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ABSTRACT

COVERT WIRELESS COMMUNICATIONS IN A
DYNAMIC ENVIRONMENT

MAY 2017

TAMARA V. SOBERS

B.Sc., RENSSELAER POLYTECHNIC INSTITUTE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Patrick Kelly and Professor Dennis Goeckel

This dissertation investigates covert communication in dynamic wireless commu-

nication environments. A key goal is to provide insight about the capabilities of a

transmitter desiring to remain covert and analogously, the capabilities of the party

attempting to detect covert communications. The first chapter provides background

on covert communications prior to this work. The second chapter studies the the-

oretical limits of covert communication and proves that positive rate is achievable

when a jammer is added to the classical Alice/Bob/Warden Willie model. The third

chapter expands on the second chapter by considering more generally the impact of

the dynamics of the environment on the Alice/Bob/Warden Willie model. The dy-

namics of the environment generate uncertainty at Willie even if the jammer does not

vary his/her power or even if Willie employs an antenna array to mitigate the jam-

ming. The fourth and fifth chapters investigate the impact of considering the exact

ix



continuous-time model rather than a discrete-time model approximation. In partic-

ular, detectors at Willie which leverage information in the continuous-time domain

outperform detectors based on the discrete-time model approximation. The fourth

and fifth chapters consider the continuous-time model of the Alice/Bob/Willie sce-

nario and the Alice/Bob/Willie/Jammer scenarios respectively. The fourth and fifth

chapters may appear to question the results of Chapter 2, Chapter 3 and prior wireless

covert communication related research. However, these final chapters provide insight

about different detectors available to Willie and the importance of Alice implementing

communication schemes which do not contain features that significantly differ from

Willie’s observation under the null hypothesis. Our work has demonstrated how the

covert throughput critically depends on Willie’s knowledge of the environment and

how the covert transmitter, allies in the area, or the dynamics of the environment

itself might impact that knowledge. Future work will continue to move covert commu-

nications closer to practice by integrating further aspects of practical communication

system design.
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CHAPTER 1

INTRODUCTION

Prior research in wireless covert communications analyzed the fundamental theo-

retical limits of covert communications when a wireless transmitter wants to reliably

communicate to a legitimate recipient without risk of detection by a watchful adver-

sary. A key finding is that the transmitter can only transmit O(
√
n) covert bits in n

channel uses in order to maintain covert and reliable communication to the intended

recipient [1]. This dissertation builds upon this prior work in covert communications.

Chapter 2 considers the addition of a jammer and demonstrates that the addition of

the jammer creates uncertainty at the adversary’s receiver. This additional uncer-

tainty allows the legitimate transmitter to send O(n) covert bits in n channel uses

reliably to the legitimate receiver. Both additive white Gaussian noise and finite

block fading channels are considered in Chapter 2.

The third chapter expands on results in Chapter 2 by considering more generally

a dynamic environment which generates fading variations on the adversary’s observa-

tions. Research presented in Chapter 2 assumes that all devices in the environment

are stationary and that fading variations are finite over the duration of the codeword

length which the transmitter sends. However, dynamic environments such as urban

environments or electronic warfare scenarios, may cause the adversary to observe

large degrees of fading variations due to the channel conditions or the movement

of entities in the model. The ability for a legitimate transmitter to communicate

covertly in dynamic channel conditions is considered in the third chapter. The fading
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variations observed at the adversary varies as a function of the codeword length of

the transmitters codeword.

The fourth and fifth chapters consider the continuous-time models. The fourth

chapter considers the Alice/Bob/Willie scenario and the fifth chapter considers the

Alice/Bob/Willie/Jammer scenario. Prior research as well as work presented in Chap-

ter 2 and Chapter 3 analyze covert communications based on the discrete-time model.

The equivalent discrete-time model is an approximation of the continuous-time model

and is generally assumed to contain sufficient information to represent the continuous-

time model. However, the discrete-time model assumes Willie can determine the exact

time instances to sample his continuous-time observation. This assumption is not al-

ways valid and the continuous-time model is capable of modeling when Willie does

not know when to sample. For example, in Chapter 2, a power detector is proven

to be an optimal detector based on the equivalent discrete-time model; however,

the power detector is not always the optimal detector based on the continuous-time

model. Therefore, the fourth and fifth chapters investigate whether the “equivalent

discrete-time model” is in fact an equivalent discrete-time model when analyzing

covert communications.

The sixth and final chapter concludes with a summary of the work presented in

this dissertation as well as suggestions for future work based on the findings herein.

1.1 Motivation

The desire for two parties to communicate without a third party (an adversary)

understanding the content of their communication has existed for many ages. To pre-

vent adversaries from understanding messages between legitimate transmitters and

receivers, legitimate parties can use encryption to hide the content of their messages.

Encryption is the act of encoding original messages (plaintext) into a ciphertext us-

ing a secret key with the aim that an adversary is not capable of extracting the
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original message. Some of the earliest instances of encryption can be traced back

to 1900 BC [2]. Since 1900 BC, the sophistication of encryption schemes have im-

proved drastically. However, classic cryptography has an underlying consistent design

characteristic that may hinder maintaining the privacy of messages that use classic

cryptography. Classic cryptography is designed so the decoding process is “easy”

for the intended recipient and preferably “hard” for any eavesdropper. However, ad-

vancements in technology have allowed adversaries to develop strategies to decode

(i.e. break) encrypted messages. As a result, legitimate transmitters and receivers

make further technological improvements by designing more sophisticated encryption

protocols. Standards for secure crypto systems are constantly evolving due to the

cyclic nature of legitimate users attempting to maintain successful encrypted com-

munications and adversaries attempting to break encryptions.

A popular historical example of an adversary breaking an encryption scheme is the

decoding of the German Code Enigma by Allied powers in the 1940s [2]. Researchers

and mathematicians were able to break the Engima code using ciphertext obtained

from German radio transmissions. Each day, ciphertext messages were observed in

the morning and analyzed using machines to determine the ciphertext key. As a re-

sult, Allied powers were able to decode encrypted German transmissions that were

later sent throughout the day. There are many instances throughout history when

adversaries decode messages using a known ciphertext or advances in computational

power to develop deciphering algorithms. In recent decades, some cryptographic

schemes such as Wired Equivalent Privacy (WEP) [3] and Data Encryption Standard

(DES) [4] have become obsolete due to advances in computational power. Such tech-

nological advances align with Moore’s Law which states that advances in hardware

are expected and so the ability of adversaries to break encryption schemes is not un-

expected. Quantum computing is also a maturing research area and once successful

may make all modern day cryptography obsolete [5–8]. However, it is assumed that

3



new encryption schemes would be developed to operate under quantum conditions

which is also currently an open area of research. Some other notable cases of adver-

saries breaking encrypted messages can be found in The Code Book: The Science of

Secrecy from Ancient Egypt to Quantum Cryptography by Signh [2] and The Code-

breakers: The Comprehensive History of Secret Communication from Ancient Times

to the Internet by Kahn [9] which may be of further historical interest.

Even if adversaries cannot acquire the ciphertext or exploit computational re-

sources to decipher encrypted messages, there are still strategies adversaries can em-

ploy to learn information about message content hidden in a ciphertext. These types

of attacks are called side-channel attacks and an example attack strategy is the use

of meta-data to infer message content. Exploiting meta-data to learn about mes-

sage content has been well established by Edward Snowden [10]. Edward Snowden

disclosed that even if the government of United States of America does not have ac-

cess to the content within a communication, government agencies are still capable

of extracting information about the message content by leveraging meta-data. For

example, knowing the two parties involved in a phone call, the length of the call,

and the frequency at which two parties converse may be used to learn about what is

discussed during a phone call without actually hearing any of the conversation.

To summarize, there are two potential drawbacks of classical cryptography that

are highlighted thus far: 1) technological advances by adversaries may place current

and past encrypted communications at risk; and 2) meta-data can be exploited as a

side-channel attack to infer message content without direct access to content within a

communication. Given these vulnerabilities, developing strategies for legitimate par-

ties to send messages covertly without detection by an adversary is of great interest.

Covert communication occurs when two legitimate parties are able to communicate

without an adversary detecting their communications. If users communicate covertly,

adversaries cannot exploit meta-data or collect ciphertext with the goal of developing
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strategies to decode the encrypted messages at a later date. Cryptography should

still be used in conjunction with covert strategies communications, however, research

is needed to determine under what conditions covert communication can be achieved

or thwarted.

There are many relevant applications for the adoption of covert wireless commu-

nication in modern day wireless communications. Covert wireless communication has

obvious military applications such as providing additional cover when soldiers are

deployed in theater and need to keep their presence hidden. There are also instances

when governments may want to prevent or monitor social unrest by monitoring wire-

less communications. Determining the limits of covert communication helps adver-

saries evaluate their detection capabilities and analogously, communicating parties

can evaluate their ability to achieve covert and reliable communication.

1.2 Background

Modern day wireless covert communications research has been revitalized due

to work by Bash, Goeckel and Towsley in [11]. In [11], Bash et al. consider the

communication scenario (shown in Figure 1.1) where a transmitter (Alice) would like

to send a message to legitimate receiver (Bob) in the presence of an eavesdropper

(Willie the Warden). The nomenclature Warden is used instead of Eve because the

Warden’s role differs from Eve’s in classic cryptographic scenarios. Eve’s role is

to extract the hidden content in encrypted messages that are shared between Alice

and Bob. However, the Warden’s sole task is to detect if any communication is

occurring between Alice and Bob. If all channels experience additive white Gaussian

noise (AWGN), the Square Root Law (SRL) presented in [11] states that Alice can

only transmit O(
√
n) covert bits reliably to Bob in n channel uses. If Alice tries

to transmit bits at a higher rate, then she risks being detected by Willie with high

probability. If she tries to transmit any fewer bits, then Bob cannot successfully
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decode her messages with small probability of error. Throughout the remainder of

this work, covert communication refers to covert and reliable communication such

that Bob can successfully reconstruct Alice’s message with minimum error without

Warden Willie detecting she transmitted a message.

Figure 1.1. Alice, Bob and Warden Willie model under AWGN channel conditions.

Essentially, there is a balance that must be maintained for Alice to achieve covert

communication. As an example, consider a very simple situation such as Alice talking

with her voice. Alice must talk “quiet” enough such that Willie cannot detect her

communications, yet “loud” enough so Bob can understand what she is saying.

Since [11], there have been many research contributions that study modern day

covert wireless communication. Bash et al. in [1] and [12] performed optical experi-

ments which support the theoretical results found in [11]. The SRL is also valid when

an adversary has access to quantum technology which was demonstrated by Bash et

al. in [13]. Additionally, covert communication over channel models such as Binary

Symmetric Channels (BSCs) are considered by Che et al. in [14, 15]. More generi-

cally, Discrete Memoryless Channels (DMCs) are considered by Wang et al. in [16,17].

These works demonstrate that the SRL also holds in BSCs and DMCs.

The models presented in [1,11–13,16,17] assume Alice and Bob pre-share a secret

key that is unknown to Willie. The necessary key length to covertly communicate in

a generalized channel model is studied further by Bloch in [18]. Results show that
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if the Alice-to-Bob channel is better than the Alice-to-Willie channel, then the SRL

holds without requiring Alice and Bob to pre-share a secret key. However, if such

channel conditions are not satisfied, then Alice can satisfy the SRL with a key of

length O(
√
n).

1.2.1 Increasing the Rate of Covert Communications

All of the references noted thus far have shown that Alice can only transmitO(
√
n)

covert bits in n channel uses for various channel conditions. Therefore, there is great

interest to determine how covert communication at a positive rate (O(n) bits in n

channel uses) can be achieved. To achieve positive rate, researchers started assuming

that Willie has uncertainty in the system model.

In [19], Bash et al. consider if Willie has uncertainty about when Alice trans-

mits in T (n) available slots. Per [19], Alice can communicate covertly and reliably

O(min{
√
n log(T (n)), n}) bits in n channel uses if Alice and Bob pre-arrange a time

to communicate. These results show that Alice and Bob can increase their rate of

covert and reliable communication; however, the rate is still not positive. The desire

to achieve positive rate (O(n) bits in n channel uses) while also maintaining covert

communication motivated future research efforts. Lee and Baxley found that Alice

can achieve positive rate if: 1) Willie employs a power detector (i.e. a radiometer)

and 2) Willie has uncertainty about the noise power at his receiver [20–22].

Lee and Baxley’s work makes a positive and important contribution; however,

their results rely on assumptions about Willie’s receiver and do not hold in practical

scenarios. For example, assume Alice is assigned a single time slot to transmit out

of many available time slots and that no other communication is occurring by any

parties during the time slots that Alice does not transmit to Bob. Goeckel et al. in [23]

show that even if Willie has uncertainty about his noise variance, Willie can use the

time slots when Alice does not transmit to estimate his noise variance and reduce
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his uncertainty. As a result, Alice’s covert throughput is limited to the same as

when Willie knows his noise variance. This result holds even when Willie does not

know the time slot that Alice and Bob agree to communicate in. Therefore, adding

uncertainty at Willie is important for achieving positive rate, but, practical scenarios

must be considered. Such scenarios are considered in this work by including a jammer

in the communication model. Also in this work, covert communication over fading

channels is investigated in addition to AWGN channels when a jammer is included in

the model.

1.2.2 Considering the Continuous-Time Model

As more complex channels are considered, this work also removes some important

assumptions at Willie’s receiver. For example, current research on covert wireless

communications assumes that Willie employs a discrete-time model to approximate

his continuous-time observations. This assumption only holds if Willie knows the

correct time instances to sample his continuous-time observations. However, if Willie

does not know the correct time instances to sample, then existing research proves that

a power detector is not optimal. For example, wireless waveforms often have periodic

features and a detector designed to identify specific frequencies allows for waveform

specific detectors.

Cyclostationary Detectors (CSDs) are a set of detectors that exploit the periodic

features of signals of interest to perform detection. William Gardner performed exten-

sive research on CSDs and the optimal CSDs for various modulation schemes [24–27].

If Willie has limited resources, a power detector is a feasible solution [28]. However,

if Willie has knowledge of Alice’s waveform structure or the capability to search over

different cyclic frequencies, a power detector is not optimal. Before analyzing the

covert rate of communications in a continuous-time model, it is first important to

understand the optimal detector to detect continuous-time signals.

8



Carrara and Adams in [29] assume that a power detector is optimal if Alice trans-

mits signals which are continuous and band-limited. In [29], the authors do not state

that Alice employs a Gaussian codebook or what specific type of continuous-time

signal she transmits. There is also no consideration for how Alice maps her discrete-

time symbols to the continuous-time domain. Modeling the mapping is important

because wireless signals in continuous-time often exhibit features, which Willie can

leverage to design detectors. For example, continuous-time wireless waveforms are of-

ten pulse shaped to reduce intersymbol interference (ISI) or modulated using a carrier

frequency [30, Chapter 3.3, Chapter 4]. Therefore, when considering continuous-time

signals, the detector which best exploits any unique features in Alice’s signal should

be employed instead of assuming a power detector is the optimal detector. Also, Bash

et al. in [12] acknowledged the importance of considering continuous-time model in

early work. This work investigates the impact of detectors based on the continuous-

time model. Both the Alice/Bob/Willie and the Alice/Bob/Willie/Jammer scenarios

are re-evaluated using the continuous-time model.

1.3 Contributions

1.3.1 Adding a Jammer to the Communication Model

In this work, the addition of a jammer to the Alice, Bob, Willie model is consid-

ered to help facilitate covert communication under various channel conditions. The

jammer is uninformed and does not know when or even if Alice transmits in her

agreed upon time slot to transmit to Bob. In addition, all parties are synchronized.

Results in this work show that the inclusion of the jammer allows Alice to achieve pos-

itive rate covert communication for any detector at Willie. In particular, prior work

in covert wireless communication assumed that a radiometer (i.e. power detector) is

an optimal detector. In contrast, we prove that a radiometer is indeed optimal in

AWGN and single block fading models. However, if the Alice-to-Willie channel or the
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jammer-to-Willie channel is subject to a finite number of multiple fading coefficients

in a single time slot, the radiometer is no longer an optimal detector. But we model

the structure of an optimal detector and show that Alice can still achieve positive rate.

1.3.2 Considering Dynamic Channels in the Communication Model

Covert communication proofs presented in Chapter 2 assume the jammer is sta-

tionary. However, a moving jammer that transmits with constant power in a single

block fading environment also generates variations in the power observed by Willie

according to the jammer’s movement. Additionally, there are instances when a dy-

namic environment also causes fading variations. The mathematical formulation of

dynamic channels may first appear similar to the finite multiple block fading scenario

presented in Chapter 2. However, this portion of the dissertation generalizes the dy-

namics to include when the fading variations are a function of the total number of

symbol slots observed by Willie. Generalizing the number of variations as a function

of the codeword length, n, helps provide insight about the rate Alice should employ

in order to achieve covert communication. For example, Alice must abide by the SRL

in order to remain covert when the jammer’s power observed by Willie does not vary

at all. However, the work presented in Chapter 2 demonstrates that a fixed number

of variations which occur over n allow Alice to communicate covertly. Therefore,

modeling the number of fading variations as a function of the codeword length allows

for the analysis of covert communications in various wireless environments.

1.3.3 Covert Communication on the Continuous-Time Model

Work presented in Chapter 2, Chapter 3 and research presented in the Back-

ground Section are based on a discrete-time communications model. The underlying

assumption in prior work is that the discrete-time model is an equivalent approxi-
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mation of the continuous-time model. Chapter 4 re-evaluates the Alice/Bob/Willie

covert communication scenario employing the continuous-time model instead of the

discrete-time model to determine if in fact, the discrete-time model is an “equiva-

lent” discrete-time model. Covert communications in the continuous-time model is

re-evaluated by assuming that Willie employs a cyclostationary detector (CSD) in-

stead of a power detector to detect Alice’s signal. Results demonstrate that the CSD

designed based on the continuous-time model outperforms the power detector. Based

on these results, the discrete-time model employed in prior work is not an equivalent

representation of the continuous-time model.

The Alice/Bob/Willie/Jammer presented in Chapter 2 is also re-evaluated based

on the continuous-time model in Chapter 5. The new model assumes that both Alice

and the jammer transmit pulse shaped signals with different timing offsets when their

signals arrive at Willie. A detector is then proposed that exploits the timing offset

differences to detect if Alice is transmitting. Results again demonstrate that if Willie

is unaware of Alice’s timing, the standard power detector is not optimal. Instead,

there exists a method for Willie estimate the jammer’s timing offset and develop a

detector that significantly outperforms a power detector. The goal of this work is

to help provide insight into how Alice can achieve covert communication by adding

uncertainty into Willie’s detector.
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CHAPTER 2

COVERT COMMUNICATION WITH THE ASSISTANCE
OF AN UNINFORMED JAMMER

2.1 Introduction

Much of secure communications centers on preventing an adversary from deter-

mining the content of the message. However, there are circumstances when com-

municating parties Alice and Bob may want covert communication: hiding the very

existence of their communication from a watchful adversary Willie. Examples include

communicating in the presence of an authoritarian government who may want to cur-

tail any organization by certain entities, or military communications where detection

might inform an adversary that there is activity in a given geographical area.

As defined precisely below, recent work has studied reliable covert communication,

which requires: (i) Willie’s error in detecting that Alice transmitted a message to

Bob be arbitrarily close to random guessing; and (ii) Bob’s error of recovering Alice’s

message be arbitrarily small. When the Alice-to-Bob and Alice-to-Willie channels

are additive white Gaussian noise (AWGN) channels, [11] and [12] showed a square

root law (SRL): provided Alice and Bob share a secret of sufficient length prior to

transmission, Alice can communicate covertly to Bob if and only if she employs a

per-symbol power of no more than O(1/
√
n), which decreases to 0 in the limit of

large n. Thus, O(
√
n) bits (and no more) can be transmitted in n channel uses

[12]. Follow-on work has considered the length of the pre-shared secret in [14] and

[31], characterization of the constant hidden by Big-O notation in [31] and [32], and

both the theory and experimental verification of covert communication over quantum
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channels in [13] and [33]. Additional research by Soltani et al. in [34–36] has also

considered covert communication over networks.

Subsequent work considered whether positive rate covert communications, which

requires the transmission of O(n) bits in n channel uses, is possible. Lee et al. in [22]

demonstrated that positive rate is indeed achievable over AWGN channels if Willie

has uncertainty about the statistics of the background noise and is restricted to a

receiver that employs a threshold on the received power when attempting to detect

Alice. Che et al. in [15] proved that positive rate is achievable if Willie has uncertainty

in the parameters of the binary symmetric channel between Alice and himself. In [23],

the authors re-visit the results of [15] and [22]. Rather than starting with parametric

uncertainty in Willie’s knowledge of the noise statistics, [23] allows Willie to have

access to a large collection of inputs spanning many possible codeword slots and to

employ them in any way that he deems suitable. Then, the lack of knowledge of

channel statistics at Willie does not increase the order of the covert throughput from

Alice to Bob [23]. This is because Willie is able to use any “quiet” periods to estimate

the noise statistics of his receiver accurately and then detect if Alice is transmitting,

even if he does not know a priori the time at which Alice might transmit.

In this work, we allow Willie to have a general receiver, as in [23], but we seek

conditions under which Alice can transmit with power not decreasing in the block-

length n; in the case of an AWGN channel between Alice and Bob, this then achieves

the transmission of O(n) bits covertly in n channel uses. To do such, we add another

node to the environment, the “jammer”, who Willie knows is transmitting. For ex-

ample, this might be a jammer in an electronic warfare (EW) environment placed by

Alice and Bob, or, as discussed in Section 2.5, a jammer placed in the environment by

Willie for other security objectives. If this jammer randomly varies his/her transmit

power appropriately or if time-varying multipath fading causes sufficient variation,

channel estimation during periods outside the time period when Willie is attempting
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to detect Alice’s transmission cannot be used to estimate the statistics of the noise

impacting Willie’s receiver during the period of interest. Hence, the results of [23]

do not apply; rather, we arrive at a similar mathematical problem to that considered

in [22]. A limitation of the achievability results of [22] is that the power detector is not

established to be the optimal receiver for Willie; in fact, in the case of block fading

channels with multiple fading blocks per codeword, it is known to be sub-optimal.

