted and a mathematical-physical model are able to be constructed; such information is then applied for physics-based motion data correction whenever the motion data is edited

    Generating whole body movements for dynamics anthropomorphic systems under constraints

    Get PDF
    Cette thèse étudie la question de la génération de mouvements corps-complet pour des systèmes anthropomorphes. Elle considère le problème de la modélisation et de la commande en abordant la question difficile de la génération de mouvements ressemblant à ceux de l'homme. En premier lieu, un modèle dynamique du robot humanoïde HRP-2 est élaboré à partir de l'algorithme récursif de Newton-Euler pour les vecteurs spatiaux. Un nouveau schéma de commande dynamique est ensuite développé, en utilisant une cascade de programmes quadratiques (QP) optimisant des fonctions coûts et calculant les couples de commande en satisfaisant des contraintes d'égalité et d'inégalité. La cascade de problèmes quadratiques est définie par une pile de tâches associée à un ordre de priorité. Nous proposons ensuite une formulation unifiée des contraintes de contacts planaires et nous montrons que la méthode proposée permet de prendre en compte plusieurs contacts non coplanaires et généralise la contrainte usuelle du ZMP dans le cas où seulement les pieds sont en contact avec le sol. Nous relions ensuite les algorithmes de génération de mouvement issus de la robotique aux outils de capture du mouvement humain en développant une méthode originale de génération de mouvement visant à imiter le mouvement humain. Cette méthode est basée sur le recalage des données capturées et l'édition du mouvement en utilisant le solveur hiérarchique précédemment introduit et la définition de tâches et de contraintes dynamiques. Cette méthode originale permet d'ajuster un mouvement humain capturé pour le reproduire fidèlement sur un humanoïde en respectant sa propre dynamique. Enfin, dans le but de simuler des mouvements qui ressemblent à ceux de l'homme, nous développons un modèle anthropomorphe ayant un nombre de degrés de liberté supérieur à celui du robot humanoïde HRP2. Le solveur générique est utilisé pour simuler le mouvement sur ce nouveau modèle. Une série de tâches est définie pour décrire un scénario joué par un humain. Nous montrons, par une simple analyse qualitative du mouvement, que la prise en compte du modèle dynamique permet d'accroitre naturellement le réalisme du mouvement.This thesis studies the question of whole body motion generation for anthropomorphic systems. Within this work, the problem of modeling and control is considered by addressing the difficult issue of generating human-like motion. First, a dynamic model of the humanoid robot HRP-2 is elaborated based on the recursive Newton-Euler algorithm for spatial vectors. A new dynamic control scheme is then developed adopting a cascade of quadratic programs (QP) optimizing the cost functions and computing the torque control while satisfying equality and inequality constraints. The cascade of the quadratic programs is defined by a stack of tasks associated to a priority order. Next, we propose a unified formulation of the planar contact constraints, and we demonstrate that the proposed method allows taking into account multiple non coplanar contacts and generalizes the common ZMP constraint when only the feet are in contact with the ground. Then, we link the algorithms of motion generation resulting from robotics to the human motion capture tools by developing an original method of motion generation aiming at the imitation of the human motion. This method is based on the reshaping of the captured data and the motion editing by using the hierarchical solver previously introduced and the definition of dynamic tasks and constraints. This original method allows adjusting a captured human motion in order to reliably reproduce it on a humanoid while respecting its own dynamics. Finally, in order to simulate movements resembling to those of humans, we develop an anthropomorphic model with higher number of degrees of freedom than the one of HRP-2. The generic solver is used to simulate motion on this new model. A sequence of tasks is defined to describe a scenario played by a human. By a simple qualitative analysis of motion, we demonstrate that taking into account the dynamics provides a natural way to generate human-like movements
    corecore