6,475 research outputs found

    Toward future 'mixed reality' learning spaces for STEAM education

    Get PDF
    Digital technology is becoming more integrated and part of modern society. As this begins to happen, technologies including augmented reality, virtual reality, 3d printing and user supplied mobile devices (collectively referred to as mixed reality) are often being touted as likely to become more a part of the classroom and learning environment. In the discipline areas of STEAM education, experts are expected to be at the forefront of technology and how it might fit into their classroom. This is especially important because increasingly, educators are finding themselves surrounded by new learners that expect to be engaged with participatory, interactive, sensory-rich, experimental activities with greater opportunities for student input and creativity. This paper will explore learner and academic perspectives on mixed reality case studies in 3d spatial design (multimedia and architecture), paramedic science and information technology, through the use of existing data as well as additional one-on-one interviews around the use of mixed reality in the classroom. Results show that mixed reality can provide engagement, critical thinking and problem solving benefits for students in line with this new generation of learners, but also demonstrates that more work needs to be done to refine mixed reality solutions for the classroom

    Videogame Music: chiptunes byte back?

    Get PDF
    This chapter explores the sonic subcultures of videogame art and videogame-related fan art. It looks at the work of videogame musicians - not those producing the music for commercial games - but artists and hobbyists who produce musci by hacking and reprogramming videogame hardware, or by sampling in-game sound effects and music for use in their own compositions. It discusses the motivations and methodologies behind some of this work. It explore

    Construction safety and digital design: a review

    Get PDF
    As digital technologies become widely used in designing buildings and infrastructure, questions arise about their impacts on construction safety. This review explores relationships between construction safety and digital design practices with the aim of fostering and directing further research. It surveys state-of-the-art research on databases, virtual reality, geographic information systems, 4D CAD, building information modeling and sensing technologies, finding various digital tools for addressing safety issues in the construction phase, but few tools to support design for construction safety. It also considers a literature on safety critical, digital and design practices that raises a general concern about ‘mindlessness’ in the use of technologies, and has implications for the emerging research agenda around construction safety and digital design. Bringing these strands of literature together suggests new kinds of interventions, such as the development of tools and processes for using digital models to promote mindfulness through multi-party collaboration on safet

    ILR Research in Progress 2013-14

    Get PDF
    The production of scholarly research continues to be one of the primary missions of the ILR School. During a typical academic year, ILR faculty members published or had accepted for publication over 25 books, edited volumes, and monographs, 170 articles and chapters in edited volumes, numerous book reviews. In addition, a large number of manuscripts were submitted for publication, presented at professional association meetings, or circulated in working paper form. Our faculty's research continues to find its way into the very best industrial relations, social science and statistics journals.Research_in_Progress_2013_14.pdf: 54 downloads, before Oct. 1, 2020

    Action Prediction in Humans and Robots

    Full text link
    Efficient action prediction is of central importance for the fluent workflow between humans and equally so for human-robot interaction. To achieve prediction, actions can be encoded by a series of events, where every event corresponds to a change in a (static or dynamic) relation between some of the objects in a scene. Manipulation actions and others can be uniquely encoded this way and only, on average, less than 60% of the time series has to pass until an action can be predicted. Using a virtual reality setup and testing ten different manipulation actions, here we show that in most cases humans predict actions at the same event as the algorithm. In addition, we perform an in-depth analysis about the temporal gain resulting from such predictions when chaining actions and show in some robotic experiments that the percentage gain for humans and robots is approximately equal. Thus, if robots use this algorithm then their prediction-moments will be compatible to those of their human interaction partners, which should much benefit natural human-robot collaboration

    Comparing adaptive cognitive training in virtual reality and paper-pencil in a sample of stroke patients