Here, in contrast to [22], we establish covert communication against any detector that

Willie might employ.

We consider both additive white Gaussian noise (AWGN) and standard block

fading channels. Note that the problem is readily solved if the jammer and Alice are

closely coordinated (i.e. , an “informed” jammer) by the following construction. Alice

generates a codebook by drawing codeword symbols independently from a Gaussian

distribution, and provides this codebook only to Bob as the shared secret. At the

time Alice starts to transmit a codeword, the jammer turns down the power of his

transmission of Gaussian noise, and then he turns it back up at the moment Alice

finishes transmitting. Willie is then unable to determine that any change has taken

place when Alice is transmitting. We are interested in the case where the jammer

and Alice do not coordinate. In the AWGN case, our construction has the jammer

randomly change his/her power of the Gaussian noise in each “slot” of n symbols,

where n is the codeword length used by Alice. By doing such, Willie is unaware of

the background noise to expect and it is plausible, particularly based on the work

of [22], that Alice should be able to achieve positive rate covert communication to

Bob. To establish this result rigorously against an arbitrary receiver at Willie, we first

establish that Willie’s optimal receiver is indeed a comparison of the received power

to a threshold, from which the achievability of positive rate covert communication

follows.
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We then consider a block fading channel with M fading blocks per codeword of

length n. If M = 1, we demonstrate that a threshold test on the total received power

in the codeword slot is the optimal detector at Willie, from which covert transmission

by Alice with power not decreasing in the blocklength n follows. When M > 1, a

threshold test on the total received power at Willie is sub-optimal. Thus, we first

establish a technical property on the structure of Willie’s optimal detector and then

show that this property suffices to establish the ultimate goal when the jammer-to-

Willie channel is an M > 1 block fading channel: Alice can covertly transmit with a

power that does not decrease with her blocklength n.

The main contributions o this chapter are:

1. The consideration of covert communication in the presence of an uninformed

jammer.

2. The demonstration of the optimality of a power detector at Willie for the AWGN

and M = 1 block fading cases, from which the ability of Alice to transmit

covertly with a power that does not decrease with her blocklength follows.

3. The demonstration of the ability for Alice to transmit covertly with a power

that does not decrease with her blocklength in the M > 1 block fading scenario,

even when Willie uses an optimal detector (which is not a power detector in

this case).

2.2 System Model and Metrics

2.2.1 System Model

Consider a scenario where Alice (“a”) would like to communicate covertly to

Bob (“b”) without detection by a warden Willie (“w”), and suppose a jammer (“j”)

is active in the environment who is willing to assist with this communication. The

geographic model is shown in Figure 2.1. The distances from Alice to Willie and Alice
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to Bob are denoted by da,w and da,b respectively. The distances from the jammer to

Willie and the jammer to Bob are dj,w and dj,b respectively.

This work considers Alice’s ability to transmit covertly in a slot equal to the

codeword length n and Willie’s ability to detect such a transmission in that slot. For

integer constant T > 0, consider a discrete-time channel with T slots, each of length n

symbols, as shown in Figure 2.2, with the nT symbols indexed by k = −T
2
n+1,−T

2
n+

2 . . . ,−2,−1, 0, 1, 2, . . . , T
2
n − 1, T

2
n. Assume that the slot of interest is slot t = 0;

hence, Alice may (or may not) transmit for a duration of n symbols starting at time

k = 1, and Willie’s goal is to detect whether or not such a transmission took place

using observations for all k = −T
2
n + 1,−T

2
n + 2 . . . ,−2,−1, 0, 1, 2, . . . , T

2
n − 1, T

2
n,

since observations outside of k = 1, 2, . . . , n might be useful to Willie in estimating

aspects of the environment [23]. The jammer is “uninformed” in the sense that it

does not know if Alice transmits, and if Alice transmits, the jammer does not know

that Alice is going to use a slot starting at time k = 1.

Figure 2.1. Alice, Bob, Willie and Jammer Wireless communication scenario. With
the help of a jammer, Alice attempts to transmit covertly to Bob in the presence of
a watchful adversary Willie.

Alice transmits a message with probability p and if she decides to transmit, she

maps her message to the complex symbol sequence f = [f1, f2, . . . , fn] and sends it

in the t = 0 slot corresponding to symbols k = 1, 2, . . . , n. The jammer is allowed to

transmit continuously (in all symbols of all slots) subject only to an average power
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limitation of Pmax per symbol. Let the (complex) signal transmitted by the jammer

for all time slots be given by {gt}
T
2
−1

t=−T
2

, where gt = [gtn+1, gtn+2, . . . , gtn+n] is the

vector of transmitted jamming signals sent during the tth slot, with the per symbol

power constraint E[|gk|2] ≤ Pmax.

Figure 2.2. Slot model diagram of Willie’s observations in AWGN channel condi-
tions. Representation of the indexing of nT symbol periods in T slots, each of length
n. Alice decides to transmit in slot t = 0 with probability p, and Willie attempts to
detect a transmission in that slot.

2.2.1.1 AWGN channel

Consider first the AWGN channel. Denote the collection of channel outputs at

Willie over all time slots as: {Zt}
T
2
−1

t=−T
2

, where Zt = [Ztn+1, Ztn+2, . . . , Ztn+n] is the

vector of observations collected during the tth slot. Hence, for slot t, i = 1, 2, . . . , n:

Ztn+i =


fi

d
α/2
a,w

+ gtn+i

d
α/2
j,w

+N
(w)
tn+i, Alice transmits and t = 0

gtn+i

d
α/2
j,w

+N
(w)
tn+i, else,

(2.1)

where α is the path-loss exponent, and

{
N

(w)
k , k = −T

2
n+ 1,−T

2
n+ 2 . . . ,−2,−1, 0, 1, 2, . . . ,

T

2
n− 1,

T

2
n

}
(2.2)

is a set of independent and identically distributed (i.i.d.) zero-mean complex Gaussian

random variables, each with variance E[|N (w)
k |2] = σ2

w.
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Similarly, denote the collection of channel outputs at Bob over all time slots as:

{Yt}
T
2
−1

t=−T
2

, where Yt = [Ytn+1, Ytn+2, . . . , Ytn+n] is the vector of observations collected

during the tth slot. Hence, for slot t, i = 1, 2, . . . , n:

Ytn+i =


fi

d
α/2
a,b

+ gtn+i

d
α/2
j,b

+N
(b)
tn+i, Alice transmits and t = 0

gtn+i

d
α/2
j,b

+N
(b)
tn+i, else,

(2.3)

where

{
N

(b)
k , k = −T

2
n+ 1,−T

2
n+ 2 . . . ,−2,−1, 0, 1, 2, . . . ,

T

2
n− 1,

T

2
n

}
(2.4)

is a set of i.i.d. zero-mean complex Gaussian random variables, each with variance

E[|N (b)
k |2] = σ2

b.

2.2.1.2 Block fading channel

Consider next the standard Rayleigh block fading channel, as shown in Figure

2.3. The fading is constant for a block of n/M symbols but changes independently

to a different value for the next block, where M is the number of fading blocks per

codeword slot [37]. Denote h
(x,y)
t,m , m = 1, . . . ,M as the (complex) fading coefficient

for the mth block during slot t between transmitter x and receiver y, where x is

either “a” (Alice) or “j” (jammer), and y is either “w” (Willie) or “b” (Bob). By

the Rayleigh fading assumption, h
(x,y)
t,m , m = 1, . . . ,M is assumed to be a zero mean

complex Gaussian random variable with E[|h(x,y)
t,m |2] = 1 for all channels. The fading

processes affecting different transmitter-receiver pairs are assumed to be independent

of each other. For slot t, i = 1, 2, . . . , n, Willie observes:

Ztn+i =


h

(a,w)

t,b(i−1)Mn c+1
fi

d
α/2
a,w

+
h

(j,w)

t,b(i−1)Mn c+1
gtn+i

d
α/2
j,w

+N
(w)
tn+i, Alice transmits and t = 0

h
(j,w)

t,b(i−1)Mn c+1
gtn+i

d
α/2
j,w

+N
(w)
tn+i, else.

(2.5)
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For slot t, i = 1, 2, . . . , n, Bob observes:

Ytn+i =


h

(a,b)

t,b(i−1)Mn c+1
fi

d
α/2
a,b

+
h

(j,b)

t,b(i−1)Mn c+1
gtn+i

d
α/2
j,b

+N
(b)
tn+i, Alice transmits and t = 0

h
(j,b)

t,b(i−1)Mn c+1
gtn+i

d
α/2
j,b

+N
(b)
tn+i, else.

(2.6)

Figure 2.3. Slot model diagram of Willie’s observations in multiple-block fading
channel conditions where x is either Alice or the jammer and y is either Willie or
Bob.

2.2.2 Metrics

Based on his observations over all time slots, Willie must determine whether Alice

transmitted in time slot t = 0. The null hypothesis (H0) is that Alice did not transmit

and the alternative hypothesis (H1) is that that Alice transmitted a message. Define

P (H0) = 1− p as the probability that Alice does not transmit and P (H1) = p as the

probability that Alice transmits in time slot t = 0, where the assumption is that p is

known to Willie (pessimistically) . Willie seeks to minimize his probability of error

Pe = (1−p)·PFA+p·PMD, where PMD and PFA are the probabilities of missed detection

and false alarm at Willie, respectively. Per [38], Pe ≥ min(p, 1 − p) · (PFA + PMD).

Hence, Alice achieves covert communication if, for any ε > 0, PMD + PFA > 1− ε for
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n sufficiently large.1 Alice can transmit covertly with power not decreasing in n if,

for any ε > 0, there exists Pf > 0 not dependent on n (but possibly dependent on

ε) such that, as n→∞, a system employing power Pf is covert. Bob should also be

capable of reliably decoding Alice’s message [12]. Bob can reliably decode messages

from Alice if, for any δ > 0, his probability of error is less than δ for n sufficiently

large.

Assume that Willie has full knowledge of the statistical model: the parameters for

Alice’s random codebook generation and the jammer’s random interference genera-

tion, the noise variance σ2
w, and in the case of fading on the Alice-to-Willie channel

or jammer-to-Willie link, the statistics of that fading. Thus, Willie’s test is between

two simple hypotheses for Alice’s transmission state, and he has complete statistical

knowledge of his observations when either hypothesis is true. Therefore, by apply-

ing the Neyman-Pearson (NP) criterion, the optimal test for Willie to minimize his

probability of error is the likelihood ratio test (LRT) [39, Chapter 3.3],

Λ(Z̃) =
fZ̃|H1

(Z̃|H1)

fZ̃|H0
(Z̃|H0)

H1

≷
H0

γ, (2.7)

where γ = P (H0)/P (H1), and fZ̃|H1
(·|H1) and fZ̃|H0

(·|H0) are the probability density

functions (pdfs) for Willie’s observations over all slots given Alice transmitted in the

t = 0 slot or given Alice did not transmit in the t = 0 slot, respectively. As can be

inferred by the assumption of a power detector for Willie’s receiver in [22] and made

precise in the proof of Theorem 1 below, a desirable property for the likelihood ratio

Λ(·) to exhibit is monotonicity. In the remainder of this section, the approach for

establishing such a property that applies in our context is described.

1This guarantees that Willie’s probability of error is within ε of the probability of error min(p, 1−
p) obtained if he ignores his observations and chooses the hypothesis H0 and H1 that was most likely
a priori.
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The concept of stochastic ordering [40] is employed to derive the desired mono-

tonicity results in a more streamlined fashion relative to our preliminary work in [41].

A random variable X is smaller than W in the likelihood ratio order (written as

X ≤lr W ) when fW (x)/fX(x) is non-decreasing over the union of their supports,

where fW (x) and fX(x) are their respective probability density functions. Consider a

family of pdfs {gθ(·), θ ∈ X} where X is a subset of the real line. Let X(θ) denote a

random variable with density gθ(·) for fixed parameter θ. Let Θ denote a random vari-

able with support X and probability distribution function FΘ(·); denote X(Θ) as the

random variable that is the mixture of the random variables X(θ) under distribution

FΘ(θ); that is, the probability density function of X(Θ) is given by:

fX(Θ)(x) =

∫
θ∈X

gθ(x)dF (θ), x ∈ R. (2.8)

The following result regarding mixtures of random variables is employed to prove the

power detector is optimal for AWGN and single-block fading channel models.

Lemma 1. [Theorem 1.C.11 in [40]] Consider a family of probability density functions

{gθ(·), θ ∈ X} with X a subset of the real line. Let Θ0 and Θ1 denote random variables

with support in X and probability distribution functions F0(θ) and F1(θ), respectively.

Let W0 and W1 be random variables such that Wi =d X(Θi), i = 0, 1, (where =d is

defined as equality in distribution or law):

fWi
(x) =

∫
θ∈X

gθ(x)dFi(θ), i = 0, 1;x ∈ R. (2.9)

If

X(θ) ≤lr X(θ′), θ ≤ θ′ (2.10)

21



and

Θ0 ≤lr Θ1, (2.11)

then

W0 ≤lr W1. (2.12)

2.3 Adding Uncertainty at Willie with a Jammer

This subsection demonstrates that Alice and Bob can achieve covert communi-

cation with positive rate when a jammer is added to the communication model by

generating uncertainty at Willie’s receiver. Even if Willie employs a radiometer, which

is shown to be an optimal detector in AWGN and single block fading scenarios, Alice

and Bob can still achieve covert and reliable communication. In the multiple fading

block scenarios, the radiometer is no longer an optimal test statistic, however covert

communication at a positive rate can still be achieved if Willie employs an optimal

detector.

2.3.1 Achievability for the AWGN Model

Consider the case of additive white Gaussian noise (AWGN) channels between all

nodes, with the slot boundaries between Alice, Willie, and the jammer synchronized,

and, as in [12], assume that Alice and Bob share a secret of unlimited length. A

construction for Alice and the jammer is provided, and then a power detector is

shown to be Willie’s optimal detector based on the construction. The transmission

of O(n) bits in n channel uses is then demonstrated. It is assumed that da,w and dj,w

are known to Alice, although it is readily apparent that a lower-bound to da,w and an

upper-bound to dj,w are sufficient to establish the results.

22



Construction: Random coding arguments are employed to generate K codewords,

each of length n, by independently drawing symbols from a zero-mean complex Gaus-

sian distribution with variance Pf , where Pf is determined later. This codebook is

revealed to Alice and Bob, is used only once, and comprises the shared secret un-

known to Willie (and the jammer). If Alice decides to transmit in slot t = 0, she

selects the codeword corresponding to her message, sets fi to the ith symbol of that

codeword, and transmits the sequence f1, f2, . . . , fn. The jammer, with knowledge of

the slot boundaries but without knowledge of whether Alice transmits in a given slot

(or at all), transmits a symbol drawn independently from a zero-mean complex Gaus-

sian distribution during each symbol period. However, the variance of this Gaussian

distribution is not constant; in particular, during the tth slot, the jammer draws each

of its symbols independently from a zero-mean Gaussian distribution with variance

E[|gtn+i|2] = P
(j)
t , i = 1, 2, . . . , n, with P

(j)
t changing between slots. The sequence of

variances employed across the slots, P
(j)
t , t = −T

2
,−T

2
+1, . . . ,−1, 0, 1, . . . , T

2
−2, T

2
− 1

is an i.i.d. sequence of uniform random variables on [0, Pmax], where Pmax, as defined

in Section 2.2.1, is the maximum average power per symbol that the jammer can

employ.

Per above, Alice’s codebook is only shared with Bob and thus is unknown to

Willie. However, Willie knows everything else about how the system is constructed,

including the length of the codeword n, the distribution from which the codeword

symbols are drawn (including Pf), the distribution of the jamming power (including

Pmax), the time of Alice’s potential transmission, and his distances from Alice and

the jammer. Next, the power detector is established as Willie’s optimal strategy for

detecting Alice’s transmission.

Lemma 2. Under assumptions of the AWGN model in Section 2.2.1.1, Willie’s op-

timal detector compares the total received power in slot t = 0 to a threshold.
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Proof: Consider Willie’s attempt to detect Alice during the slot t = 0 of interest.

Since the jammer’s power outside of this slot is independent of the jammer’s power

within the slot and since Willie knows σ2
w, it is sufficient for Willie to consider the

vector of observations Z0 only within slot t = 0, as defined in Section 2.2.1. Hence,

to simplify notation, the slot index is dropped and we denote the input to Willie’s

receiver as Z = [Z1, Z2, . . . , Zn].

Given the assumptions of the lemma, the distribution of Z is complex Gaus-

sian. Under H0, Willie observes only the jamming signal in addition to background

noise. Under H1, Willie observes both the jamming signal and Alice’s transmis-

sion in addition to background noise. Let θ denote the variance of the power ob-

served due to Alice’s transmissions and the jammer’s signal and thus define Z(θ) =

[Z1(θ), Z2(θ), . . . , Zn(θ)], where Zi(θ) ∼ CN (0, σ2
w + θ). Thus, H0 and H1 are distin-

guished by introducing two non-negative valued random variables Θ0 and Θ1 with

probability density functions:

fΘρ(θ) =


1/ζ, 0 < θ ≤ Pmax/d

α
j,w, ρ = 0

1/ζ, σ2
a < θ ≤ σ2

a + Pmax/d
α
j,w, ρ = 1,

0, otherwise,

(2.13)

where ζ = Pmax/d
α
j,w and σ2

a = Pf/d
α
a,w. The pdf of Willie’s observations conditioned

on θ is:

fZ(θ)(z) =
n∏
i=1

1

π(σ2
w + θ)

exp

(
− |zi|2

(σ2
w + θ)

)
=

(
1

π(σ2
w + θ)

)n
exp

(
− z

(σ2
w + θ)

)
, (2.14)

where z =
∑n

i=1 |zi|2. Thus, by the Neyman-Fisher Factorization Theorem, the total

power Z(θ) =
∑n

i=1 |Zi(θ)|2 is a sufficient statistic for Willie’s test [42, Chapter 5.4].
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Let χ2
l denote a chi-squared random variable with l degrees of freedom. Then Z(θ) =

(σ2
w + θ)χ2

2n. Since Willie does not know either Θ0 or Θ1, his LRT becomes:

Λ(Z) =
EΘ1 [fZ(θ)(Z)]

EΘ0 [fZ(θ)(Z)]

H1

≷
H0

γ.

The next steps show that Λ(·) is monotone. From the definition of a chi-squared

random variable, Z(θ) ≤lr Z(θ′) whenever θ ≤ θ′. In addition, applying the definition

of ≤lr to the densities of Θ0,Θ1 yields that Θ0 ≤lr Θ1. The application of Lemma 1

then yields that Λ(·) is non-decreasing in z. Thus, the LRT is equivalent to the test:

Z
H1

≷
H0

Γn

corresponding to a threshold test on the total received power.

Theorem 1. Under the assumptions of the AWGN model in Section 2.2.1.1, there ex-

ists a communication strategy for Alice, Bob, and the jammer whereby Alice transmits

O(n) bits in n channel uses reliably and covertly to Bob in the presence of Willie.

Proof: Construction: Alice and the jammer employ the construction given at the

beginning of Section 2.2.1. Per Lemma 2, the optimal detector for Willie is to employ

a threshold test Z ≷H1
H0

Γn on the total received power. Dividing both sides by n yields

the equivalent test:

Z

n

H1

≷
H0

τn, (2.15)

where τn ≡ Γn/n. Whereas there is an optimal τn for any finite n, this work establishes

for any sequence of τn that Willie chooses, the detector is asymptotically useless as

n→∞; that is, for any ε > 0, there exists a construction such that PFA +PMD > 1−ε

for sufficiently large n.
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Analysis: Note that σ2
j = Uζ, where U is a uniform random variable on [0, 1].

Recall that Willie does not know the value of U . Let PFA(u) and PMD(u) be Willie’s

probability of false alarm and probability of missed detection conditioned on U = u,

respectively. Then,

PFA(u) = P

(
Z

n
≥ τn|U = u,H0

)
. (2.16)

Recall that χ2
l denotes a chi-squared random variable with l degrees of freedom. Under

H0 and given U = u, Z = (σ2
w +uζ)χ2

2n and Z/n = (σ2
w +uζ)χ2

2n/n. By the weak law

of large numbers, χ2
2n/n converges in probability to 1; hence, for any δ > 0, ∃N0 (not

dependent on u) such that, for n ≥ N0,

P

(
χ2

2n

n
∈
(

1− δ

σ2
w + ζ

, 1 +
δ

σ2
w + ζ

))
> 1− ε

2
. (2.17)

Hence, for any n > N0,

P

(
Z

n
∈
(

(σ2
w + uζ)

(
1− δ

σ2
w + ζ

)
, (σ2

w + uζ)

(
1 +

δ

σ2
w + ζ

)))
> 1− ε

2
. (2.18)

Since u ≤ 1, σ2
w + uζ < σ2

w + ζ and thus,

P

(
Z

n
∈
(
σ2

w + uζ − δ, σ2
w + uζ + δ

))
> 1− ε

2
. (2.19)

Therefore, PFA(u) ≥ 1− ε/2 for any τn < σ2
w + uζ − δ. Likewise, following analogous

arguments, there exists N1 such that, for any n > N1 (not dependent on u):

PMD(u) = P

(
Z

n
≤ τn|U = u,H1

)
> 1− ε

2
(2.20)
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for any τn > σ2
w + uζ + σ2

a + δ. Define the set A = {u : σ2
w + uζ − δ < τn <

σ2
w+uζ+σ2

a+δ}. This work establishes that, for any u ∈ Ac and any n > max(N0, N1),

PFA(u) + PMD(u) ≥ 1− ε
2
. The probability of event A is bounded as:

P (A) = P

(
τn − σ2

w − σ2
a − δ

ζ
≤ U ≤ τn − σ2

w + δ

ζ

)
≤ σ2

a + 2δ

ζ
. (2.21)

Hence, choosing δ = ζε/8 and σ2
a = ζε/4 yields:

P (Ac) ≥ 1− ε

2
. (2.22)

Therefore, the summation of Willie’s false alarm and missed detection is lower-

bounded as:

PFA + PMD = EU [PFA(U) + PMD(U)] (2.23)

≥ EU [PFA(U) + PMD(U)|Ac]P (Ac) (2.24)

> 1− ε. (2.25)

Hence, Alice can employ codebooks with power Pf = σ2
ad

α
a,w and remain covert from

Willie. Recognizing that the maximum interference caused by the jammer at Bob

can be upper-bounded and hence the received signal-to-noise ratio at Bob can be

lower-bounded by a constant, Alice can transmit O(n) bits in n channel uses covertly

and reliably to Bob.

