39 research outputs found

    Achieving Covert Communication With A Probabilistic Jamming Strategy

    Full text link
    In this work, we consider a covert communication scenario, where a transmitter Alice communicates to a receiver Bob with the aid of a probabilistic and uninformed jammer against an adversary warden's detection. The transmission status and power of the jammer are random and follow some priori probabilities. We first analyze the warden's detection performance as a function of the jammer's transmission probability, transmit power distribution, and Alice's transmit power. We then maximize the covert throughput from Alice to Bob subject to a covertness constraint, by designing the covert communication strategies from three different perspectives: Alice's perspective, the jammer's perspective, and the global perspective. Our analysis reveals that the minimum jamming power should not always be zero in the probabilistic jamming strategy, which is different from that in the continuous jamming strategy presented in the literature. In addition, we prove that the minimum jamming power should be the same as Alice's covert transmit power, depending on the covertness and average jamming power constraints. Furthermore, our results show that the probabilistic jamming can outperform the continuous jamming in terms of achieving a higher covert throughput under the same covertness and average jamming power constraints

    Jamming Signal Cancellation by Channel Inversion Power Control for Preserving Covert Communications, Journal of Telecommunications and Information Technology, 2023, nr 2

    Get PDF
    Uninformed jammers are used to facilitate covert communications between a transmitter and an intended receiver under the surveillance of a warden. In reality, the signals the uniformed jammer emits to make the warden’s decision uncertain have inadvertently interfered with the detection of the intended receiver. In this paper, we apply truncated channel inversion power control (TCIPC) to both the transmitter and the uninformed jammer. The TCIPC scheme used on the uninformed jammer may help the intended receiver remove jamming signals using the successive interference cancellation (SIC) technique. Under the assumption that the warden knows the channel coeïŹƒcient between two intended transceivers and achieves the optimal detection power threshold, we form the optimization problem to maximize the eïŹ€ective transmission rate (ETR) under covertness and decoding constraints. With the aim of enhancing covertness-related performance, we achieve the optimal power control parameters and determine system parameter-related constraints required for the existence of these solutions. According to the simulations, the use of the TCIPC scheme on the uninformed jammer signiïŹcantly improves covertness-related performance in comparison to that of random power control (RPC) and constant power control (CPC) schemes. In addition, simulation results show that, for the TCIPC scheme: 1) the maximum ETR tends to converge as the transmitter’s or the uninformed jammer’s maximum transmit power increases, and 2) there exists an optimal value of the transmitter’s predetermined transmission rate to achieve the optimal performance

    Finite Blocklength Analysis of Gaussian Random coding in AWGN Channels under Covert constraints II: A Viewpoint of Total Variation Distance

    Full text link
    Covert communication over an additive white Gaussian noise (AWGN) channel with finite block length is investigated in this paper. The attention is on the covert criterion, which has not been considered in finite block length circumstance. As an accurate quantity metric of discrimination, the variation distance with given finite block length n and signal-noise ratio (snr) is obtained. We give both its analytic solution and expansions which can be easily evaluated. It is shown that K-L distance, which is frequently adopted as the metric of discrimination at the adversary in asymptotic regime, is not convincing in finite block length regime compared with the total variation distance. Moreover, the convergence rate of the total variation with different snr is analyzed when the block length tends to infinity. The results will be very helpful for understanding the behavior of the total variation distance and practical covert communication

    Perfectly Covert Communication with a Reflective Panel

    Full text link
    This work considers the problem of \emph{perfect} covert communication in wireless networks. Specifically, harnessing an Intelligent Reflecting Surface (IRS), we turn our attention to schemes that allow the transmitter to completely hide the communication, with \emph{zero energy} at the unwanted listener (Willie) and hence zero probability of detection. Applications of such schemes go beyond simple covertness, as we prevent detectability or decoding even when the codebook, timings, and channel characteristics are known to Willie. We define perfect covertness, give a necessary and sufficient condition for it in IRS-assisted communication, and define the optimization problem. For two IRS elements, we analyze the probability of finding a solution and derive its closed form. We then investigate the problem of more than two IRS elements by analyzing the probability of such a zero-detection solution. We prove that this probability converges to 11 as the number of elements tends to infinity. We provide an iterative algorithm to find a perfectly covert solution and prove its convergence. The results are also supported by simulations, showing that a small amount of IRS elements allows for a positive rate at the legitimate user yet with zero probability of detection at an unwanted listener.Comment: 30 pages, 5 figure
    corecore