    Get PDF
    The growing number of people with cognitive deficits creates an urgent need for new cognitive training solutions. Paper-and-pencil tasks are still widely used for cognitive rehabilitation despite the proliferation of new computer-based methods, like VR-based simulations of ADL’s. The health professionals’ resistance in adopting new tools might be explained by the small number of validation trials. Studies have established construct validity of VR assessment tools with their paper-and-pencil versions by demonstrating significant associations with their traditional construct-driven measures. However, adaptive rehabilitation tools for intervention are mostly not equivalent to their counterpart paper-and-pencil versions, which makes it difficult to carry out comparative studies. Here we present a 12-session intervention study with 31 stroke survivors who underwent different rehabilitation protocols based on the same content and difficulty adaptation progression framework: 17 performed paper-and-pencil training with the Task Generator and 14 performed VR-based training with the Reh@City. Results have shown that both groups performed at the same level and there was not an effect of the training methodology in overall performance. However, the Reh@City enabled more intensive training, which may translate in more cognitive improvements.info:eu-repo/semantics/publishedVersio

    Computer-Supported Collaborative Learning using Augmented and Virtual Reality in Museum Education

    Get PDF
    Recent advancements in the cost, availability, and capability of augmented reality (AR) and virtual reality (VR) devices and software are spurring their mass distribution to the public. This fundamental shift in the use of AR and VR predominantly from military and academic research laboratories to the public presents new opportunities and challenges for the design of instructional technology. While studies of AR and VR have been conducted to inform the design of individual instructional products, few studies have focused on computer-supported collaborative learning (CSCL) products in which AR and VR learners work together toward shared learning goals. The museum education industry possesses unique and inherent characteristics that position it as a strong candidate for the development and deployment of CSCL-ARVR products. Tourism locations, such as museums, provide an exemplary environment for advanced learning technology experimentation in which information technology infrastructure and programs of instruction are often already in place and in which many tourists already possess smartphones and or tablets that may be used to mediate location-based educational experiences. The goal was to conduct formative research to develop a tentative instructional design theory that can be used to guide the creation of CSCL-ARVR instructional products. Instructional design theory and software engineering practices were applied to guide the design of a CSCL-ARVR instructional product prototype to support museum education. The prototype, named Co-Tour, was designed and developed to enable remotely-located VR participants to collaborate with AR participants located within a tourism location to jointly navigate the location, examine exhibits and answer questions about exhibits related to a problem-based learning instance. Formative data were collected and analyzed, and the results were used to develop a tentative instructional design theory. Mixed Reality Museum Co-Visit Theory is proposed to inform the design and development of CSCL-ARVR co-visitation experiences for museums. A theoretical framework was developed and was informed by CSCL, game-based learning, social constructivist theory, flow theory, and the construct of camaraderie. Five values supporting the goal were elaborated to guide theory methods production including fostering of collaboration, leveraging of informal learning activities, incorporation of motivational elements, favoring of loose organization, and provision an effective user interface. Future research should focus upon replication towards validation and generalizability of results and upon the broader museum going population

    Near Transfer After Direct Instruction: An Experimental Inquiry within Aviation Technician Training

    Get PDF
    This study put forth two instructional interventions set within a direct instruction (DI) framework specific to an aviation maintenance context. To evaluate the effectiveness of these two training interventions a criterion was established to measure near transfer during a performance evaluation on a live aircraft. Information learned within this study indicates that DI can be highly effective in technical training environments. This study also articulates how VR experiences may be included within these types of training contexts and discusses the factors and affordances that come with utilizing VR in instructional activities. Additionally, this study revealed experiential characteristics of a DI training experience from the learner perspective. Most notable among them was how much emphasis learners placed on the Present phase of the direct instruction framework, oftentimes discussing the quality, usefulness, and preference of the study’s training videos comparative to other forms of instructional media, including even the study’s VR experience itself. Finally, this study leveraged a novel research design for both the instructional context and the study’s unit of measurement in near transfer. This study exemplifies how within-subject repeated measure design may be an ideal framework for researchers looking to address long-standing critiques of experimental research within the field of instructional design
    corecore