2.3.2 Achievability for the Single Block Fading Model (M = 1)

Recall that there are four channels in the problem formulation: Alice-to-Bob,

Alice-to-Willie, jammer-to-Bob, and jammer-to-Willie. In this section, the channel
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model is expanded to consider the situation where one or more of the four channels

is a fading channel. As in Section 2.3.1, the problem is investigated by first charac-

terizing how the Alice-to-Willie and jammer-to-Willie channels constrain (or not) the

allowable scheme at Alice, in particular the power that she is able to employ while

remaining covert. The achievable performance under various metrics when Alice em-

ploys that power then follows classical information and communication theory based

on the nature of the Alice-to-Bob and jammer-to-Bob channels.

Consider first the case where the Alice-to-Willie channel is an AWGN channel and

the jammer-to-Willie channel is a M = 1 block fading channel. From an application

perspective, this appears at first to be a pessimistic case: the jammer who Alice is

counting on to confuse Willie is subject to fading, whereas Willie has a strong di-

rect path from Alice that makes the Alice-to-Willie channel comparatively benign

(AWGN). As in the case when all of the channels are AWGN, this work first demon-

strate that the optimal receiver at Willie is a power detector. Unlike in Section 2.3.1,

here the jammer can transmit Gaussian noise drawn from a distribution with constant

variance Pj = Pmax, since the channel randomizes the power received at Willie from

the jammer.

Lemma 3. Under the assumptions of the M = 1 block fading model in Section 2.2.1.2

and Alice’s construction presented in Section 2.2.1 but with the jammer transmitting

Gaussian noise drawn from a distribution with constant variance, Willie’s optimal

detector for detecting Alice’s transmission is to compare the total received power in

the slot of interest to a threshold.

Proof: Let ζ = Pj/d
α
j,w. The received jammer power σ2

j is exponentially distributed

with mean ζ. As in Section 2.3.1, note that observations outside of k = 1, 2, . . . , n do

not help Willie to detect a transmission by Alice in slot t = 0; hence, it is sufficient to

consider Z0 as the input to Willie’s receiver. Therefore, the slot index is suppressed

and denote Willie’s observation conditioned on θ by Z(θ) = [Z1(θ), Z2(θ), . . . , Zn(θ)]
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where Zi(θ) ∼ CN (0, σ2
w + θ). H0 and H1 are distinguished by introducing two non-

negative valued random variables Θ0 and Θ1 with probability density functions:

fΘρ(θ) =



1
ζ
e−θ/ζ , 0 < θ, ρ = 0,

1
ζ
e−(θ−σ2

a)/ζ , σ2
a < θ, ρ = 1,

0, otherwise.

(2.26)

Thus, Θ0 ≤lr Θ1 based on the assumptions presented in Section 2.2.2. The distri-

bution of Willie’s observations conditioned on θ is:

fZ(θ)(z) =

(
1

π(σ2
w + θ)

)n
exp
(
− z

σ2
w + θ

)
, (2.27)

where z is as defined in Section 2.2.1.1. Hence, the LRT test is optimal based on the

NP rule and the optimal decision rule for Willie again becomes:

Λ(Z) =
EΘ1 [fZ(θ)(Z)]

EΘ0 [fZ(θ)(Z)]

H1

≷
H0

γ. (2.28)

The monotonicity of Λ(·) then follows from Lemma 1 by observing that, as in the

proof of Lemma 2, Z(θ) ≤lr Z(θ′) whenever θ ≤ θ′, and, as noted above, Θ0 ≤lr Θ1.

Thus, the LRT is equivalent to the power detector: Z ≷H1
H0

Γn.

Next, consider the case when the Alice-to-Willie channel is also a M = 1 block

fading channel. In practice, Willie does not know the value of the fading coefficient

h
(a,w)
0,1 on this channel and, indeed, that is our assumption in our achievability result

below. However, since the achievability result for covert communication from Alice

to Bob is the main point of interest, giving Willie any extra knowledge (say, by a

genie) only strengthens the result. Therefore, this work assumes Willie knows h
(a,w)
0,1

and thus Corollary 3.1 is employed to establish Theorem 2.
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Corollary 3.1. Consider the assumptions of the single block fading model in Section

2.2.1.2 and assume that Willie knows the value of h
(a,w)
0,1 . Then, given Alice’s con-

struction in Section 2.2.1.1 but with the jammer transmitting Gaussian noise drawn

from a distribution with constant variance, Willie’s optimal detector for detecting a

transmission by Alice is to compare the total received power in the slot of interest to

a threshold.

Proof: Knowing h
(a,w)
0,1 and da,w, Willie knows σ2

a, and the proof follows from Lemma

3.

Theorem 2. Under the assumptions of the single block fading model in Section

2.2.1.2, there exists a communication strategy for Alice, Bob, and the jammer whereby

Alice transmits with a power that does not decrease with the blocklength while remain-

ing covert from warden Willie.

Proof: This proof follows along the lines of Theorem 1 and is provided in Appendix

A.

2.3.3 The Number of Covert Bits Transmitted Reliably

Theorem 2 establishes that Alice can transmit with power not decreasing in the

blocklength n while maintaining covertness. In the case of AWGN channels on both

the Alice-to-Bob and jammer-to-Bob channels, the covert and reliable communication

of O(n) bits in n channel uses can be achieved. However, when the Alice-to-Bob

or jammer-to-Bob channels are M -block fading channels, M ≥ 1, the problem is

analogous to the standard problem of communication over slowly fading channels [37,

Section 5.4]. Strictly speaking, reliable communication as defined in Section 2.2.2 of

O(n) bits is not possible. In particular, if Alice transmits nR0 bits for any given

constant R0 > 0, there always exists some nonzero probability, not diminishing in n,

that the instantiations of |h(a,b)
0,m | and |h(j,b)

0,m |, m = 1, 2, . . .M , leads to a received signal-

to-interference-plus-noise ratio (SINR) such that the communication is not reliable.
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However, the presence of the jammer, which allows Alice to transmit at per-symbol

power Pf > 0 not dependent on n (versus O( 1√
n
) power per symbol when there is no

jammer [12]), greatly improves system performance even in the case when the Alice-

to-Bob or jammer-to-Bob channels are M -block fading channels. This can be seen

via multiple metrics. First, if the metric of Section 2.2.2 is still of pertinent interest,

covert and reliable communication of o(n) bits is possible, as demonstrated for M = 1

in Appendix B. Second, and probably of more interest, is that the analog of the ε-

outage capacity (see [37]) is non-zero, whereas it would be zero for any transmission

power at Alice that decreases to 0 as n→∞.

2.3.4 Achievability Proofs for M > 1 Block Fading Channel Models

Here, consider the case of an M > 1 block fading channel on the jammer-to-Willie

link. In contrast to the results of Lemma 2 and Lemma 3 for the AWGN and M = 1

block fading channels on the Alice-to-Willie link, respectively, a power detector is

not the optimal detector for Willie. Instead, an important property of the optimal

detector in Lemma 4 is established: that, if a given vector of observed powers for the

M blocks encompassing a slot results in a point on the boundary between Willie’s

decision regions, an increase in any component of that vector results in a decision of

H1. Whereas this does not explicitly identify the optimal receiver, it does guarantee

an important property of the dividing “curve” between the two decision regions: for

any given M − 1 components of the vector of observed powers, there is at most one

solution for the remaining component that falls on this curve between H0 and H1, as

defined precisely below. In particular, this is then sufficient to establish the result of

interest: that Alice can transmit covertly at power that does not decrease with the

blocklength n.
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2.3.5 Properties of the Optimal Detector at Willie

With t = 0 the slot of interest, observations outside of k = 1, 2, . . . , n do not

help Willie detect transmissions by Alice in slot t = 0. Therefore, the slot index is

suppressed, and denote Willie’s observations by Ẑ = [Ẑ1, Ẑ2, . . . , Ẑn]. Conditioned on

the fading coefficients on the jammer-to-Willie channel, measurements within each

fading block of length n/M are i.i.d., but the measurements from different blocks

come from different distributions determined by the sequence of block fading variables.

Therefore, when Alice does not transmit, Willie’s observations have the distribution:

fẐ|H0
(ẑ|H0) = Eh(j,w)

 M∏
m=1

n/M∏
i=1

1

π(σ2
w + σ2

j,m)
· e
−
|ẑ(m−1) n

M
+i|

2

(σ2
w+σ2

j,m
)

 (2.29a)

=
M∏
m=1

E
h

(j,w)
m

[(
1

π(σ2
w + σ2

j,m)

) n
M

e
− zm

(σ2
w+σ2

j,m
)

]
, (2.29b)

where h(j,w) = [h
(j,w)
1 , h

(j,w)
2 , . . . , h

(j,w)
M ] is the vector of (complex) fading coefficients on

the jammer-to-Willie channel, zm =
∑n/M

i=1 |ẑ(m−1) n
M

+i|2, and σ2
j,m =

P
(t)
j |h

(j,w)
m |2

dαj,w
. Let

ζ = P
(t)
j /dαj,w and Z = [Z1, Z2, . . . , ZM ], where Zm =

∑n/M
i=1 |Ẑ(m−1) n

M
+i|2 is the power

measured in the mth block. The distribution of the vector Z of received powers across

the M blocks under H0 is:

fZ|H0(z|H0) =
1

πn

M∏
m=1

∫ ∞
0

(
1

σ2
w + u

) n
M

e
− zm

(σ2
w+u) e−

u
ζ du (2.30)

=
e
Mσ2

w
ζ

πn

M∏
m=1

∫ ∞
σ2

w

(
1

v

) n
M

e−
zm
v e−

v
ζ dv. (2.31)

Similarly, the distribution under H1 is:

fZ|H1(z|H1) =
e
M(σ2

w+σ2
a)

ζ

πn

M∏
m=1

∫ ∞
σ2

w+σ2
a

(
1

v

) n
M

e−
zm
v e−

v
ζ dv. (2.32)
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The LRT test is then:

Λ(Z) =
e
Mσ2

a
ζ
∏M

m=1

∫∞
σ2

w+σ2
a

(
1
v

) n
M e−

Zm
v e−

v
ζ dv∏M

m=1

∫∞
σ2

w

(
1
v

) n
M e−

Zm
v e−

v
ζ dv

H1

≷
H0

γ. (2.33)

The LRT in (2.33) shows that Z forms a sufficient statistic for the optimal test for

Willie to determine whether Alice transmits in that slot or not. Lemma 4 then

establishes that Λ(·) is monotone increasing in each of its components.

Lemma 4. Consider the assumptions of the multiple block fading channel model

in Section 2.2.1.2 and Alice’s construction presented in Section 2.2.1 but with the

jammer transmitting Gaussian noise drawn from a distribution with constant vari-

ance. When the Alice-to-Willie channel is AWGN and the jammer-to-Willie channel

is faded, Λ(Z) is monotonically increasing in each of the components of Z.

Proof: Λ(Z) (defined in (2.28)) monotonically increases in Z in the M = 1 case as

shown in Appendix C. The proof then follows from the observation that Λ(Z) in the

M > 1 case can be expressed as:

Λ(Z) =
M∏
i=1

Λ(Zi). (2.34)

Corollary 4.1. Consider the assumptions of the multiple block fading model in Sec-

tion 2.2.1.2 and Alice’s construction presented in Section 2.2.1.1 but with the jammer

transmitting Gaussian noise drawn from a distribution with constant variance. Ad-

ditionally, assume that Willie knows h
(a,w)
0,m ,m = 1, 2, . . . ,M . When fading exists on

both the jammer-to-Willie channel and the Alice-to-Willie channel, then the likelihood

ratio Λ(Z) is monotonically increasing in each of the components of Z.

Proof: Conditioned on Willie’s knowledge of h
(a,w)
0,m ,m = 1, 2, . . . ,M , the channel

from Alice-to-Willie is an AWGN channel with a different signal power for Alice per

block; hence, the result follows similarly to that of Lemma 4.
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2.3.6 Covertness with Transmit Power not Decreasing in the Blocklength

Next, Lemma 4 is leveraged on the structure of the optimal receiver at Willie to

demonstrate the ability for Alice to employ power not decreasing in the blocklength for

the case where there exists M > 1 block fading on the jammer-to-Willie channel. The

general concept of the proof is similar to Theorem 1: demonstrate that the optimal

detector at Willie works poorly on a set of fading instantiations of the jammer’s signal

that has high probability.

Before outlining the proof, a number of regions are defined that characterize

Willie’s detector. Recall that a sufficient statistic for Willie’s optimal detector is

given by Z = [Z1, Z2, . . . , ZM ], where Zi is the power measured in the ith block. A

normalized version corresponding to the average observed power per symbol within

a block is also a sufficient statistic for the optimal detector: X = [X1, X2, . . . , XM ],

where Xi = Zi
n/M

, i = 1, 2, . . .M . A detector for Willie is defined by the regions

RH0(n) and RH1(n), each in RM , where H0 is chosen if X ∈ RH0(n), and H1 is chosen

if X ∈ RH1(n). For the optimal detector at Willie, as given in (2.33), a vector x is

in RH1(n) if and only if Λ( n
M

x) > γ; otherwise x is in RH0(n). Hence, define the

boundary curve dividing RH0(n) and RH1(n) as C(n) = {x : Λ( n
M

x) = γ}. Finally,

define a boundary region, Rδ
B(n) as the set of points that are within distance δ in at

least one dimension from the dividing curve between the regions.

Define theM -dimensional vectors σ2
j = [σ2

j,1, σ
2
j,2, . . . , σ

2
j,M ] and σ2

w = σ2
w[1, 1, . . . , 1].

Note that σ2
j is random, since it depends on the fading from the jammer to Willie,

whereas σ2
w is deterministic and known to Willie. The proof then proceeds, as fol-

lows. Given the instantiation of the block fading values between the jammer and

Willie, which determines the expected jammer power per symbol σ2
j,i for the ith fad-

ing block, the ith element of the vector X has the expected value σ2
j,i + σ2

w (under

H0) or σ2
j,i + σ2

w + σ2
a (under H1). The proof then begins with Lemma 5, which lever-

ages Lemma 4 to show that the probability of fading instantiations that result in
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Figure 2.4. An example diagram of decision regions for an arbitrary detector under
M = 2 block fading conditions. X1 and X2 are the normalized power measurements
in the first and second block respectively. The solid line (−) represents the boundary
curve C(n) and the dashed lines (− · ·−) represent the edge of the boundary region
Rδ

B(n).

σ2
j + σ2

w ∈ Rδ
B(n) can be made arbitrarily small by choosing δ small enough; hence,

the probability that the jamming is such that the average power received per symbol

when Alice is not transmitting is in the boundary region can be made arbitrarily

small. The theorem then follows by considering what happens for the (highly proba-

ble) event that the instantiation of the block fading values yields σ2
j +σ2

w /∈ Rδ
B(n); in

this case, for σ2
a sufficiently small, the probability of missed detection or the probabil-

ity of false alarm is near one. Hence, Alice can employ power that does not decrease

with n and still achieve covertness. Essentially, Willie is not able to set a boundary

curve that works for a large set of σ2
j , and thus his detector is only effective in the

unlikely event that σ2
j +σ2

w is near the boundary curve between his decision regions.

Lemma 5. Under the assumptions of the multiple block fading model in Section

2.2.1.2, for Willie’s optimal detector, with Rδ
B(n) as defined above, there exists δ > 0

s.t. P (h : σ2
j + σ2

w ∈ Rδ
B(n)) < ε for any ε > 0.

Proof: Consider solving for the values (if there are any) of xm, the mth component

of the vector x = [x1, x2, . . . , xM ], for which x ∈ C(n), with the other components

fixed. By Lemma 4, for a given [x1, x2, xm−1, xm+1, . . . xM ], it is known that the

set of xm such that x ∈ C(n) consists of no points or a single point. Define the
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(M − 1)-dimensional vector x∼m = [x1, x2, . . . , xm−1, xm+1, . . . , xM ] as the vector x

with the mth component removed and define the following function on this vector,

which specifies the xm on the boundary (if there is one) when the rest of the elements

of x are set to the values in x∼m:

gm(x∼m) =

 0, no xm s.t. x ∈ C(n)

xm, a single xm s.t. x ∈ C(n).
(2.35)

Define the boundary region Rδ
B(n) as:

Rδ
B(n) =

M⋃
m=1

{x : xm ∈ (gm(x∼m)− δ, gm(x∼m) + δ)}. (2.36)

Now, applying a union bound yields:

P (σ2
j + σ2

w ∈ Rδ
B(n)) =

∫
RδB(n)

M∏
i=1

fσ2
j,i+σ

2
w
(xi)dxi (2.37)

≤
M∑
m=1

∫
x∼m

∫ gm(x∼m)+δ

gm(x∼m)−δ

M∏
i=1

fσ2
j,i+σ

2
w
(xi)dxi d(x∼m) (2.38)

=
M∑
m=1

∫
x∼m

M∏
i=1
i 6=m

fσ2
j,i+σ

2
w
(xi)

·

[∫ gm(x∼m)+δ

gm(x∼m)−δ
fσ2

j,m+σ2
w
(xm)dxm

]
d(x∼m) (2.39)

≤
M∑
m=1

∫
x∼m

M∏
i=1
i 6=m

fσ2
j,i+σ

2
w
(xi) [2δ sup

x
fσ2

j,m+σ2
w
(x)] d(x∼m) (2.40)

= 2Mδ sup
x
fσ2

j,1+σ2
w
(x), (2.41)

Noting that supx fσ2
j,1+σ2

w
(x) is finite, a choice of δ = ε/(2M supx fσ2

j,1+σ2
w
(x)) yields

P (h : σ2
j + σ2

w ∈ Rδ
B(n)) < ε.
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Theorem 3. Consider the assumptions of the multiple block fading model and Alice’s

construction in Section 2.2.1 but with the jammer transmitting Gaussian noise drawn

from a distribution with constant variance. Then, there exists a communication strat-

egy for Alice, Bob, and the jammer whereby Alice transmits with a power that does

not decrease with the blocklength while being covert from Willie.

Proof: Consider a covertness criterion PMD + PFA > 1 − ε. By Lemma 5, choose

δ > 0 s.t.:

P (h : σ2
j + σ2

w ∈ R2δ
B (n)) <

ε

4
. (2.42)

If the Alice-to-Willie channel is AWGN, choose constant Pf > 0 such that σ2
a < δ.

If the Alice-to-Willie channel is a M ≥ 1 block fading channel, choose Pf > 0 such

that the average received power from Alice is less than δ for all fading blocks with

high probability. We proceed with the proof for the case when the Alice-to-Willie

channel is AWGN, but the modifications for when the Alice-to-Willie channel is a

M ≥ 1 block fading channel follow similar steps to those shown in the second part of

the proof of Theorem 2 in Appendix A.

Consider an optimal detector at Willie for blocklength n, with associated decision

regions RH0(n) and RH1(n). First, a sketch of the proof idea is presented. Consider

the case where σ2
w + σ2

j ∈ RH0(n) \ R2δ
B (n). If Alice is employing σ2

a < δ, the

probability of Willie’s test result being in RH1(n) occurs with small probability for

large n, regardless of whether H0 or H1 is true. Thus, Willie’s PMD is large and PFA

is small. Likewise, if σ2
w + σ2

j ∈ RH1(n) \ R2δ
B (n), then Willie’s PFA is large and PMD

is small for large n.

The rigorous proof is the vector extension of that of Theorem 2. Recall that

[σ2
j,1, σ

2
j,2, . . . , σ

2
j,M ] is an i.i.d. vector, where each component is exponentially dis-

tributed with mean ζ. Hence, there exists a constant c s.t.
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P

(
max

i=1,2,...,M
σ2

j,i > c

)
<
ε

4
. (2.43)

Let

PFA(u) = P (X ∈ RH1(n)|σ2
j + σ2

w = u, H0). (2.44)

Under H0, Xi = (σ2
w + σ2

j,i)χ
2
2n
M
,i
, i = 1, 2, . . . ,M , where {χ2

2n
M
,i
, i = 1, 2, . . . ,M} is an

i.i.d. collection of (central) chi-squared random variables, each with 2n/M degrees of

freedom. By the weak law of large numbers, each converges in probability to 1; since

M is finite, this implies ∃N0 s.t. ∀n ≥ N0,

P

(
M⋂
i=1

{
χ2

2n
M
,i
∈
(

1− δ

σ2
w + c

, 1 +
δ

σ2
w + c

)})
> 1− ε

2
, (2.45)

and

P

(
M⋂
i=1

{
Xi ∈

(
(σ2

w + σ2
j,i)

(
1− δ

σ2
w + c

)
, (σ2

w + σ2
j,i)

(
1 +

δ

σ2
w + c

))})
> 1− ε

2
.

