8,099 research outputs found

    Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi

    Full text link
    We have recently presented a general method of proving the fundamental logical properties of Craig and Lyndon Interpolation (IPs) by induction on derivations in a wide class of internal sequent calculi, including sequents, hypersequents, and nested sequents. Here we adapt the method to a more general external formalism of labelled sequents and provide sufficient criteria on the Kripke-frame characterization of a logic that guarantee the IPs. In particular, we show that classes of frames definable by quantifier-free Horn formulas correspond to logics with the IPs. These criteria capture the modal cube and the infinite family of transitive Geach logics

    Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents

    Get PDF
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting to embeddings, semantic arguments, or interpreted connectives external to the underlying logical language. A novel feature of our proof includes an orthogonality condition for defining duality between interpolants

    Generating Non-Linear Interpolants by Semidefinite Programming

    Full text link
    Interpolation-based techniques have been widely and successfully applied in the verification of hardware and software, e.g., in bounded-model check- ing, CEGAR, SMT, etc., whose hardest part is how to synthesize interpolants. Various work for discovering interpolants for propositional logic, quantifier-free fragments of first-order theories and their combinations have been proposed. However, little work focuses on discovering polynomial interpolants in the literature. In this paper, we provide an approach for constructing non-linear interpolants based on semidefinite programming, and show how to apply such results to the verification of programs by examples.Comment: 22 pages, 4 figure

    Making proofs without Modus Ponens: An introduction to the combinatorics and complexity of cut elimination

    Full text link
    This paper is intended to provide an introduction to cut elimination which is accessible to a broad mathematical audience. Gentzen's cut elimination theorem is not as well known as it deserves to be, and it is tied to a lot of interesting mathematical structure. In particular we try to indicate some dynamical and combinatorial aspects of cut elimination, as well as its connections to complexity theory. We discuss two concrete examples where one can see the structure of short proofs with cuts, one concerning feasible numbers and the other concerning "bounded mean oscillation" from real analysis

    Failure of interpolation in the intuitionistic logic of constant domains

    Full text link
    This paper shows that the interpolation theorem fails in the intuitionistic logic of constant domains. This result refutes two previously published claims that the interpolation property holds.Comment: 13 pages, 0 figures. Overlaps with arXiv 1202.1195 removed, the text thouroughly reworked in terms of notation and style, historical notes as well as some other minor details adde
    corecore