(2.46)

Now, if maxi=1,2,...,M σ2
j,i ≤ c, then σ2

w + σ2
j,i < σ2

w + c, and thus, for n ≥ N0:

P

(
M⋂
i=1

{
Xi ∈ (σ2

w + σ2
j,i − δ, σ2

w + σ2
j,i + δ)

})
> 1− ε

2
. (2.47)

Thus, if u ∈ RH1 \R2δ
B (n), then P (X ∈ RH1) > 1− ε

2
and

PFA(u) > 1− ε

2
. (2.48)
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Next consider any u ∈ RH0\R2δ
B (n). Then, recalling σ2

a < δ, the vector u+σ2
a[1 1 . . . 1]

cannot have any element within δ of C(n). Then, following analogous arguments to

those above, ∃N1 s.t. for n ≥ N1,

PMD(u) = P (X ∈ RH0(n)|σ2
j + σ2

w = u, H1) (2.49)

> 1− ε

2
(2.50)

for u ∈ RH0 \R2δ
B (n) whenever maxi=1,2,...,M σ2

j,i ≤ c. Thus, unless

A = {u ∈ R2δ
B (n)} ∪ { max

i=1,2,...,M
σ2

j,i > c} (2.51)

occurs,

PFA(u) + PMD(u) > 1− ε

2
. (2.52)

By construction, P (A) < ε/2, and thus

PFA + PMD = EU [PFA(U) + PMD(U)] (2.53)

≥ EU [PFA(U) + PMD(U)|Ac]P (Ac) (2.54)

> 1− ε. (2.55)

The implications on reliable throughput are then analogous to those discussed in

Section 2.3.3.

The implications of a constant transmit power at Alice on reliable throughput are

then identical to those discussed in Section 2.3.3 for M = 1 and the proof is presented

in Appendix D.
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2.4 Relationship with Steganography

Steganography is the discipline of hiding messages in innocuous objects. Typical

steganographic systems modify fixed-size finite-alphabet covertext objects into stego-

text containing hidden information, and are subject to a similar square root law (SRL)

as non-jammer assisted covert communication: O(
√
n) symbols in size n covertext

may safely be altered to hide an O(
√
n log n)-bit message [43]. As explained in [12],

the mathematics of statistical hypothesis testing are responsible for both SRLs while

the extra log n factor is from the lack of noise in the steganographic context. How-

ever, arguably the earliest work on SRL shows that it is achievable without the log n

factor when an active adversary corrupts stegotext with AWGN [44]2. That being

said, [45] shows that, because Alice in the steganographic setting has write-access to

covertext, the SRL can be broken and O(n) bits can be embedded in size n covertext

using careful selection of the subset of the covertext to be overwritten [45]. Thus, un-

like the scenario considered here, breaking the steganographic SRL does not require

Willie to be uncertain about the distribution of his observations.

2.5 Summary

This chapter investigated the addition of a Jammer to the Alice, Bob, Willie model

in such a way that the jammer creates uncertainty at Willie’s detector. By adding the

uncertainty at Willie, Alice and Bob can achieve covert and reliable communication

at a positive rate. In addition, a radiometer is proven to be an optimal detector

for Warden Willie under AWGN and single-block fading channel conditions. For the

multiple-block fading channel model a radiometer is not an optimal detector.

2We note that the results of [11] and [12] were developed independently of [44]. While [44]
provides the proof of the SRL when Alice is average-power constrained, [11] and [12] also develop
the achievability of SRL for the peak-power constained covert communication and the converse to
the SRL.
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The assumptions presented in Section 2.2.1.1 assume that the jammer is attempt-

ing to help Alice and Bob to communicate covertly. However, covert communication

may still be possible if an adversarial jammer is placed in the environment to actively

try to jam any potential communication by Alice, as is commonly done in electronic

warfare. For example, suppose that Willie uses a jammer to inhibit communication

by any party; then, whereas this jammer does indeed decrease the rate of any re-

liable (non-covert) communication, it may actually facilitate covert communication

by hurting Willie’s ability to determine if Alice is transmitting. In particular, if the

jammer-to-Willie channel is faded and Willie’s jammer transmits Gaussian noise, then

exactly the same interference model as derived for the constructions of Sections 2.3.2

and 2.3.4 applies. This enables covert communication from Alice to Bob in precisely

the same manner as in the case of a “friendly” jammer. Note that this assumes that

such a jammer generates random Gaussian noise; if that jammer instead generates a

noise-like signal that is decodable by Willie (say, using a Gaussian codebook shared

by the jammer and Willie), then Willie can conceivably decode the jammer’s signal

and subtract it from his received signal, subject only to the standard challenges of

successive interference cancellation in wireless communication environments.
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CHAPTER 3

COVERT COMMUNICATION IN A DYNAMIC
ENVIRONMENT

3.1 Introduction

The block fading scenario described in Chapter 2 assumes that Alice, Bob, Willie

and the jammer are stationary, but are in a dynamic environment that causes a finite

number of variations over the duration of a codeword. For example, in a dynamic

urban environment, there are many people, vehicles, buildings and other objects which

contribute to a noisy wireless environment.

The block fading model scenario described in Chapter 2 borrowed from standard

models in the communications literature without a careful consideration of how these

dynamics might fit various covert communication environments of interest. Here,

motivated by the wide range of possible environments of interest, we take a more

general look at how the rate of covert communications depends on the dynamics of

the environment that Willie observes. In the dynamic model, the jammer does not

vary his power and there is no variation in the path loss between transmitter-receiver

pairs. The variations any receiver observes is due to the movement of additional

nodes or objects in the environment.

In particular, the dynamic model considered in this chapter is based on the sce-

nario shown in Figure 3.1. Assume that there are additional nodes or objects in the

environment that move; however, Alice, Bob, Willie and the jammer are stationary.

These additional nodes can either represent individual objects or users with no de-

sire to assist Alice or Willie. Therefore, the fading variations on the Alice-to-Willie
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channel and the fading variations on the jammer-to-Willie channel are dependent on

the movement of the additional nodes in the environment. Define n as the codeword

length and f(n) as the number of fading variations that occur over the duration of a

codeword.

Figure 3.1. Dynamic scenario where Alice, Bob, Willie and the jammer are sta-
tionary. The red dots represent additional objects in the environment that move and
cause fading variations at Bob and Willie’s receivers.

Depending on the nodes’ rate of movement, we are able to make some conclusions

about Alice’s ability to communicate reliably to Bob while remaining covert from

Willie based on prior covert communications research. For example, if f(n) = n,

prior work by Bash et al. in [12] suggests a conjecture as to Alice’s ability to maintain

reliable covert communication to Bob without risking detection by Willie. In partic-

ular, if new fading coefficients cause variations in every symbol slot, then potentially,

variations in each symbol slot could be averaged out to form an accurate estimate

of the null hypothesis statistics, and we expect to be able to achieve O(
√
n) bits of

covert transmission in n channel uses (and no more). Alice’s covert communication

capabilities are also known when f(n) is finite. Chapter 2 showed that Alice can

achieve O(n) covert bits in n channel uses in this case.

There is also the extreme case when the number of variations are so small that

f(n) < 1. In this scenario, the movement of the additional nodes causes very little
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variation over multiple codeword lengths. For example, assume Willie observes L

time slots each with codword length n and that Alice may or may not transmit

in a single time slot. The fading variation is so slow that Willie observes the same

fading coefficient across multiple time slots. This scenario resembles the results shown

by Goeckel et al. in [23]. Willie may not know in which time slot Alice transmits;

however, he can estimate the channel by using his observations over all T (n) time

slots. This result proves that Alice can transmit only O(
√
n) bits in n channel uses

if she desires covert and reliable communication.

A visual representation of Alice’s covert rate for f(n) < 1, finite f(n) and f(n) = n

is shown in Figure 3.2. It is not known what Alice’s covert rate is when f(n) is not

finite and scales with n. This chapter investigates this to determine the covert com-

munication capabilities and considers situations in which f(n) lies in the unresearched

region by considering dynamic environments.

Figure 3.2. Alice’s covert communication capabilities based on the number of varia-
tions due to fading, f(n), per codeword length n. † was a conjecture based on results
in [12] and was not proven prior to work presented in this dissertation.

The main contribution in this chapter is the derivation of the converse. If Alice

transmits with power ω(1/
√
f(n)) then Willie can detect her communications with

high probability as n→∞ where ω(·) represents little omega notation.
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3.2 System Model

Consider Alice (“a”) would like to communicate reliably to Bob (“b”) without

Willie Warden (“w”) detecting her communications. A jammer (“j”) is present in the

environment and assume that Alice, Bob, Willie and the jammer are stationary. Let

da,w and da,b denote the distance from Alice to Willie and Alice to Bob respectively.

Similarly, let dj,w and dj,b denote the distance from the jammer to Willie and Bob

respectively. There are NU additional users in the environment that do not transmit.

However, the additional nodes move in such a way that their movement impacts any

fading channels from Alice-to-Willie and Alice-to-Bob as well as any fading channels

from the jammer-to-Bob and jammer-to-Willie. Note that although Alice, Bob, Willie

and the jammer are stationary, the results in this work extend if any of them are

moving. They are assumed stationary to simplify notation. There are limits to the

distances from Alice to Willie and from the jammer to Willie. The jammer cannot

be too far away, otherwise the range of uncertainty at Willie’s receiver is reduced.

Alice cannot be too close to Willie, otherwise the Alice’s power that Willie observes

may be much larger than the range of uncertainty that Willie observes due to the

jammer. In such cases, Alice is limited to the SRL. Therefore, when Alice is too close

to Willie, the impact of the jammer on the model is negligible.

If Alice chooses to transmit, she first maps her message to a Gaussian codeword

f = [f1, f2, . . . , fn] such that E[|fk|2] = Pmax. As shown in Figure 3.3, Alice then

transmits her codeword in slot t = 0 which corresponds to the symbol slots k =

1, 2, . . . , n. The jammer transmits a complex signal {gt}T/2−1
−T/2 in the time slots where

gt = [gtn+1, gtn+2, . . . , gtn+n] is the jammer’s signal in the tth time slot with the power

constraint E[|gk|2] = Pmax.

The jammer-to-Willie channel is a fading channel and assume the Alice-to-Willie

channel is an AWGN channel as a pessimistic case. The jammer’s signal at Willie

fades in and out, however, Willie maintains a constant observation of Alice’s signal
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Figure 3.3. Dynamic slot model diagram where each block contains n symbol slots
and f(n) fading variations in each time slot. x refers to either Alice or the jammer
and y is either Willie or Bob.

if she chooses to transmit. This approach is similar to the modeling employed in

Section 2.3.2. The additional nodes in the environment do not transmit, but move in

such a way that the fading coefficients on the jammer-to-Willie channel vary. Instead

of specifying the effect of each individual node on the power Willie observes from

the jammer, assume the collective effect of all the nodes generates a new fading

coefficient every n/f(n) symbol slots on the jammer-to-Willie channel as shown in

Figure 3.4. Modeling new fading coefficients every n/f(n) symbol slots may at first

glance appear similar to the M -Block fading model in Chapter 2.3.2 and Chapter

2.3.4. However, this dynamic scenario models the fading variations as a function

of n which invalidates portions of the proof used to prove that positive rate covert

communication is achievable in Chapter 2. Portions of the proof in Chapter 2 relied

on the fact that the number of fading variations was finite whereas that is not the

case when f(n) is a function of n.

When Alice does not transmit, Willie observes:

H0 : ẑ mn
f(n)

+i = h(j,w)
m g mn

f(n)
+i +N

(w)
mn
f(n)

+i, (3.1)
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Figure 3.4. Dynamic slot model diagram of a single time slot where each mth block
contains n/f(n) symbol slots.

where h
(j,w)
m is the fading coefficient between the jammer and Willie in the mth block

and N
(w)
k are independent and identically distributed zero mean Gaussian complex

random variables with variance E[|N (w)
k |2] = σ2

w.

If Alice decides to transmit, she first maps her message to the symbols f =

{f1, f2, . . . , fn} using a Gaussian codebook and transmits fk in each kth symbol slot

with the power constraint E[|fk|2] = Pf . Although the channel between the jammer

and Willie is a fading channel, this work assumes for now that the channel between

Alice and Willie is AWGN. Therefore, Willie’s observation when Alice transmits is:

H1 : ẑ mn
f(n)

+i = f mn
f(n)

+i + h
(j,w)
n

f(n)
g mn
f(n)

+i +N
(w)
mn
f(n)

+i. (3.2)

Define Z as Willie’s test result:

Z =
n∑
k=1

|ẑk|2. (3.3)

Willie then compares his observation Z to some threshold Γn to detect if Alice

transmitted:

Z
H1

≷
H0

Γn (3.4)
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where Γn is Willie’s threshold which depends on n. To generalize Willie’s test, Willie

normalizes his observation by n:

Z

n

H1

≷
H0

τn (3.5)

where τn is the threshold used to model the asymptotic behavior of Willie’s test as

n→∞.

3.3 Converse Proof

Define S = Z/n as Willie’s measurement used in his test.

Theorem 4. Under assumptions of the channel model and the construction given

in Section 3.2, then as n → ∞, if Alice transmits with power ω(1/
√
f(n)), either

Willie detects her with high probability or Bob cannot decode her messages with low

probability of error.

The expected value of Willie’s observation Z when Alice does not transmit is:

E[Z|H0] =
n∑
k=1

E[|ẑk|2], (3.6)

=
n∑
k=1

E
[(
hkgk +N

(w)
k

)(
hkgk +N

(w)
k

)∗]
, (3.7)

=
n∑
k=1

E[|hk|2]E[|gk|2] + E[|N (w)
k |

2], (3.8)

= n(Pj + σ2
w) (3.9)

where (3.9) follows because E[|hk|2] = 1 and E[|gk|2] = Pj. To compute the variance

of Z when Alice does not transmit, the term E[Z2|H0] is first expanded:
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E[Z2|H0] =
n∑
k=1

n∑
l=1

E
[
(|hk|2|gk|2 + hkgkN

∗
k + h∗kg

∗
kNk + |Nk|2)

× (|hl|2|gl|2 + hlglN
∗
l + h∗l g

∗
lNl + |Nl|2)

]
, (3.10)

=
n∑
k=1

n∑
l=1

E[|hk|2|hl|2|gk|2|gl|2] + E[|hk|2]E[|gk|2]E[|Nl|2]

+ E[|Nk|2]E[|hl|2]E[|gl|2] + E[h∗khl]E[g∗kgl]E[NkN
∗
l ]

+ E[hkh
∗
l ]E[gkg

∗
l ]E[N∗kNl] + E[|Nk|2]E[|Nl|2]. (3.11)

E[Z2|H0] is simplified further by analyzing the individual terms of (3.11) separately.

The first term of (3.11) is simplified by considering the different possible cross-

products when: 1) k = l; 2) the symbols in the same fading block are cross product

terms
(
l ∈ [ kn

f(n)
, kn
f(n)

+ n
f(n)
− 1] and l 6= k

)
; and 3) when symbols that are not in the

same fading block are cross products of each other
(
l /∈ [ kn

f(n)
, kn
f(n)

+ n
f(n)
− 1]

)
:

n∑
k=1

n∑
l=1

E[|hk|2|hl|2|gk|2|gl|2] =
n∑
k=1

(∑
l=k

E[|hk|4]E[|gk|4]

+
∑

l∈[ kn
f(n)

, kn
f(n)

+ n
f(n)
−1],l 6=k

E[|hk|4]E[|gk|2]E[|gl|2]

+
∑

l /∈[ kn
f(n)

, kn
f(n)

+ n
f(n)
−1]

E[|hk|2]E[|hl|2]E[|gk|2]E[|gl|2]

)
,

(3.12)

= 4nP 2
j + 2P 2

j f(n)

(
n

f(n)
− 1

)2

+ nP 2
j

(
n− n

f(n)

)
, (3.13)

= 4nP 2
j +

2n2P 2
j

f(n)
+ 2f(n)P 2

j − 2nP 2
j

+ n2P 2
j −

n2

f(n)
P 2

j , (3.14)

= 2nP 2
j +

n2P 2
j

f(n)
+ 2f(n)P 2

j + n2P 2
j . (3.15)
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Equation (3.12) simplifies since E[|hk|4] = 2, E[|gk|4] = 2P 2
j , and E[|gk|2|gl|2] = P 2

j

for k 6= j. Therefore, the variance of Willie’s test result when Alice does not transmit

is:

Var(Z|H0) = E[Z2|H0]− (E[Z|H0])2 , (3.16)

= 2n2Pjσ
2
w + 2nPjσ

2
w + 2nσ2

w + n2σ4
w − nσ4

w + 2nP 2
j +

n2P 2
j

f(n)

+ 2f(n)P 2
j + n2P 2

j − n2P 2
j − n2σ4

w − 2n2Pjσ
2
w, (3.17)

= 2nPjσ
2
w + 2nσ2

w − nσ4
w + 2nP 2

j + 2P 2
j f(n) +

n2P 2
j

f(n)
. (3.18)

The second and third terms of (3.11) do not have cross-product terms, hence,

these two terms simplify as:

n∑
k=1

n∑
l=1

E[|hk|2]E[|gk|2]E[|Nl|2] +
n∑
k=1

n∑
l=1

E[|Nk|2]E[|hl|2]E[|gl|2] = 2n2Pjσ
2
w. (3.19)

The fourth and fifth terms of (3.11) are non-zero when k = l and so these terms are

written as:

n∑
i=k

n∑
l=1

E[h∗khl]E[g∗kgl]E[NkN
∗
l ] +

n∑
k=1

n∑
l=1

E[hkh
∗
l ]E[gkg

∗
l ]E[N∗kNl] = 2nPjσ

2
w. (3.20)

The sixth term of (3.11) is expanded:

n∑
k=1

n∑
l=1

E[|Nk|2]E[|Nl|2] =
n∑
k=1

(
E[|Nk|4] +

n∑
l 6=k

E[|Nk|2]E[|Nl|2]

)
, (3.21)

= n(2σ2
w + (n− 1)σ4

w), (3.22)

= 2nσ2
w + n2σ4

w − nσ4
w. (3.23)
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After normalizing Willie’s power measurement, the expected value of his normal-

ized measurement when Alice does not transmit is:

E[S|H0] = Pj + σ2
w (3.24)

and the variance of S is:

Var[S|H0] =
1

n

[
2Pjσ

2
w + 2σ2

w − σ4
w + 2P 2

j

]
+

2P 2
j f(n)

n2
+

P 2
j

f(n)
. (3.25)

Implementing analogous steps (shown in Appendix E), the expected value of Willie’s

normalized measurement is:

E[S|H1] = Pj + σ2
w + Pf (3.26)

and the variance of S when Alice transmits is:

Var[S|H1] =
1

n

[
2Pjσ

2
w + 2σ2

w − σ4
w + 2P 2

j + 2PjPf + 2Pfσ
2
w + 2Pf − P 2

f

]
+

P 2
j

f(n)
+

2f(n)P 2
j

n2
. (3.27)

Now, consider the case when f(n) < n and assume that Willie sets his threshold

such that he chooses the null hypothesis for any observation less than σ2
w+t+Pj. Willie

then chooses the alternative hypothesis for any observation greater than σ2
w + t+ Pj.

Therefore, when Alice does not transmit, Willie’s probability of false alarm is defined

as:

PFA = P0(S > σ2
w + Pj + t) (3.28)
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where P0(·) refers to the pdf of Willie’s measurement S when Alice does not transmit.

Employing Chebyshev’s inequality [46, Equation 3.32], the probability of false alarm

is bounded:

PFA ≤ P0(|S − σ2
w − Pj| > t), (3.29)

≤ 1

t2

[
2Pjσ

2
w + 2σ2

w − σ4
w + 2P 2

j

n
+

2P 2
j f(n)

n2
+

P 2
j

f(n)

]
, (3.30)

≤
P 2

j

f(n)t2
. (3.31)

Equation (3.31) follows because
P 2

j

f(n)
is the dominant term in (3.30) since all other

terms go to zero as n → ∞ for f(n) < n. Furthermore, assume Willie defines

t = d/
√
f(n), for some constant d.

Willie misses Alice’s communication if his observation, S, is less than σ2
w + Pj + t

when Alice transmits. Thus, Willie’s probability of missed detection is:

PMD = P1(S < σ2
w + Pj + t), (3.32)

≤ P1(|S − σ2
w − Pj − Pf | > Pf − t), (3.33)

≤ Var[S|H1]

(Pf − t)2
, (3.34)

≤
P 2

j

(Pf

√
f(n)− d)2

(3.35)

where P1(·) in (3.32) represents Willie’s distribution when Alice transmits and (3.35)

follows because
P 2

j

f(n)
is the dominant term in Var[S|H1]. The covert criteria requires

that Willie’s probability of error satisfies the constraint PFA + PMD ≥ 1/2− ε where

ε is small. However, if Alice transmits with power that is ω(1/
√
f(n)), then PFA +

PMD goes to zero as n → ∞ and the covert criteria is not satisfied. As a result,

Alice’s throughput cannot transmit ω(n/
√
f(n)) covert bits reliably in n channel

uses, otherwise, she risks Willie detecting her with low probability of error.
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3.4 Summary

This chapter builds upon the Alice/Bob/Willie/Jammer scenario presented in

Chapter 2 by considering a dynamic fading model. In Chapter 2, Alice’s ability

to communicate covertly and reliably in a fading channel environment is analyzed

for single block fading channels and the finite M -block fading channel model. This

chapter generalizes the fading and considers that the fading on the channel between

the jammer and Willie is a function of the total codeword length. Results prove that

if Alice’s transmit power is ω(1/
√
f(n)), then Willie’s probability of error converges

to zero as n→∞ and f(n)→ n.
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CHAPTER 4

COVERT COMMUNICATION ON THE
CONTINUOUS-TIME MODEL: CYCLOSTATIONARY

DETECTORS

4.1 Introduction

Traditional digital communication analyses often model the signal at the receiver

with an equivalent discrete-time model. The discrete-time model is equivalent in the

sense that analyses and receiver operations based on it produce the same results as

those in the true continuous-time model. For example, consider the scenario shown in

Figure 4.1 where Alice communicates to Bob and Willie attempts to detect if Alice is

transmitting. Both the Alice-to-Willie and Alice-to-Bob channels are additive white

Gaussian noise (AWGN) channels.

Figure 4.1. Alice, Bob and Warden Willie model under AWGN channel conditions.
da,b and da,w represent the distance from Alice to Bob and Alice to Willie respectively.

Assume that Alice transmits to Bob as shown in Figure 4.2, where fk represents

the kth symbol that Alice transmits. Alice employs pulse shaping with the pulse

shape p(t). Denote N (b)(t) as the AWGN on the channel between Alice and Bob,

and define y(t) as Bob’s observation at his receiver which he then passes through a
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matched filter. Bob then samples the filtered signal ymf(t) at the symbol rate, Tb,

and according to the timing offset τa. Bob then estimates f̂1, f̂2, . . . , f̂n as the original

message sent by Alice.

Figure 4.2. Alice to Bob communication diagram when Alice transmits BPSK
symbols.

For data decoding, Bob can model the end-to-end process shown in Figure 4.2

as an equivalent discrete-time model as long as his sampling of ymf(t) occurs at the

proper time instances. In particular, let y[n] = y(nTb) represent Bob’s observation in

the equivalent discrete-time model corresponding to the nth sample and assuming he

knows the timing offset τa:

y[n] = fn +W [n] (4.1)

where W [n] represents the noise from the channel and any system processes that

generate noise in the nth sample. We assume that Bob is capable of ascertaining τa

by sharing knowledge with Alice about their timing offsets along with their shared

codebook. Since Alice’s goal is to transmit symbols to Bob, the equivalent discrete-

time model focuses on Bob’s ability to estimate fn and does not model processes such

as pulse shaping in the model. Furthermore, the equivalent discrete-time model in

(4.1) can be used to exactly model the error rates between communicating parties [47,

Chapter. 10.1.2].

Early covert communication research presented by Bash et al. in [12] and subse-

quent work modeled both the Alice-to-Bob and Alice-to-Willie observations using a
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discrete-time model. Although there was no reference to the underlying continuous-

time model, the clear implication is that the discrete-time model captures the salient

characteristics of the underlying continuous-time model. Hence, the equivalent discrete-

time model is satisfactory for analyzing the communications between Alice and Bob,

but the equivalent discrete-time model for Willie’s channel is not designed to consider

all detectors that are available to Willie. Therefore, Willie’s model should allow for

the exploitation of any information available (or not) at his receiver which can assist

with detecting Alice’s communications.

The majority of covert communications research in the background Section 1.2

of this work assumes that Willie employs a power detector. Additionally, work pre-

sented in Chapter 2 of this dissertation demonstrates that a power detector is often

optimal for the equivalent discrete-time model. However, modeling Willie’s observa-

tions in the equivalent discrete-time model does not allow for the consideration of

various assumptions and of all potential detectors available to Willie. To consider a

broader range of detectors, a continuous-time model of Willie’s observations should

be implemented.

Thus, this chapter revisits the original covert communication model presented

in [12]. The work in Chapter 2 proves that a power detector is optimal for the

discrete-time model under AWGN and single block fading channel conditions. How-

ever, if Alice’s signal contains periodic features such as the example shown in Figure

4.2, cyclostationary detectors can outperform standard power detectors [25]. Since a

power detector is not always optimal depending on the type of periodic signal Alice

transmits, this leads to the question whether the classical “equivalent discrete-time

model” is in fact an equivalent discrete-time model for covert communications. This

chapter investigates this question.

In particular, human-generated signals do not resemble the random noise that oc-

curs in nature, as generated signals often have periodic features. Therefore, if Willie’s
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noise at this receiver resembles Gaussian noise (as in the system models of Chapter

2 and [12]), then any features in Alice’s transmission that do not resemble Gaus-

sian noise provides Willie with additional information to help detect Alice’s signal.

For example, consider the scenario presented in Figure 4.2 where Alice transmits her

message with pulse shaping.

The first scenario considered here is the Alice/Bob/Willie scenario and assumes

that Alice transmits a standard periodic signal. Periodic signals generate cyclic fre-

quencies which are defined as the frequency of the periodic feature of interest. Cy-

clostationary detectors (CSDs) are designed to exploit the periodicity of a signal by

attempting to measure the power observed at cyclic frequencies associated with the

signal of interest. This chapter compares Alice’s ability to communicate covertly if

Willie employs a CSD versus a power detector assuming Alice transmits a binary

phase shift keying (BPSK) signal. Before comparing the two detectors, a simple mo-

tivating example for a CSD is presented in Section 4.2 and further background is

provided on Gardner’s method used to construct CSDs. A CSD designed to detect

baseband BPSK signals and the detector’s statistics are discussed in section 4.3. The

Kullback−Leibler (KL) distance between the two hypotheses at the output of a cyclic

detector is then compared to the KL distance between the two hypotheses at the out-

put of a power detector. Results show that the CSD presented does outperform a

power detector of the full continuous-time model.

The main contributions in this chapter are:

1. The background of cyclostationary detectors is presented.

2. A CSD is proposed based on the continuous-time model instead of the equivalent

discrete-time model approximation, and a novel performance analysis of the

CSD is presented.
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3. Simulations and proofs are derived to demonstrate how well the cyclostationary

detector outperforms the power detector in the continuous-time model, suggest-

ing the discrete-time model must be employed cautiously in covert communica-

tions.

4.2 Constructing Cyclostationary Detectors

Gardner in [24] and [25] conducted extensive research on CSDs and demonstrated

that for very low signal-to-noise ratios that CSDs outperform power detectors. Gard-

ner also derived various CSDs based on the cyclostationary properties of potential

signals of interest (e.g. BPSK, QAM, length of pulse, etc.) in [26] and [27]. Since

Gardner’s early work, additional CSD variations have been presented. For example,

Zeng et al. in [48] derived CSDs that require less computational processing power

while still outperforming power detectors. However, the basic design process of a

CSD follows similar procedures to that of Gardner.

Let z(t) represent the observed signal at Willie. Willie’s goal is to determine if

he is observing noise or the sum of noise and a signal with periodic behavior at his

receiver. If Willie wants to use a CSD, he first makes a certain computation on z(t),

and we let v(t) represent the result of this computation. If z(t) is cyclostationary, then

v(t) also exhibits cyclic behavior. However, if z(t) does not contain a periodic signal,

then v(t) does not exhibit any cyclic features. Therefore, once v(t) is computed, the

power at the cyclic frequencies of interest in v(t) are measured and a threshold test

is used to determine if a cyclic signal corresponding to the frequencies of interest

(e.g. the baud rate of Alice) are present.
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4.2.1 The Intuition Behind Cyclostationary Detectors: A Sinusoid Ex-

ample

Before presenting the mathematical basis of Gardner’s work, this sub-section pro-

vides a simple motivating example to demonstrate how CSDs may outperform power

detectors when the signal-of-interest contains periodic features.

Consider the Alice, Bob, Willie scenario shown in Figure 4.1. Assume Willie

observes the period of time [0, T ] and his goal is to determine if Alice transmitted

during his observation. Let N (w)(t) represent Willie’s noise which is a zero-mean

Gaussian random process with power spectral density SN(w)(f) = σ2
w. If Alice chooses

to transmit, Alice transmits x(t) = cos(2πFct) during the time period T , where Fc

is the carrier frequency. Let p represent the probability of Alice transmitting and

assume p = 1/2.

Define z(t) as Willie’s observation:

z(t) =


N (w)(t), Alice does not transmit

x(t) +N (w)(t), Alice transmits.

(4.2)

A typical power detector measures the power observed in z(t) and compares the

measurement to some threshold γ to determine if Alice transmitted:

1

T

∫ T

0

z2(t)dt
H1

≷
H0

γ. (4.3)

The CSD examples that are presented are simulated in Matlab. Therefore, an over-

sampled discrete representation is used in the following steps instead of continuous-

time notation. Denote z[n] = z(nTs) as the sampled version of z(t) where Ts is

the sampling period. Let RZ(n, τ) represent the autocorrelation function (ACF) of

Willie’s observation at sample n and with lag τ :
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RZ(n, τ) = E
[
z[n]z[n− τ ]

]
. (4.4)

For simplicity in this subsection, the ACF is only computed for τ = 0. Denote

RZ|H0(n, 0) as the (time-varying) zero-lag ACF of Willie’s observation when Alice

does not transmit and RZ|H1(n, 0) as the (time-varying) zero-lag ACF when Alice

transmits.

Then, define FZ|H0 as the Fourier transform of RZ(n, 0) when Alice does not

transmit

FZ|H0 = F{RZ|H0(n, 0)} (4.5)

where F represents the discrete Fourier transform (DFT) over the cyclic frequency

range α = {−N/2,−N/2 + 1, . . . , N/2 − 2, N/2 − 1}, and N is the number of sam-

ples observed. Each frequency in FZ|H0 is called a cyclic frequency because active

frequencies in FZ|H0 are related to the cyclic features which occur in z[n].

Simulations were generated to provide a visual representation of the mathematical

expressions described in this section. The simulations represent Willie’s observations

due to Alice transmitting a cosine signal at frequency Fc = 2.5 MHz with an oversam-

pling rate of 100 MHz. The signal-to-noise ratio (SNR) of Alice’s signal at Willie’s

receiver is 0 dB. Therefore, both Willie’s noise and the power of Alice’s transmitted

signal are σ2
w = 0.5. Then FZ|H0 is generated in Matlab using 1024 discrete samples

and the length of the DFT is also set to 1024. |FZ|H0| is shown in Figure 4.3 which has

a peak when the cyclic frequency is zero and is small for all other frequency values.

The behavior of FZ|H0 is expected because Willie only observes real Gaussian noise

at his receiver when Alice does not transmit. Note that in Figure 4.3 results, the lag

is fixed and the DFT is computed over the result of the ACF when there is zero lag.
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Figure 4.3. Cyclostatinary detector null hypothesis DFT observations. DFT of
RZ|H0(n, 0), |FZ|H0|, when Alice does not transmit.

Similarly, define FZ|H1 as the Fourier transform of RZ|H1(n, 0) when Alice trans-

mits. |FZ|H1| is shown in Figure 4.4 and there are peaks at frequencies that correspond

to −2Fc = −5MHz and 2Fc = 5MHz in addition to the peak observed at α = 0.

A power detector is equivalent to employing Willie’s observations at α = 0. A

threshold detector chooses a threshold to minimize the false alarm rate and maximize

the rate of correct detection based on observations in FZ|H0(α = 0) and FZ|H1(α = 0).

Similarly, a CSD would observe the power at either −2Fc or 2Fc and determine

a threshold to minimize the rate of error for the CSD detector. The ratio of the

powers observed in FZ|H1(α = 0) and FZ|H0(α = 0) is 3.11 dB
(

10 log10

(
|FH1

(0)|
|FH0

(0)|

))
.

However, the ratio of the powers observed at −2Fc is 6.92 dB
(

10 log10

(
|FH1

(−2Fc)|
|FH0

(−2Fc)|

))
.

Therefore, if Alice transmits a cyclostationary signal with small power, it is easier for

her to “hide in the noise” of a power detector than for her to hide her cyclic features

when Willie employs a CSD depending on her original transmit power.

In this section, a power detector is compared to a simple CSD when Alice trans-

mits a sinusoid. The CSD presented only considers the spectral content in the auto-
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Figure 4.4. Cyclostatinary detector alternative hypothesis DFT observations. DFT
of RZ|H1(n, 0), |FZ|H1|, when Alice transmits.

correlation function of z[n] when there is no lag. However, considering the average

spectral density function of the autocorrelation function with varying delay values

τ (i.e. RZ(n, τ)) can provide a more thorough analysis. The following Section 4.2.2

presents the mathematical framework for CSDs in more detail.

4.2.2 Classical Cyclostationary Detectors

This subsection provides a brief description of the mathematical basis used to

construct CSDs. Section 4.2.1 only provided a high-level perspective of CSDs, whereas

this subsection presents the mathematical framework based on William Gardner’s

work in detail [24].

Define RZ(t+ τ/2, t− τ/2) as the ACF of an observation z(t) with lag τ

RZ(t+ τ/2, t− τ/2) = E[z(t+ τ/2)z(t− τ/2)]. (4.6)

As shown in Section 4.2.1, if z(t) is cyclic then the Fourier transform of the ACF is

non-zero for cyclic frequencies other than α = 0.
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Since RZ(·, ·) is periodic in t, RZ(·, ·) can be represented as a Fourier series

RZ(t+ τ/2, t− τ/2) =
∑
{α}

Rα
Z(τ)ei2παt (4.7)

where {α} represents the set of cyclic frequencies that are active in RZ(t+τ/2, t−τ/2)

and Rα
Z(τ) is the Fourier coefficient of cyclic frequency α defined as:

Rα
z (τ) = lim

∆→∞

1

∆

∫ ∆/2

−∆/2

z(t+ τ/2)z(t− τ/2)e−i2παtdt. (4.8)

Rα
z (τ) is also called the cyclic autocorrelation function at cyclic frequency α. The

cyclic frequencies which occur in Rz(t + τ/2, t − τ/2) are the result of any periodic

behavior in z(t) such as a carrier frequency as shown in Section 4.2.1. Cyclic frequen-

cies are also generated by the symbol rate and other instances in which periodicity

may be present.

The next step in the design of a CSD calculates the power observed at the Fourier

coefficient corresponding to the cyclic frequency α for various τ values. Define Sαz (f)

as the average cyclic autocorrelation function:

Sαz (f) =

∫ ∞
−∞

Rα
z (τ)e−i2πfτdτ. (4.9)

Observing (4.9), Sαz (f) is the power spectral density of Rα
z which is calculated by

averaging Rα
z over all potential values of τ . In the cyclostationary literature, Sαz (f) is

called the spectral correlation function or the cyclic spectral density function. Equa-

tion (4.9) is a generalization of the high level example presented in Section 4.2.1. The

main differences between the high level example and (4.9) is that Section 4.2.1 only

considers when τ = 0.

Depending on the cyclic nature of the signal z(t), there are optimal (α, f) pairs to

employ when constructing cyclostationary detectors [24–27]. For example, if z(t) is
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a BPSK signal transmitted on a carrier frequency Fc, the peaks of Sαz (f) associated

with the cyclostationary behavior of z(t) occur at ( 1
Tb
, Fc), (2Fc, 0), (2Fc± k

Tb
, 0), (2Fc±

k
2Tb
, 0) where Tb is the symbol period of the pulse and k ∈ Z.

4.3 Covert Rate of a BPSK Cyclostationary Detector

This section presents a CSD designed to detect Alice’s communication when she

transmits a baseband BPSK signal. The CSD presented in this section differs from

the BPSK detector described in Gardner [24, Chapter 3.6]. Gardner’s BPSK detector

assumes that a carrier signal is present whereas this work assumes Alice transmits

at baseband. Once the CSD statistics are derived, the KL distance between the

statistics when Alice does and does not transmit is derived as well. The results of the

KL distance of the CSD are then compared to the KL distance of a power detector.

Results show that the KL distance of the CSD is larger than the KL distance of a

power detector. Monte Carlo simulations are included to support the derivation of

the CSD statistics by generating Receiver Operating Characteristic (ROC) curves.

4.3.1 System Model

Consider the Alice, Bob, Willie model where Alice would like to communicate

to Bob without Willie detecting her communications as shown in Figure 4.1. The

parameters da,w and da,b represent the distances from Alice to Willie and from Alice

to Bob respectively.

Willie’s goal is to detect if Alice communicates over the time period t ∈ [0, T ]. If

Alice does not transmit, Willie observes real Gaussian noise N (w)(t) at his receiver

with power spectral density σ2
w. If Alice transmits, she first encodes her message

into BPSK symbols f = [f1, f2, . . . , fM ] where M is the number of symbols and

E[|fk|2] = Pmax. Employing f , Alice transmits x(t) which is a pulse shaped BPSK

continuous-time signal:
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x(t) =
∞∑

k=−∞

fkp(t− kTb) (4.10)

where p(t) is the square root raised cosine pulse and Tb is the symbol rate. Note that

fk is only non-zero for k ∈ [1, . . . ,M ] and assume that Alice transmits such that her

entire message is transmitted during Willie’s observation over [0, T ].

Let zpre(t) represent Willie’s observation:

zpre(t) =


x(t) +N (w)(t), Alice transmits

N (w)(t), else,

(4.11)

for t ∈ [0, T ]. Analogously, let y(t) represent Bob’s observation:

y(t) =


x(t) +N (b)(t), Alice transmits

N (b)(t), else,

(4.12)

where N (b)(t) is the noise Bob observes his receiver which is a zero-mean Gaussian

process with power spectral density σ2
b.

4.3.2 Deriving the CSD Statistics

Assume that Willie has knowledge of his receiver noise statistics as well as prior

knowledge of Alice’s transmission scheme including the symbol period Tb; however,

he naturally does not know Alice’s symbol timing and thus cannot employ a matched

filter sampled at the proper time instances. However, Willie can detect if there is

power observed at cyclic frequency 1/Tb by employing a CSD. Thus, a cyclic detector

designed to detect cyclic frequencies at α = 1/Tb is presented in this section. The

BPSK detector presented by Gardner is not used in this work because we assume a

baseband signal. Willie’s CSD presented in this section is also simpler than Gard-

ner’s proposed detector; however, the proposed detector follows a strategy similar to
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Gardner’s BPSK detector. An outline of the detector employed in this work is shown

in Figure 4.5.

Figure 4.5. Willie’s Cyclostationary Detector of baseband BPSK signals.

Willie observes the signal zpre(t) at his receiver which is his pre-filtered observation.

Willie then passes zpre(t) through a wideband low-pass filter (LPF) with bandwidth W

and W is chosen such that W >> α = 1/Tb. The bandwidth is limited to reduce the

noise entering the quadratic non-linearity, the importance of which is demonstrated

in the noise analysis below. Willie then squares his filtered observation z(t):

v(t) = z2(t). (4.13)

The frequency representation of v(t) is then computed using the cosine transform:

F (α) =

∫ T

0

v(t) cos(2παt)dt =

∫ T

0

z2(t) cos(2παt)dt. (4.14)

A cosine transform represented by F in Figure 4.5 is employed since Willie’s obser-

vations are strictly real. Therefore, depending on whether Alice transmits or not, the

frequency component F (α) is:

F (α) =


∫ T

0
(x(t) +N(t))2 cos(2παt)dt, Alice transmits∫ T

0
N2(t) cos(2παt)dt, Alice does not transmit.

(4.15)

where the superscript representing Willie’s noise is dropped for convenience from here

forward. Willie then measures the magnitude observed at cyclic frequency F (α =

1/Tb) to decide if Alice transmitted or not.
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We now conduct a detailed analysis leveraging the wideband nature of the noise

N (w)(t) relative to the bandwidth 1/T at the output of the frequency detector. First

consider the H0 case when Alice does not transmit. Under H0, assume F (α) is a real

Gaussian random variable. The mean of F (α) is:

E[F (α)|H0] =

∫ T

0

E[N2(t)] cos(2παt)dt, (4.16)

= c

∫ T

0

cos(2παt)dt, (4.17)

≈ 0 (4.18)

from some constant c, and (4.18) is true because
∫ T

0
cos(2παt)dt is small relative to

the variance for large T . Note that, if N (w)(t) were truly white noise, c = ∞, but

in reality N (w)(t) is very wideband relative to 1/T . The variance of F (α|H0) when

Alice does not transmit is:

Var[F (α)|H0] = E[(F (α)|H0)2], (4.19)

= E

[(∫ T

0

N2(t) cos(2παt)dt

)(∫ T

0

N2(s) cos(2παs)ds

)]
, (4.20)

=

∫ T

0

∫ T

0

E[N2(t)N2(s)] cos(2παt) cos(2παs) dt ds. (4.21)

The expected value of the product of four jointly Gaussian random variables is given

by:

E[N1N2N3N4] = E[N1N2]E[N3N4] + E[N1N3]E[N2N4]

+ E[N1N4]E[N2N3]− E[N1]E[N2]E[N3]E[N4]. (4.22)

Thus,

E[N2(t)N2(s)] = R2
N(0) + 2R2

N(t− s) (4.23)
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where RN(τ) is the ACF of Willie’s noise and τ is the delay term. By employing

(4.23), (4.21) is simplified:

Var[F (α)|H0] =

∫ T

0

∫ T

0

R2
N(0) cos(2παt) cos(2παs) dt ds

+ 2

∫ T

0

∫ T

0

R2
N(t− s) cos(2παt) cos(2παs) dt ds, (4.24)

= R2
N(0)

∫ T

0

cos(2παt)dt

∫ T

0

cos(2παs)ds

+ 2

∫ T

0

∫ T

0

R2
N(t− s) cos2(2παs) dt ds, (4.25)

=

∫ T

0

∫ T

0

R2
N(s− t) dt ds

+

∫ T

0

∫ T

0

R2
N(s− t) cos(4πα(s− t+ t)) dt ds, (4.26)

=

∫ T

0

∫ T

0

R2
N(s− t) dt ds

+

∫ T

0

∫ T

0

R2
N(s− t) cos(4πα(s− t)) cos(4παt) dt ds

−
∫ T

0

∫ T

0

R2
N(s− t) sin(4πα(s− t)) sin(4παt) dt ds, (4.27)

=

∫ T

0

(∫ u

−u
R2
N(v)dv

)
du

+

∫ T

0

(∫ u

−u
R2
N(v) cos(4παv)dv

)
cos(4παu)du

−
∫ T

0

(∫ u

−u
R2
N(v) sin(4παv)dv

)
sin(4παu)du, (4.28)

= σ̃4
wT (4.29)

where the steps in (4.24)-(4.28) follow the same steps in Appendix A of [49]. The first

term in (4.25) goes to zero because
∫ T

0
cos(2παt)dt ≈ 0, (4.26) follows from the half-

angle formula trigonometric identity, (4.27) follows from the sum-difference formula

and (4.28) is simplified by the assumption that RN(τ) ≈ 0 for τ >> 1/W . The last

two terms in (4.28) go away because
∫ T

0
sin(4παu)du = 0 and

∫ T
0

cos(4παu)du = 0.
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In (4.29), σ̃2
w = 2Wσ2

w represents the noise power Willie observes after the low pass

filter with bandwidth W .

The probability density function (pdf) of F (α) when Alice does not transmit is

approximated as an AWGN random variable:

PCSD,0 , N (0, σ̃4
wT ). (4.30)

Define S = F (α)/T as the normalized observation of Willie’s power measurement

over the length of time T . The pdf of S when Alice does not transmit is defined as:

P (S|H0) , N
(

0,
σ̃4

w

T

)
. (4.31)

Similarly, when Alice transmits, F (α) is:

F (α)|H1 =

∫ T

0

(x(t) +N(t))2 cos(2παt)dt, (4.32)

=

∫ T

0

x2(t) cos(2παt)dt+

∫ T

0

N2(t) cos(2παt)dt

+ 2

∫ T

0

x(t)N(t) cos(2παt)dt. (4.33)

Equation (4.33) is then modeled as a Gaussian random variable. Define n0 as:

n0 =

∫ T

0

N2(t) cos(2παt)dt+ 2

∫ T

0

x(t)N(t) cos(2παt)dt (4.34)

which represents the last two terms in (4.33) and assume n0 follows an additive white

Gaussian noise distribution. The expected value of n0 is:

E[n0] =

∫ T

0

E[N2(t)] cos(2παt)dt+ 2

∫ T

0

x(t)E[N(t)] cos(2παt)dt, (4.35)

= RN(0)

∫ T

0

cos(2παt)dt, (4.36)

≈ 0. (4.37)
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The variance of n0 is then:

Var[n0] = E[n2
0], (4.38)

=

∫ T

0

∫ T

0

E
[
N2(t)N2(s)

]
cos(2παt) cos(2παs) dt ds

+ 4

∫ T

0

∫ T

0

x(t)x(s)E [N(t)N(s)] cos(2παt) cos(2παs) dt ds

+ 4

∫ T

0

∫ T

0

x(t)x(s)E[N2(t)N(s)] cos(2παt) cos(2παs) dt ds. (4.39)

The first term in (4.39) is equivalent to the variance under H0 (4.21). The “signal

cross noise” term in (4.39) is:

4

∫ T

0

∫ T

0

x(t)x(s)E [N(t)N(s)] cos(2παt) cos(2παs) dt ds (4.40)

= 4

∫ T

0

∫ T

0

RN(t− s)x(t)x(s) cos2(2παs) dt ds, (4.41)

= 2

∫ T

0

∫ T

0

RN(t− s)x(t)x(s) dt ds

+ 2

∫ T

0

∫ T

0

RN(t− s)x(t)x(s) cos(4παs) dt ds, (4.42)

= 2

∫ T

0

∫ T

0

RN(t− s)
n−1∑
k=0

f 2
kp(t− kTb)p(s− kTb) dt ds, (4.43)

= 2
n−1∑
k=0

f 2
k

∫ T

0

∫ T

0

RN(t− s)p(t− kTb)p(s− kTb) dt ds, (4.44)

= 2
n−1∑
k=0

f 2
k

∫ T

0

∫ T

0

p(s)p(t)RN(t− s) dt ds, (4.45)

= 2
n−1∑
k=0

f 2
k

∫ T

0

p(s)

∫ ∞
−∞

P (f)SN(f)ej2πft df dt, (4.46)

= 2Pfn×
1

n
σ̃2

w, (4.47)

= 2Pf σ̃
2
w. (4.48)

Note that (4.41) is slightly different from prior work in [49] because Alice transmits

at baseband in this work. Equation (4.42) follows from employing the half-angle
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trigonometric identity, the second term in (4.42) goes to zero based on the assumption

that
∫ T

0
cos(4παs)ds = 0. Pf represents the power observed in the symbols that Alice

transmits. The last term in (4.39) goes to zero because when t 6= s, E[N2(t)N(s)] = 0

and when t = s, E[N3(t)] = 0.

Since we assume n0 is AWGN, the distribution of F (α) under H1 is modeled as:

PCSD,1 , N (ρ, σ̃4
wT + 2σ̃2

wPf) (4.49)

where ρ =
∫ T

0
x2(t) cos(2παt)dt and we assume that Willie is capable of computing

ρ. If Willie normalizes his measurement by the length of time T , the statistics of his

observation are defined by:

P (S|H1) , N
(
ρ

T
,
σ̃4

w

T
+

2σ̃2
wPf

T 2

)
. (4.50)

A threshold detector is employed to determine if Willie’s measurement S is classified

as either the null or alternative hypothesis. Define γ as Willie’s chosen threshold.

Willie’s probability of false alarm is then defined as the probability that his observa-

tion S is greater than γ when Alice does not transmit.

PFA = P (|S| > γ|H0) , (4.51)

= P (S > γ|H0) + P (S < −γ|H0) , (4.52)

= 2P (S > γ|H0) , (4.53)

= 2

∫ ∞
γ

fS|H0(t)dt, (4.54)

= 2Q

(
γ√
σ̃4

w/T

)
, (4.55)

= erfc

(
γ√

2σ̃4
w/T

)
(4.56)
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where (4.53) follows because P (S|H0) is centered at zero. Equation (4.55) follows

from the definition of the Q-function:

Q

(
γ − µ
σ

)
= Q(z) =

∫ ∞
z

fS(t)dt (4.57)

where µ is the mean and σ is the standard deviation of any normal pdf fS(s). (4.55)

is then written in terms of the complementary error function, erfc(·), because Matlab

has a built-in erfc(·) function by employing the definition Q(z) = 1
2
erfc
(
z√
2

)
[50,

Chapter 3.3].

Similarly, the probability of true detection, PTD, for any threshold γ is:

PTD = P (|S| > γ|H1), (4.58)

= P (S < −γ|H1) + P (S > γ|H1), (4.59)

= 1−Q

 −γ − ρ√(
σ̃4

w

T
+ 2σ̃2

wPf

T 2

)
+Q

 γ − ρ√(
σ̃4

w

T
+ 2σ̃2

wPf

T 2

)
 , (4.60)

= 1− 1

2
erfc

 −γ − ρ√
2
( σ̃4

w

T
+ 2σ̃2

wPf

T 2

)
+

1

2
erfc

 γ − ρ√
2
( σ̃4

w

T
+ 2σ̃2

wPf

T 2

)
 . (4.61)

4.3.3 Simulations

Simulations were conducted in Matlab to verify that the derived statistical ap-

proximations match Monte Carlo simulations. Pseudocode which outlines the Matlab

script is presented in Appendix F. Five-hundred iterations of both the null hypothesis

and the alternative hypothesis were generated using the same noise seed to maintain

consistency. As described in the System Model of Section 4.3.1, Alice transmits BPSK

symbols with a square root raised cosine pulse with roll-off factor 0.2. Alice’s symbol

frequency is 1/Tb = 0.699 MHz. Since the simulations are generated in Matlab, the

discretized version of Willie’s observations are employed to model Willie’s detector

statistics and the oversampling rate is set to 100 MHz. Willie’s detectors observe
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4096 discrete samples. The CSD measures the power observed in F (α = 1/Tb) and

his standard power detector measures the power in the discretized version of z(t).

From [51], define S = 1
N

∑N−1
n=0 z[n]z[n] as the power detector test where z[n] is

Willie’s observation at discrete sample n and N is the total number of discrete samples

observed by Willie. S is AWGN when Alice does not transmit; thus, the statistics of

S when Alice does not transmit is:

P (S|H0) = N
(
σ̃2

w,
2σ̃4

w

N

)
(4.62)

where σ̃2
w represents the noise power Willie observes after filtering his original obser-

vation. Analogously, the statistics of Willie’s power detector when Alice transmits

is:

P (S|H1) = N
(
σ̃2

w + Pf ,
2σ̃4

w + 4Pf σ̃
2
w

N

)
. (4.63)

The CSD and the power detector results are analyzed by employing Receiver

Operating Characteristics (ROCs). ROCs demonstrate the efficiency of detectors by

plotting the probability of true detection versus the probability of false alarm [39,

Chapter 3.4]. Ineffective detectors generate results where the probability of true

detection is equal to the probability of false alarm. Figure 4.6 shows the ROC results

when Alice’s signal-to-noise ratio (SNR) at Willie’s receiver prior to the low-pass filter

is -16 dB. The simulated results of the CSD and the power detector are shown along

with the theoretical statistical performance of the detectors. As shown in Figure 4.6,

the CSD significantly outperforms the power detector. These results demonstrate the

importance of Willie designing detectors that exploit any unique features that may

occur in Alice’s transmitted signal. Note that the effective noise bandwidth must be

carefully analyzed in simulations since a low pas filter is employed.
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Figure 4.6. ROCs comparing the performance of a CSD and a power detector when
the ratio of the power in Alice’s signal to the noise power at Willie is -16 dB. The back
line with the circle marker ( • ) corresponds to the known statistical performance rate
of the power detector and the dashed orange line (−−) corresponds to the simulated
detector results of the power detector. The black line with triangle markers ( 4 )
corresponds to the simulated ROC results of the CSD and the blue line (−) represents
the derived performance rate based on the statistics of CSD derived in Section 4.3.2.

4.3.4 Kullback-Leibler Distance

The Kullback-Leibler (KL) distance of two Gaussian random variables p0 and p1

is [52, Chpt. 9.1]:

D(p0||p1) =
1

2
log |Σ1Σ−1

0 |

+
1

2
tr(Σ−1((µ0 − µ1)(µ0 − µ1)T + Σ0 − Σ1)), (4.64)

=
1

2
log

(
σ2

1

σ2
0

)
+

(µ0 − µ1)2 + σ2
0 − σ2

1

2σ2
1

, (4.65)

=
1

2
log

(
σ2

1

σ2
0

)
+

(µ0 − µ1)2 + σ2
0

2σ2
1

− 1

2
(4.66)

where tr(·) represents the trace of a matrix in (4.64). Let DPD = D(PPD,0||PPD,1)

denote the KL distance between the null and alternative statistics of a power detector

74



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of False Alarm

P
ro
b
a
b
il
it
y
o
f
D
et
ec
ti
o
n

 

 

Power − Equation
Power − Simulated
CSD − Equation
CSD − Simulated

Figure 4.7. ROCs comparing the performance of a CSD and a power detector when
the ratio of the power in Alice’s signal to the noise power at Willie is -18 dB. The back
line with the circle marker ( • ) corresponds to the known statistical performance rate
of the power detector and the dashed orange line (−−) corresponds to the simulated
detector results of the power detector. The black line with triangle markers ( 4 )
corresponds to the simulated ROC results of the CSD and the blue line (−) represents
the derived performance rate based on the statistics of CSD derived in Section 4.3.2.

for any noise power σ2
w:

DPD =
1

2
log

(
4Pfσ

2
w + 2σ4

w

2σ4
w

)
+

P 2
f + 2σ4

w/T

(8Pfσ2
w + 2σ4

w)/T
− 1

2
, (4.67)

=
1

2

[
log(2σ2

wPf + σ4
w)− log(σ4

w)
]

+
P 2

f T

8σ2
wPf + 4σ4

w

+
σ4

w

4σ2
wPf + 2σ4

w

− 1

2
. (4.68)

Analogously, let DCSD = D(PCSD,0||PCSD,1) represent the KL distance between the

null and alternative statistics when Willie employs a CSD:

DCSD =
1

2

[
log(2σ2

wPf + σ4
w)− log(σ4

w)
]

+
ρ2T

4σ2
wPf + 2σ4

w

+
σ4

w

4σ2
wPf + 2σ4

w

− 1

2
. (4.69)

Removing the common terms in the KL distance of the power detector (4.68) and

the KL distance of the CSD (4.69), the term of interest in the power detector KL
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Figure 4.8. ROCs comparing the performance of a CSD and a power detector when
the ratio of the Alice’s SNR at Willie is -20 dB. The back line with the circle marker
( • ) corresponds to the known statistical performance rate of the power detector and
the dashed orange line (−−) corresponds to the simulated detector results of the power
detector. The black line with triangle markers ( 4 ) corresponds to the simulated
ROC results of the CSD and the blue line (−) represents the derived performance
rate based on the statistics of CSD derived in Section 4.3.2.

distance is:

D̃PD(P0||P1) =
P 2

f T

8σ2
wPf + 4σ4

w

(4.70)

and the term of interest in the CSD KL distance is:

D̃CSD =
ρ2T

4σ2
wPf + 2σ4

w

. (4.71)

The ratio of D̃CSD and D̃PD is:

D̃CSD

D̃PD

=
ρ2

P 2
k

× 2(4Pkσ
2
w + 2σ4

w)

4Pkσ2
w + 2σ4

w

, (4.72)

=
2ρ2

P 2
k

. (4.73)
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4.4 Summary

The classic Alice/Bob/Willie scenario considered in [1] is revisited in this chapter

under the assumption that Alice transmits a baseband BPSK signal on a continuous-

time channel. A cyclostationary detector (CSD) at Willie is proposed to detect Al-

ice’s signal when the channels between all entities are AWGN. The CSD detector

is designed using the continuous-time model of Willie’s observation instead of the

discrete-time model. The KL distance of the proposed CSD is compared against the

KL distance of a power detector. The KL distance results along with simulated results

verify that the CSD outperforms the power detector and demonstrate that a power

detector is not an optimal detector for the continuous-time model. Additionally, the

equivalent discrete-time model is not an equivalent model because it does not allow

for the consideration of all of Willie’s observations at his receiver to help him detect

Alice’s transmissions.
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CHAPTER 5

COVERT COMMUNICATION ON THE
CONTINUOUS-TIME MODEL: TIMING OFFSET

DETECTORS

5.1 Introduction

Chapter 4 investigates the original Alice/Bob/Willie scenario and demonstrates

the importance of considering the continuous-time model instead of the standard

discrete-time model when analyzing covert communication. As another way to demon-

strate the importance of considering continuous-time models, this chapter revisits the

scenario presented in Chapter 2, which considered the discrete-time model. Per Chap-

ter 2, Alice can communicate at a rate that does not scale with her codeword length

when there is a jammer in the environment that adds uncertainty to Willie’s observa-

tions. The uncertainty is added by either the jammer varying his/her power when the

jammer-to-Willie channel is AWGN or when there is a fading channel between jam-

mer and Willie which causes variations in the power Willie receives from the jammer.

Alice leverages Willie’s uncertainty to achieve covert communication at a positive

rate.

The discrete-time model presented in Chapter 2 essentially assumes that trans-

missions arriving from Alice to Willie and arriving from the jammer to Willie are

synchronized at Willie’s receiver and that Willie samples at the symbol rate at the

perfect time. In reality, timing offsets between Alice and the jammer are highly prob-

able since they each use different hardware and are geographically separated without

coordination. Although a jammer with varying transmit power in an AWGN channel

may cause uncertainty in a power detector, the timing offsets provide Willie with
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a unique feature that might mitigate any uncertainty in his received power. These

features are not observable in the discrete-time model, but they are present in the

continuous-time model.

The main contributions of this chapter are:

1. The considering of timing offsets and the presentation of a detector at Willie

that is capable of detecting Alice based on her timing offset from the jammer.

2. A proposed method to overcome the timing offset detector by allowing Alice to

vary her timing offset when she transmits.

5.2 System Model

Consider the scenario presented in Figure 5.1 where Alice would like to commu-

nicate covertly and reliably to Bob without Warden Willie detecting her communi-

cations. An uninformed jammer is also present in the environment and transmits

with the same construction as Alice. In Figure 5.1, dx,y represents the distance from

a transmitter to a receiver where x is either Alice (“a”) or the jammer (“j”) and y

represents Willie (“w”) or Bob (“b”).

Figure 5.1. Wireless communication scenario with Alice, Bob, Willie and a jammer.

Define H0 as the null hypothesis which represents Willie’s assumption that Al-

ice did not transmit. Let H1 represent the alternative hypothesis which represents
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Willie’s assumption that Alice transmitted. Assume Willie observes M time slots

each of length T , as shown in Figure 5.2. The jammer transmits n binary phase shift

keying (BPSK) symbols v(s) = {v(s)
1 , v

(s)
2 , . . . , v

(s)
n } in slot s. The jammer transmits

v(s) by pulse shaping the symbols with a square root raised cosine (SRRC), which

is represented by p(t). The jammer transmits with constant power that is limited

to some maximum value, E[|v(s)
k |2] = Pmax. Define τj as the timing offset between

the jammer’s symbol time and time zero at Willie’s receiver and assume that τj is

constant over all M time slots. Let g(t) represent the jammer’s transmitted signal,

g(t) = ζ
∑n

k=1 v
(s)
k p(t − kTb − τj) where Tb is the symbol period and ζ is the scaling

coefficient used to control the power of the jammer’s signal observed at Willie. As-

sume further that Willie is capable of estimating the timing offset τj with minimal

error by observing all M slots.

If Alice chooses to transmit, she encodes her message into BPSK symbols f =

{f1, f2, . . . , fn} in slot s = 0. Define τa as the timing offset between Alice’s pulse p(t)

generated at her receiver and time zero. Also assume Alice’s symbol period is the

same symbol period employed by the jammer, Tb. Alice’s transmitted signal is then

x(t) = λ
∑n

k=1 fkp(t− kTb − τa) where λ is the scaling coefficient used to control the

power of Alice’s signal observed at Willie and E[|fk|2] = Pmax.

Figure 5.2. Continuous-time slot model diagram where each block contains the time
period T and there are M total slots that Willie observes.

Consider Willie’s observations in the time slot s = 0 and assume that from here

forward, all variables apply to the time slot s = 0; thus, the index of the slot is

dropped for simplicity. When Alice does not transmit, Willie observes:
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z(t)|H0 = ζ

n∑
k=1

vkp(t− kTb − τj) +N (w)(t) (5.1)

where N (w)(t) is the noise Willie observes at his receiver which has mean zero and

power spectral density S
(w)
N (f) = σ2

w. If Alice transmits, Willie observes:

z(t)|H1 = λ
n∑
k=1

fkp(t− kTb − τa) + ζ
n∑
k=1

vkp(t− kTb − τj) +N (w)(t). (5.2)

If Willie employs a power detector at this point in his receiver, the detector

computes the measured power observed in z(t) and compares the measurement to

a threshold γ1 to detect Alice’s transmissions:

1

T

∫ T

0

z2(t)dt
H1

≷
H0

γ1. (5.3)

Since Alice and the jammer employ the same symbol spacing, a cyclostationary de-

tector designed to detect frequencies at 1/Tb as might be suggested in Chapter 4 has

difficulty differentiating between the jammer’s transmissions and Alice’s transmission.

In either the case of a power detector or a cyclostationary detector, Alice can still

achieve a covert rate that does not decrease in the block length n. Thus, this chapter

considers a detector at Willie that exploits the timing offsets τa and τj.

An outline of the system model is shown in Figure 5.3. Willie first passes his

observation through a matched filter. Define zmf(t) = z(t) ∗ p(−t) as the matched

filter’s result:
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zmf(t) = p(−t) ∗ z(t), (5.4)

= p(−t) ∗
(
λ

n∑
k=1

fkp(t− kTb − τa) + ζ
n∑
k=1

vkp(t− kTb − τj) +N (w)(t)

)
,

(5.5)

= λ
n∑
k=1

fkp(t− kTb − τa) ∗ p(−t) + ζ
n∑
k=1

vkp(t− kTb − τj) ∗ p(−t)

+ p(−t) ∗N (w)(t), (5.6)

= λ
n∑
k=1

fkq(t− kTb − τa) + ζ
n∑
k=1

vkq(t− kTb − τj) + p(−t) ∗N (w)(t) (5.7)

where q(t) = p(t)∗p(−t) is the zero inter-symbol interference (ISI) raised cosine pulse.

Figure 5.3. Alice/Jammer/Willie scenario where Willie samples his observations at
both timing offsets τ̂j and τ̂a.

Willie has two branches after the matched filter. The first branch (Branch A)

captures the signal at Alice’s estimated offset and the second branch (Branch J)

captures the signal at the jammer’s estimated offset. We assume that Willie knows

the symbol period Tb and needs to form an estimate of the timing offsets for Alice

and the Jammer. Let τ̂a and τ̂j represent the timing offset estimates of Alice and the

jammer’s transmissions respectively. This work assumes that Willie can estimate the

jammer’s offset with minimal error by observing all M time slots. This assumption

is validated in simulation results shown in Section 5.3.1 and is based on the strategy

proposed by Goeckel et al. in [23].
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Let r(j) represent the sampled values on Branch J in Figure 5.3 and assume that

Willie observes N samples. Let r(a) represent the sampled values Willie observes on

Branch A which also contains N samples.

Consider first the matrix representation of r(a):

r(a) =

[
IN×N QN×N

]λf
ζv

+ n(a) (5.8)

where IN×N is an N by N identity matrix because there is zero ISI between Alice’s

symbols in Branch A at Willie’s receiver. QN×N is an N by N matrix that models

interference from the jammer’s signal and n(a) represents the noise at Willie’s receiver.

The diagonal terms in QN×N correspond to interference from the jammer’s current

symbol given by q(|τ̂a − τ̂j|). The terms that are off the diagonal in QN×N model

interference from the neighboring symbols of the jammer’s message. The number of

neighboring terms that are non-zero around the diagonal depends on the pulse shape.

As an example, assume that the pulse shape is such that Willie observes appreciable

interference from three of the jammer’s symbols at the kth sample in r(a) and that all

other symbols are too far away to impact what Willie observes in r
(a)
k ; then,

r
(a)
k = λfk + ζ

[
vk−1q(|τ̂a − τ̂j| − Tb) + vkq(|τ̂a − τ̂j|)

+ vk+1q(|τ̂a − τ̂j|+ Tb)

]
+ n

(a)
k (5.9)

If (5.9) is modeled in QN×N , the kth row has column entries [k − 1, k, k + 1] that are

non-zero and all other entries in the row are zero. Adjustments need to be made in

QN×N to the first few rows and last few rows of QN×N depending on the pulse shape

because only N symbols are observed on each branch.

Next, the noise contribution in Branch A is analyzed. N (w)(t) is a zero-mean

Gaussian random process with power spectral density SN(f) = σ2
w. Define N

(w)
mf (t) =
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p(−t)∗N (w)(t) and n(a) as N Tb-spaced samples of N
(w)
mf (t). Therefore, the kth sample

in n(a) is:

n
(a)
k =

∫ ∞
−∞

p(t− kTb)N (w)(t). (5.10)

The variables n
(a)
1 , n

(a)
2 , . . . , n

(a)
N are jointly Gaussian because linear operations on

Gaussian random processes result in jointly Gaussian random variables. The expected

value of any sample is:

E[n
(a)
k ] =

∫ ∞
−∞

p(t− kTb)E[N (w)(t)]dt (5.11)

= 0 (5.12)

where (5.12) follows because N (w)(t) is a zero-mean Gaussian random process. The

correlation of the kth and lth entries in the sequence is:

E[n
(a)
k n

(a)
l ] = E

[ ∫ ∞
−∞

∫ ∞
−∞

p(t− kTb)p(s− lTb)N (w)(t)N (w)(s) dt ds

]
(5.13)

=

∫ ∞
−∞

∫ ∞
−∞

p(t− kTb)p(s− lTb)E
[
N (w)(t)N (w)(s)

]
dt ds (5.14)

=

∫ ∞
−∞

p(t− kTb)p(t− lTb)σ2
w dt (5.15)

= δk,lσ
2
w (5.16)

where (5.15) follows because E[N (w)(t)N (w)(s)] = σ2
wδ(t− s). The final result (5.16)

is due to the zero ISI property of the raised cosine pulse.

Analogously, the set of sampled observations on the jammer’s branch is defined

as:

r(j) =

[
QN×N IN×N

]λf
ζv

+ n(j) (5.17)
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where Alice’s message now acts like an interferer and n(j) is an N × 1 vector which

represents the noise that Willie observes on Branch J. The expected value and the

correlation of the jointly Gaussian sequence n(j) are zero and δk,lσ
2
w respectively.

Willie’s observations r(a) and r(j) can be represented in matrix notation by stacking

the matrices (5.8) and (5.17):

r(a)

r(j)

 = A

λf
ζv

+

n(a)

n(j)

 (5.18)

where A is a 2N × 2N matrix:

A =

 IN×N QN×N

QN×N IN×N

 (5.19)

One plausible detector measures the power observed only in r(a) which corresponds

to the time samples which contain Alice’s transmitted codewords. However, if the

jammer’s power is large, then the signal energy from the jammer’s signal “leaks”

into the observations Willie views in r(a). However, Willie can estimate the original

symbols transmitted by Alice and the jammer by employing the inverse of A:

b(a)

b(j)

 = A−1

r(a)

r(j)

 (5.20)

where b(a) is a N × 1 vector which represents Willie’s estimate of Alice’s symbols λf

and b(j) is a N × 1 vector which represents Willie’s estimate of Alice’s symbols ζv.

In particular, as long as A is full rank, which we show occurs if τa 6= τj, the

inversion is possible, with the power of the residual noise related to the condition

number of A. A well-conditioned matrix leads to less noise enhancement.
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Next, a simulation is implemented to study the condition number of A when p(t)

is the impulse response of the square root raised cosine pulse [53, Chapter 6.7.1]:

p(t) =

 4βt
Tb

cos((1 + β)πt
Tb

) + sin((1− β)πt
Tb

)

πt
Tb

[
1−

(
4βt
Tb

)2
]

 . (5.21)

By employing the SRRC pulse, the combined response of the transmitter and match

filter is a raised cosine pulse which produces pulses that have zero intersymbol inter-

ference between the symbols (Nyquist Zero-ISI criteria) [30, Chapter 3.3.1].

Figure 5.4 plots the condition number of A versus the timing offset percentage

of Alice’s pulse and the jammer’s pulse, |τa − τj|/Tb. Figure 5.4 is generated by

assuming Willie obtains 400 samples to construct both r(a) and r(j). Therefore, A is

an 800 by 800 matrix that is constructed for various timing offsets between τa and τj.

The symbol period is 75 discrete samples, the SRRC pulse’s roll-off factor is .2 and

a Figure of the SRRC pulse is shown in Figure 5.5. The condition number results

show that A is reasonably well-conditioned when the timing offset between Alice and

the jammer is greater than 10%. However, the offset at which A is well-conditioned

depends on the pulse shape.
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Figure 5.4. Condition number of matrix A (5.19) versus the timing offset between
Alice’s pulse and the jammer’s pulse, (|τa − τj|/Tb)100.
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Figure 5.5. Simulated Square Root Raised Cosine (SRRC) pulse.
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5.3 Simulation Results of Willie’s Timing Offset Detector

5.3.1 Estimating Willie’s Timing Offset, τj

The system model presented in Section 5.2 assumes Willie can estimate the timing

offset τj. The process for such is outlined in this subsection. Since Willie has access to

M time slots, assume that Willie considers M − 1 slots and his initial assumption is

that Alice transmits in the M th slot. Willie can measure the power observed in r(j) for

various estimates of τj in each of the observed M−1 time slots. This method outlined

in this work is exhaustive simply to demonstrate the possibility of such an estimation,

but there are alternative methods to estimate the timing offset τ̂j [47, Chapter 6.3].

Matlab simulations were generated to verify that this estimation process is pos-

sible. In simulations, the true jammer timing offset τj = 0 and Willie observes 1000

samples to construct r(j) for discrete-time offsets τ̂j = {0, 1, 2, . . . , 50}. Figure 5.6

plots the power observed in r(j) for various τ̂j values when the jammer-to-noise ratio

is -5 dB. The power measured in r(j) peaks when τ̂j = 0, which is the true timing

offset. The simulation presented in Figure 5.6 and the symbol period is Tb = 70

discrete samples. However, even if the symbol spacing is smaller, Willie can still form

an estimate of the timing offset. Figure 5.7 shows the power measured in r(j) when

the symbol spacing between the jammer’s symbols is 16 discrete samples. Willie can

still form an estimate of τj to maximize his observation of the jammer’s signal.

5.3.2 Detecting Alice’s Signal

Based on results shown in Section 5.3.1, Willie can form an estimate of τj and

then perform detection. Therefore, the simulation results presented are under the

assumption that Willie is performing detection in a single time slot. Before presenting

Monte Carlo simulations, a single example is provided to justify measuring the power

observed in b(a) as a detector. Consider the same scenario presented in Section 5.3.1

with Willie’s timing offset τj = 0. The jammer transmits BPSK symbols that are
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Figure 5.6. Power measured in r(j) for different estimated timing offsets τ̂j when
the jammer’s symbol period is 70 discrete samples and the jammer-to-noise ratio is
-5 dB.
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Figure 5.7. Power measured in r(j) for different estimated timing offsets τ̂j when
the jammer’s symbol period is 16 discrete samples and the jammer-to-noise ratio is
-5 dB.

pulse shaped using a SRRC pulse and the symbol period is 70 discrete samples. Alice

also transmits BPSK symbols that have the same symbol period as the jammer and
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Alice’s true timing offset is τa = 30. The SNR is -5 dB and the SJR is 0 dB; therefore,

the jammer-to-noise ratio (JNR) is -5 dB as well.

In simulations, Willie uses 1000 samples to construct r(j) based on the estimated

timing offset τ̂j and we assume Willie estimates τa as a next step. Willie can employ

a similar process used to estimate τj by measuring the power observed in r(a) for

various estimates of τa. Figure 5.8 shows the results of Willie’s power observed in r(a)

for various τ̂a values based on 1000 samples to construct r(a). The power measured in

r(a) peaks when τ̂a = 30 discrete samples which is equivalent to a 42.8% timing offset.

Therefore, assuming Willie has access to sufficient resources, Willie can measure the

power observed in r(a) to estimate τa.
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Figure 5.8. Simulated power observed in r(a) ( ◦ ) when Alice transmits and the
timing offset between the jammer and Alice is 30 discrete samples (42.8% timing
offset). The power observed in r(j) when Alice does not transmit is also shown for
comparison.

Monte Carlo simulations are generated to construct ROC curves based on the

assumptions that Willie correctly estimates the timing offsets τ̂j = 0 and τ̂a = 30 dis-
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crete samples. 800 iterations are generated and in each iteration power measurements

of b(a) are calculated when Alice does and does not transmit. Figure 5.9 shows the

detection results when the SNR is -30dB, the SJR is -30dB and therefore the JNR

is 0 dB. Another ROC is shown in Figure 5.10 when the SNR is -30 dB, the SJR is

-10 dB and the JNR is -20 dB. The black line represents the standard power detec-

tor (5.3) and the blue line represents the timing offset based detector. These results

demonstrate that Willie can detect Alice’s transmissions with significantly greater

success than the power detector by exploiting features which differ between Alice and

the jammer.
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Figure 5.9. ROC detection results when Alice’s timing offset is constant, SNR=-
30 dB, SJR = -30 dB. The power detector (5.3) is represented by the black line (−)
and the timing offset based detector is represented by the blue line (4).
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Figure 5.10. ROC detection results of a power detector (5.3) represented by the
black line (−) and the detector of the timing offset based detector represented by the
blue line (4).

5.4 Adding Uncertainty to the Timing Offset Scenario

This section proposes a different communication strategy at Alice so that it is

harder for Willie to detect whether or not Alice is transmitting. The proposed method

is similar to frequency hopping techniques that are employed to avoid detection by

an adversary [30, Chapter 12].

Consider the system model presented in Section 5.2 and the timing slot model

shown in Figure 5.2. The jammer transmits BPSK symbols using pulse shaping in

all M time slots. Alice and Bob agree on a pre-assigned time slot to transmit which

is unknown to Willie. Without loss of generality, assume that Alice and Bob agree

to communicate in slot s = 0. In this section, Alice’s transmission scheme changes

such that she varies her timing offset instead of using a fixed timing offset. Also

assume that Bob knows how Alice varies her timing offsets prior to communicating.

Therefore, Alice’s signal is x(t) = λ
∑n

k=1 fkp(t− Tb − τa,k) where τa,k represents the

timing offset of the kth symbol. Note that Alice does not have to change τa,k after
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each symbol and the timing offset may be constant for a certain number of symbols

that are transmitted successively. Also, note that such a strategy results in Alice

incurring intersymbol interference (ISI) at Bob’s receiver; however, such ISI does not

affect the order of the scaling of the covert throughput.

Assume Willie’s proposed detector is designed to measure the power observed in

different timing offsets as shown in Section 5.2. This assumption is also true in the

simulations implemented in Section 5.3.2. Willie’s proposed detector measures the

power observed in b(a) as he varies his estimate of Alice’s timing offset observed at

his receiver for different estimates of her timing offset, τ̂a.

Before generating Monte Carlo simulations, a simple simulation is generated to

demonstrate the benefits of Alice varying her timing offset. Assume that Alice varies

her timing offset so the timing offset between the jammer and herself at Willie varies

by 10, 20, 30 or 40 discrete samples. Alice randomly picks a new timing offset

after transmitting every 100 symbols and all timing offsets are chosen with equal

probability.

Following the steps outlined in Section 5.2, Willie constructs different sets of r(a)

by sampling his matched filter result with different timing offset values, τ̂a. As an

example, Figure 5.11 plots the power Willie observes in r(a) for different τ̂a values when

only Alice transmits. The results are generated assuming Willie uses 1000 samples

to construct r(a). Figure 5.11 also shows the power Willie observes when Alice’s true

timing offset at Willie is fixed τa = 30 for comparison. By varying her timing offset,

the power Willie observes in b(a) for any estimate τ̂a is significantly reduced.

Next, Monte Carlo simulations were generated to observe the impact of Alice

varying her timing offset on Willie’s detection capabilities. Four detectors at Willie

were constructed which measure the power Willie observes in b(a) for τ̂a = 10, 20,

30 and 40 discrete samples. Willie constructs r(a) and r(j) using 1000 samples. Alice

chooses a timing offset of 10, 20, 30 or 40 discrete samples every 100 symbols with
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Figure 5.11. Willie’s power in b(a) when Willie samples his observation at various
timing offsets and Alice does not vary her timing offset. The black line (–) represents
the power measured in b(a) when Alice’s timing offset is fixed at τa = 30 discrete
samples and the blue line ( 4 ) represents when Alice varies her timing offset by
10, 20, 30 or 40 discrete samples with equal probability. The signal to noise ratio at
Willie is -5 dB and the jammer does not transmit in the results shown.

equal probability. The symbol period employed by both Alice and the jammer is

Tb = 70 discrete samples.

The first simulation assumes Alice transmits with a fixed timing offset, τ = 30.

Figure 5.12 shows the ROC curves comparing the different detectors that are con-

structed based on different estimates of τ̂a. As shown in Section 5.3.2, Willie’s detector

performs well when τ̂a = 30 and his other detectors do not detect any signal at τ̂a =

10, 20 and 40 as expected. Figure 5.13 shows the results of Willie’s detectors when

Alice varies her timing offset by 20 or 30 discrete samples with equal probability.

Note that although the detector with τ̂a = 30 appears to outperform the detector

with τ̂a = 20, these results are dependent on only 1000 samples. Thus, the perfor-

mance of the detectors are expected to perform similarly as Willie observes larger

sample sizes.
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Figure 5.12. ROCs of timing offset detectors when Alice’s offset is fixed, SNR =
-30 dB, SJR = -30 dB. Willie assumes Alice’s timing offset is fixed at τ̂a =10 ( ◦ ), 20
( 4 ), 30 ( • ) or 40 ( � ) discrete samples. Alice’s offset, τa, is fixed at 30 discrete
samples. Willie constructs r(a) and r(j) using 1000 samples.

Figure 5.14 shows the results of Willie’s detector when Alice varies her timing

offset by 10, 20, 30 and 40 samples with equal probability. The performance of each

detector is degraded further by the fact that Alice is varying her timing offset. The

pseudocode for the simulations presented in this section are detailed in Appendix G.
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Figure 5.13. ROCs of timing offset detectors when Alice’s timing varies slightly,
SNR = -30 dB, SJR = -30 dB. Willie assumes that Alice’s timing offset is fixed at
τ̂a =10 ( ◦ ), 20 ( 4 ), 30 ( • ) or 40 ( � ) discrete samples. The black line (−)
represents the performance of a power detector at Willie. Alice varies her offset by
either 20 or 30 discrete samples with equal probability. Willie constructs r(a) and r(j)

using 1000 samples.
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Figure 5.14. ROCs of timing detectors when Alice’s offset various significantly, SNR
= -30 dB, SJR = -30 dB. Willie assumes that Alice’s timing offset is fixed at τ̂a =10
( ◦ ), 20 ( 4 ), 30 ( • ) or 40 ( � ) discrete samples. The black line (−) represents
the performance of a power detector at Willie. Alice varies her offset by either 10, 20,
30 or 40 discrete samples with equal probability. Willie constructs r(a) and r(j) using
1000 samples.
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5.5 Summary

This chapter revisited the Alice/Bob/Willie/Jammer scenario presented in Chap-

ter 2 to investigate the impact of a detector designed based on the continuous-time

model instead of the discrete-time model. This is done by assuming that both Alice

and the jammer transmit BPSK signals and that the timing of the pulses are such

that the symbol boundaries are not aligned at Willie, as would be the case in prac-

tice. Simulation results demonstrate that if Alice’s timing offset is constant, Willie

can collect samples and project away from the jammer, thus mitigating its impact. If

Alice varies her timing offsets, she can mitigate such an attack at the expense of Bob’s

observations incurring intersymbol interference. Thus, the results provide general in-

sight about how Alice can achieve covert communication and how Willie can thwart

Alice’s ability to remain covert on the true continuous-time channel. Essentially,

Alice should transmit messages which resemble Willie’s expected background noise

statistics for all detectors. Analogously, Willie should leverage any unique features

about Alice’s transmissions that are different from his expected background noise to

design detectors.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The covert communication research presented in this work builds upon prior re-

search to consider dynamic channel models. The second chapter considered covert

communications with the addition of a jammer in the standard AWGN channel model,

with single block fading, or with a finite M -block fading model. Results prove that

Alice can achieve positive rate covert communication even when Willie employs an

optimal detector with the addition of the jammer. The third chapter generalizes the

covert communication problem to consider an arbitrary number of fading blocks over

the duration of Alice’s transmission. The number of fading variations is defined as a

potentially increasing function of the codeword length, and thus the number of fading

blocks is not finite as in Chapter 2. A converse for covert communication is provided.

Chapter 4 revisits the Alice/Bob/Willie covert communication scenario using the

continuous-time model instead of the previously considered discrete-time model. Re-

sults presented in Chapter 2 prove that a power detector is an optimal detector for

Willie for many discrete-time models, including AWGN and single-block fading. How-

ever, results in Chapter 4 demonstrate the importance of considering the continuous-

time model: the results derived based on the discrete-time model in Chapter 2 are only

valid if Willie samples his continuous-time observations at exactly the right time in-

stances. In particular, Chapter 4 demonstrates the importance of the continuous-time

model by presenting cyclostationary detectors and demonstrating how their perfor-

mance outperforms a standard power detector. This work demonstrates that limiting

Alice’s transmit power is not the only consideration. Alice’s transmissions should not
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contain any features that differ significantly from Willie’s observations when Alice

does not transmit.

The Alice/Bob/Willie/Jammer scenario presented in Chapter 2 is revisited in the

fifth chapter under a continuous-time model. If Alice and the jammer are unsyn-

chronized, then Willie can exploit their relative time offsets to construct detectors

that significantly outperform a power detector and even change the scaling behav-

ior. However, if Alice varies her timing offset, she can reduce the chances of Willie

detecting her communications, in fact, causing the timing offset detector to perform

similarly as a power detector in the continuous-time model.

As covert communication research continuous to develop, the scenarios under

which covert communication are analyzed are also expected to become more complex.

Some areas of future work include:

1. Additional strategies Willie can exploit to detect Alice’s transmissions with high

probability. For example, if Willie employs an antenna array in the AWGN

channel model, even if the jammer transmits, Willie can differentiate between

the two transmitters by employing an antenna array. If Willie knows in advance

where the jammer is located, then Willie can use this knowledge to detect if

power observed from other directions is greater than some threshold. The work

presented in Chapter 3 provides some insight about what channel conditions

can generate uncertainty when Willie employs an antenna array.

2. Future work should also consider how well Bob can reconstruct Alice’s messages

under more dynamic channel conditions and when Alice changes her transmis-

sion strategy.

3. There is already some early work by Yan et al. in [54] which determine Alice’s

exact rate when her codeword length is finite. The proofs presented in this work

assume asymptotic conditions. Future work should also consider Alice’s exact
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rate in dynamic channel conditions based on the models presented in Chapter

5.
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APPENDIX A

PROOF OF THEOREM 2

Construction: Alice and the jammer employ the same methods as described in

the construction of Lemma 3 in Section 2.3.2. Hence, Willie is aware that the channel

gain between the jammer and himself results in σ2
j being distributed as an exponential

random variable with mean ζ. If the Alice-to-Willie channel is AWGN, Lemma 3

establishes that the optimal receiver for Willie to employ is a power detector Z ≷H1
H0

Γn

for some threshold Γn on the slot of size n, or, equivalently,

Z

n

H1

≷
H0

τn, (A.1)

where τn ≡ Γn/n. If the Alice-to-Willie channel is an M = 1 block fading channel, we

assume pessimistically that Willie also knows the value of h
(a,w)
0,1 . Then, Corollary 3.1

establishes that the optimal receiver for Willie is again the power detector in (A.1).

Analysis: Consider first the case when the Alice-to-Willie channel is an AWGN chan-

nel. Recall that we require PFA +PMD > 1−ε for any ε > 0. Thus, consider any ε > 0.

The unboundedness of the support of σ2
j requires a slight modification of the proof

technique of Theorem 1 in Section 2.3.1. Thus, note that there exists some constant

c such that:

P (σ2
j > c) <

ε

4
. (A.2)
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Consider first the false alarm rate, and, analogously to the proof of Theorem 1, define:

PFA(u) = P

(
Z

n
≥ τn|σ2

j = u,H0

)
. (A.3)

Under H0, Z/n = (σ2
w+σ2

j )χ2
2n/n. By the weak law of large numbers, χ2

2n/n converges

in probability to 1; hence, for any δ > 0, ∃N0 (not dependent on u) such that, for

n ≥ N0,

P

(
χ2

2n

n
∈
(

1− δ

σ2
w + c

, 1 +
δ

σ2
w + c

))
> 1− ε

2
. (A.4)

Hence, for any n > N0,

P

(
Z

n
∈
(

(σ2
w + u)

(
1− δ

σ2
w + c

)
, (σ2

w + u)

(
1 +

δ

σ2
w + c

)))
> 1− ε

2
. (A.5)

Now, for any u ≤ c, σ2
w + u < σ2

w + c and thus for any n > N0:

P

(
Z

n
∈
(
σ2

w + u− δ, σ2
w + u+ δ

))
> 1− ε

2
(A.6)

and thus PFA(u) ≥ 1 − ε/2 for any τn < σ2
w + u − δ as long as u < c. Likewise,

following analogous arguments, ∃N1 such that, for any n > N1 (not dependent on u):

PMD(u) = P

(
Z

n
≤ τn|σ2

j = u,H1

)
> 1− ε

2
(A.7)

for any τn > σ2
w + u + σ2

a + δ, as long as u < c. Combining these results yields that

for any n > max(N0, N1):

PFA(u) + PMD(u) ≥ 1− ε

2
(A.8)
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unless {u > c} or u ∈ A = {σ2
w + u− δ < τn < σ2

w + u+ σ2
a + δ}. Now,

P (A) = P (τn − δ − σ2
a − σ2

w < U < τn + δ − σ2
w), (A.9)

≤ σ2
a + 2δ

ζ
(A.10)

where the last line follows by upper bounding the probability density function of σ2
j .

A choice of δ = ζε/16 and σ2
a = ζε/8 yields, via the Union Bound:

P (Ac ∩ {σ2
j ≤ c}) ≥ 1− ε

2
(A.11)

and then the proof follows analogously to the end of that of Theorem 1. This com-

pletes the proof for the case that the Alice-to-Willie channel is an AWGN channel.

Next, consider the case when the Alice-to-Willie channel is a M = 1 block fading

channel. Let ε2 > 0 be the covertness constraint and set ε = ε2/2. Choose σ̃2
a

according to the AWGN case above such that Alice is covert if the average received

power at Willie is σ̃2
a. Finally, choose Pf such that:

P (σ2
a < σ̃2

a) > 1− ε2
2
. (A.12)

Then, Alice can employ (constant) power Pf and satisfy the covertness constraint for

any ε > 0.
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APPENDIX B

PROOF OF o(n) COVERT BITS TRANSMITTED FOR
M = 1

Consider the assumptions of the M = 1 fading model and Alice’s construction

in Section 2.2.1.1 but with the jammer transmitting Gaussian noise drawn from a

distribution with constant variance. If fading channels exist between all parties, there

exists a covert communication strategy s.t. Bob can reliably decode Alice’s messages

if she transmits o(n) bits in n channel uses.

Proof: By Theorem 2, Alice can transmit with Pf > 0 not dependent on n

while remaining covert. What remains is to demonstrate that Bob can decode the

transmission with probability of error less than δ for any δ > 0. Conditioned on the

fading variables h(a,b), h(j,b), the channel from Alice to Bob is an AWGN channel with

signal-to-noise ratio:

γ =
|h(a,b)|2 Pf

dαa,b

|h(j,b)|2 Pj

dαj,b
+ σ2

b

. (B.1)

Hence, given the distributions of h(a,b) and h(j,b), there exists a constant rate R such

that the probability that γ is large enough to support communication with reliability

greater than 1 − δ
2

at rate R is greater than 1 − δ
2

(R is the δ
2
-outage capacity [37],

which is non-zero). Since o(n) < nR for all n > N0 for some N0, the result follows.
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APPENDIX C

PROOF OF INCREASING Λ(Z) FOR THE M = 1 CASE
FOR THE PROOF OF LEMMA 4

Let ζ = Pj/d
α
j,w. Hence, in the fading model, the received jammer power σ2

j is

exponentially distributed with mean ζ. As in Section 2.3.1, since the t = 0 slot is the

slot of interest, observations outside of k = 1, 2, . . . , n do not help Willie to detect

a transmission by Alice in slot t = 0. Hence, it is sufficient to consider Z0 as the

input to Willie’s receiver. As in Section 2.3.1, we therefore suppress the slot index

and denote Willie’s observation by Z = [Z1, Z2, . . . , Zn]. It is then readily established

that Z =
∑n

i=1 |Zi|2 is a sufficient statistic, with distribution under H0 given by:

fZ|H0(z|H0) = Eσ2
j

[(
1

π(σ2
j + σ2

w)

)n
exp

(
− z

(σ2
j + σ2

w)

)]
,

=
1

πn

∫ ∞
0

(
1

u+ σ2
w

)n
e
− z

(u+σ2
w) e−

u
ζ du,

=
e
σ2

w
ζ

πn

∫ ∞
σ2

w

(
1

v

)n
e−

z
v e−

v
ζ dv. (C.1)

Via analogous arguments, the distribution when Alice transmits is:

fZ|H1(z|H1) =
e
σ2

w+σ2
a

ζ

πn

∫ ∞
σ2

w+σ2
a

(
1

v

)n
e−

z
v e−

v
ζ dv. (C.2)

Hence, in this case the optimal decision rule for Willie becomes:

Λ(Z) =
e
σ2

a
ζ
∫∞
σ2

w+σ2
a

(
1
v

)n
e−

Z
v e−v/ζdv∫∞

σ2
w

(
1
v

)n
e−

Z
v e−

v
ζ dv

H1

≷
H0

γ. (C.3)
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Now, consider any observation Z = z(0) that falls on the boundary between the

decision regions:

Λ(z(0)) =
e
σ2

a
ζ
∫∞
σ2

w+σ2
a

(
1
v

)n
e−

z(0)

v e−
v
ζ dv∫∞

σ2
w

(
1
v

)n
e−

z(0)

v e−
v
ζ dv

= γ, (C.4)

and consider the LRT when Willie observes z(0) + ∆:

Λ(z(0) + ∆) =
e
σ2

a
ζ
∫∞
σ2

w+σ2
a

(
1
v

)n
e−

(z(0)+∆)
v e−

v
ζ dv∫∞

σ2
w

(
1
v

)n
e−

(z(0)+∆)
v e−

v
ζ dv

. (C.5)

The common integration term in the numerator and denominator of (C.5) is extracted

to yield:

Λ(z(0) + ∆) =
e
σ2

a
ζ
∫∞
σ2

w+σ2
a

(
1
v

)n
e−

(z(0)+∆)
v e−

v
ζ dv∫ σ2

w+σ2
a

σ2
w

(
1
v

)n
e−

(z(0)+∆)
v e−

v
ζ dv +

∫∞
σ2

w+σ2
a

(
1
v

)n
e−

(z(0)+∆)
v e−

v
ζ dv

. (C.6)

Next, (C.6) is normalized by the common integration range
∫∞
σ2

w+σ2
a

(
1
v

)n
e−

(z(0)+∆)
v e−

v
ζ dv

to yield:

Λ(z(0) + ∆) =
e
σ2

a
ζ

∫ σ2
w+σ2

a
σ2

w
( 1
v )
n
e−

(z(0)+∆)
v e

− v
ζ dv∫∞

σ2
w+σ2

a
( 1
v )
n
e−

(z(0)+∆)
v e

− v
ζ dv

+ 1

. (C.7)

The Second Mean Value Theorem [55, Chapter 4.7] implies that ∃c1 ∈ (σ2
w, σ

2
w + σ2

a)

such that:

e
− ∆
c1

∫ σ2
w+σ2

a

σ2
w

(
1

v

)n
e−

z(0)

v e−
v
ζ dv =

∫ σ2
w+σ2

a

σ2
w

(
1

v

)n
e−

(z(0)+∆)
v e−

v
ζ dv. (C.8)
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Similarly, because e
− ∆

σ2
w+σ2

a ≤ e−
∆
v ≤ 1 for v ∈ [σ2

w + σ2
a,∞),

e
− ∆

σ2
w+σ2

a

∫ ∞
σ2

w+σ2
a

(
1

v

)n
e−

z(0)

v e−
v
ζ dv ≤

∫ ∞
σ2

w+σ2
a

(
1

v

)n
e−

(z(0)+∆)
v e−

v
ζ dv, (C.9)

≤
∫ ∞
σ2

w+σ2
a

(
1

v

)n
e−

z(0)

v e−
v
ζ dv (C.10)

which implies:

e
− ∆

σ2
w+σ2

a ≤

∫∞
σ2

w+σ2
a

(
1
v

)n
e−

(z(0)+∆)
v e−

v
ζ dv∫∞

σ2
w+σ2

a

(
1
v

)n
e−

z(0)

v e−
v
ζ dv

≤ 1. (C.11)

Hence, the ratio of the integrals in (C.11) is either equal to one, or ∃c2 ∈ [σ2
w +σ2

a,∞)

such that:

e
− ∆
c2

∫ ∞
σ2

w+σ2
a

(
1

v

) n
M

e−
z(0)

v e−
v
ζ dv =

∫ ∞
σ2

w+σ2
a

(
1

v

) n
M

e−
(z(0)+∆)

v e−
v
ζ dv. (C.12)

If there exists such a c2 ∈ [σ2
w + σ2

a,∞), then:

Λ(z(0) + ∆) =
e
σ2

a
ζ

e
− ∆
c1

∫ σ2
w+σ2

a
σ2

w
( 1
v )
n
e−

z(0)
v e
− v
ζ dv

e
− ∆
c2

∫∞
σ2

w+σ2
a
( 1
v )
n
e−

z(0)
v e
− v
ζ dv

+ 1

, (C.13)

>
e
σ2

a
ζ

∫ σ2
w+σ2

a
σ2

w
( 1
v )
n
e−

z(0)
v e
− v
ζ dv∫∞

σ2
w+σ2

a
( 1
v )
n
e−

z(0)
v e
− v
ζ dv

+ 1

(C.14)

where (C.14) follows by noting that e−
∆
x is monotonically increasing in x and c2 >

c1. And (C.14) also holds if the ratio of the integrals in (C.11) is equal to one, in
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which case e
− ∆
c2 is replaced by 1 in (C.13). Multiplying (C.14) through by the term∫∞

σ2
w+σ2

a

(
1
v

)n
e−

z(0)

v e−
v
ζ dv yields:

Λ(z(0) + ∆) >
e
σ2

a
ζ
∫∞
σ2

w+σ2
a

(
1
v

)n
e−

z(0)

v e−
v
ζ dv∫ σ2

w+σ2
a

σ2
w

(
1
v

)n
e−

z(0)

v e−
v
ζ dv +

∫∞
σ2

w+σ2
a

(
1
v

)n
e−

z(0)

v e−
v
ζ dv

, (C.15)

=
e
σ2

a
ζ
∫∞
σ2

w+σ2
a

(
1
v

)n
e−

z(0)

v e−
v
ζ dv∫∞

σ2
w

(
1
v

)n
e−

z(0)

v e−
v
ζ dv

, (C.16)

= γ (C.17)

where (C.17) follows from the assumption in (C.4). Hence, if an observation z(0) is

such that Λ(z(0)) = γ, then an increase in the observed power z results in Λ(z) > γ.
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APPENDIX D

PROOF OF o(1) COVERT RATE FOR M > 1

Consider the assumptions of the multiple block fading model in Section 2.2.1.2

and Alice’s construction presented in Section 2.2.1.1 but with the jammer transmit-

ting Gaussian noise drawn from a distribution with constant variance. Additionally,

assume that Willie knows h
(a,w)
0,m ,m = 1, 2, . . . ,M . Then, there exists a covert commu-

nication strategy such that Bob can reliably decode Alice’s messages if she transmits

with rate o(1).

Proof: Construction: The construction is the same as for Lemma 5 and Theorem 3.

Analysis: By Theorem 3, Alice can transmit with constant power Pf > 0 while remain-

ing covert. What remains is to demonstrate that Bob can decode the transmission

with probability of error less than ε for any ε > 0. Conditioned on the fading variables

h
(a,b)
m , h

(j,b)
m , the channel from Alice to Bob during the mth block is an AWGN channel

with signal-to-noise ratio:

γm =
|h(a,b)
m |2 Pf

dαa,b

|h(j,b)
m |2 Pj

dαj,b
+ σ2

b

. (D.1)

Now, there exists a constant δ small enough such that:

P (γm > δ) ≥ 1− ε

2M
(D.2)

for all m = 1, 2, . . .M . Hence, P (min(γ1, γ2, . . . , γM) > δ) > 1− ε
2
. Now, there exists

a constant rate R such that communication is reliable over an AWGN channel with

SINR δ; hence, communication at that rate R is reliable here. Finally, since o(1) < R

for all n > N0 for some N0, the result follows.

110



APPENDIX E

WILLIE’S ALTERNATIVE STATISTICS WHEN ALICE
TRANSMITS

The derivations presented in this section are employed to characterize Willie’s

ability to detect Alice based on the system model presented in Section 3.2. Willie’s

expected test result when Alice transmits is:

E[Z|H1] = nPj + nσ2
w + nPf . (E.1)

The term E[Z2|H1] is then evaluated to determine the variance of Willie’s observation:

E[Z2|H1] = E[Z2|H0] +
n∑
k=1

n∑
l=1

E[|hl|2]E[|gl|2]E[|fk|2] + E[|hk|2]E[|gk|2]E[|fl|2]

+ E[|fl|2|Nk|2] + E[|fk|2|Nj|2]

+ E[h∗khl]E[g∗kgl]E[fkf
∗
l ] + E[h∗khl]E[gkg

∗
l ]E[f ∗kfl]

+ E[f ∗kfl]E[NkN
∗
l ] + E[fkf

∗
l ]E[N∗kNl] + E[|fk|2|fl|2]. (E.2)

The second and third terms of (E.2) are:

n∑
k=1

n∑
l=1

E[|hl|2]E[|gl|2]E[|fk|2] +
n∑
k=1

n∑
l=1

E[|hk|2]E[|gk|2]E[|xl|2] = 2n2PjPf (E.3)

and the fourth and fifth terms simplify to:

n∑
k=1

n∑
l=1

E[|fl|2]E[|Nk|2] + E[|fk|2]E[|Nl|2] = 2n2Pfσ
2
w. (E.4)
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The sixth and seventh terms of (E.2) are:

n∑
k=1

n∑
l=1

E[h∗khl]E[g∗kgl]E[fkf
∗
l ] + E[h∗khl]E[gkg

∗
l ]E[f ∗kfl] = 2nPjPf (E.5)

and the eighth and ninth terms of (E.2) are:

n∑
k=1

n∑
l=1

E[f ∗kfl]E[NkN
∗
l ] + E[fkf

∗
l ]E[N∗kNl] = 2nPfσ

2
w. (E.6)

The final term of (E.2) is:

n∑
k=1

n∑
l=1

E[|fk|2|fl|2] =
n∑
k=1

(
E[|fk|4] +

n∑
l 6=k

E[|fk|2]E[|fl|2]

)
, (E.7)

= 2nPf + n2P 2
f − nP 2

f . (E.8)

Therefore, the full expansion of E[Z2|H1] is:

E[Z2|H1] = E[Z2|H0] + 2n2PjPf + 2n2Pfσ
2
w + 2nPjPf + 2nPfσ

2
w

+ 2nP 2
f + n2P 2

f − nP 2
f (E.9)

and the variance of Willie’s observation when Alice transmits is:

E[Z2|H1]− (E[Z|H1])2 = 2n2Pjσ
2
w + 2nPjσ

2
w + 2nσ2

w + n2σ4
w − nσ4

w + 2nP 2
j

+
n2P 2

j

f(n)
+ 2f(n)P 2

j + n2P 2
j + 2n2PjPf + 2n2Pfσ

2
w

+ 2nPjPf + 2nPfσ
2
w + 2nP 2

f + n2P 2
f − nP 2

f − n2P 2
f

− n2P 2
j − n2σ4

w − 2n2Pfσ
2
w − 2n2Pjσ

2
w − 2n2PfPj, (E.10)

= 2nPjσ
2
w + 2nσ2

w − nσ4
w + 2nP 2

j +
n2P 2

j

f(n)
+ 2f(n)P 2

j

+ 2nPjPf + 2nPfσ
2
w + 2nPf − nP 2

f , (E.11)
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based on the term:

(E[Z|H1])2 = n2(P 2
j + σ2

w + P 2
f + 2PjPf + 2Pfσ

2
w + 2Pjσ

2
w). (E.12)

Therefore, the normalized measurement S has the expected value:

E[S|H1] = Pj + σ2
w + Pf (E.13)

and the variance of S when Alice transmits is:

Var[S|H1] =
1

n

[
2Pjσ

2
w + 2σ2

w − σ4
w + 2P 2

j + 2PjPf + 2Pfσ
2
w + 2Pf − P 2

f

]
+

P 2
j

f(n)
+

2f(n)P 2
j

n2
. (E.14)
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APPENDIX F

PSEUDOCODE OF CYCLOSTATIONARY DETECTION
SIMULATIONS (SECTION 4.3.3)

% Declare Variables
Fs = 100e6 % Oversample frequency
Ts = 1/Fs % Oversample period
pulse % Load SRRC pulse
Tb = 143 % Discrete symbol period
alpha = 1/(Tb*Ts) % Declare symbol frequency
SNR % Declare alice’s SNR at willie
SJR % Declare alice’s SJR at willie
Nsym = 8192 % Number of symbols alice generates

% Detector Settings
N = 4096 % Number of samples Willie observes
time vec = (0:N-1)*Ts
max iterations % Declare max number of iterations
W = 20 MHz % Declare bandwidth
lpf = fir1(20,W/Fs) % Create low-pass filter

rng(0,‘twister’) % Initialize random generator seed

for each iteration ii=1:max iterations
bpsk = randn(1,Nsym) % Generate BPSK symbols
bpsk(bpsk>=0)=1
bpsk(bpsk<0)=-1
bpsk up = upsample(bpsk,Tb) % Space by symbol period
tx sig = conv(bpsk up,pulse) % Convolve with pulse
% Generate AWGN
noise = randn(1,length(tx sig))
noise = noise/sqrt(power(noise)) % Normalize noise power
Ps = power(noise)*10ˆ(SNR/10) % Find signal power
tx sig = tx sig/sqrt(power(tx sig)) % Normalize
tx sig = tx sig*sqrt(10ˆ(log10(Ps)) % Adjust signal power

z pre h0 = noise(1:N)
z pre h1 = tx sig(1:N) + noise(1:N)
z h0 = filter(lpf,1,z pre h0)
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z h1 = filter(lpf,1,z pre h1)

% Power Detector
power result h0(ii) = power(z h0)
power result h1(ii) = power(z h1)

% Cyclic Detector
cyc result h0(ii) = abs(sum(z h0ˆ2*cos(2 π alpha t vec)))/N
cyc result h1(ii) = abs(sum(z h1ˆ2*cos(2 π alpha t vec)))/N

end for loop

% Next, find power detection rates based on derived equations
% First find frequency at which the magnitude response of the
% filter is -3 dB.
[h, w] = freqz(lpf,1)
[v, p] = min(abs(20*log 10(abs(h))+3))
Wadj = w(p)/π ∗ Fs
Pna = Pn*W/Fs
Pnb = Pn*Wadj/Fs
mu0 = Pnb
mu1 = Ps + Pnb
std pow0 = sqrt((Pnaˆ2*2)/N)*2
std pow1 = sqrt((Pnaˆ2*2+4*Ps*Pna)/N)*2
tau vec = linspace(0,max(power result h1),max iterations)
pow eq fa = 1-.5*erfc((-tau vec-mu0)/std pow0/sqrt(2))

+.5*erfc((tau vec-mu0)/std pow0/sqrt(2))
pow eq det = 1-.5*erfc((-tau vec-mu1)/std pow1/sqrt(2))

+.5*erfc((tau vec-mu1)/std pow1/sqrt(2))

% Cyclic detection rates based on derived equations
x = filter(lpf,1,tx sig(1:N))
rho = abs(sum(xˆ2*cos(2 π alpha t vec)))/N
std csd0 = sqrt(Pnaˆ2/N)*2
std csd1 = sqrt((Pnaˆ2/N+2*Pna*Ps/Nˆ2))*2
tau vec = linspace(0,max(cyc result h1),max iterations)
cyc eq fa = erfc(tau vec./std csd0/sqrt(2))
cyc eq det = 1-.5*erfc((-tau vec-rho)./std csd1/sqrt(2))

+.5*erfc((tau vec-rho)./std csd1/sqrt(2))

% Generate simulated ROC results using power result h0 and
% power result h1
% Generate derived ROC results using pow eq fa and pow eq fa
% Generate simulated ROC results for cyc result h0
% and cyc result h1
% Generate derived ROC results using cyc eq fa and cyc eq fa
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APPENDIX G

PSEUDOCODE OF TIMING-BASED DETECTOR
SIMULATIONS (SECTION 5)

The code below outline’s Willie’s detector assuming Willie has already estimated
the jammer’s timing offset.

% Declare Variables
Fs = 100e6 % Oversample frequency
Ts = 1/Fs % Oversample period
pulse % Load SRRC pulse
Tb = 143 % Discrete symbol period
alpha = 1/(Tb*Ts) % Declare symbol frequency
SNR % Declare Alice’s SNR at Willie
SJR % Declare Alice’s SJR at Willie
Nsym = 8192 % Number of symbols Alice generates

% Detector Settings
N = 4096 % Number of samples Willie observes
time vec = (0:N-1)*Ts
max iterations % Declare max number of iterations
A % Construct A Matrix

rng(0,‘twister’) % Initialize random generator seed
for ii=1:max iterations

% Generate signals
g % Generate jammer’s bpsk pulse shaped signal with

% a fixed timing offset
x % Generate Alice’s bpsk pulse shaped signal

% and vary timing offset if needed
noise % Generate and normalize AWGN power
% Scale Alice’s signal power and jammer’s signal power
% according to SNR and SJR

% Match filter
mf h0 = conv(g+noise,pulse) % Willie’s H0 observation
mf h1 = conv(x+g+noise,pulse) % Willie’s H1 observation
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% Implement standard power detector here, then the
% timing based detector

% Downsample observation on jammer’s branch using τ̂j

m % Find when first symbol should arrive if there
% are no timing offsets

rj h0 = downsample(mf h0(m+τ̂j:end),Tb)
rj h1 = downsample(mf h1(m+τ̂j:end),Tb)

% Downsample Willie’s observation with different
% estimated timing offsets for Alice

% Example code below for τ̂a=10
ra h0 10 = downsample(mf h0(m+10-1:end),Tb)
ra h1 10 = downsample(mf h1(m+10-1:end),Tb)

% Calculate power in estimates and repeat process
% for τ̂a=20,30,40
ba h0 10 = Aˆ[ra h0 10(1:N),rj h0 10(1:N)]
% measure power in ba h0 10
ba h1 10 = Aˆ[ra h1 10(1:N),rj h1 10(1:N)]
% measure power in ba h1 10

end for loop

% Generate ROC results for power detector results
% Generate ROC results for ba h0 10 and ba h1 10
% Generate ROC results for ba h0 20 and ba h1 20
% Generate ROC results for ba h0 30 and ba h1 30
% Generate ROC results for ba h0 40 and ba h1 40
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